
Threshold Decision Lists

Martin Anthony

Department of Mathematics

LSE



We consider the use of threshold decision lists for

classifying data into two classes.

• has a natural geometrical interpretation

• can be appropriate for an iterative approach to

data classification, in which some points of the

data set are classified, are then removed from

consideration, and the procedure iterated until all

points are classified.



We apply techniques from probabilistic learning

theory to analyse theoretically the generalization

properties of data classification techniques based on

the use of threshold decision lists.



Extension/explanation of a data set

Suppose given some data points in Rn, each

classified as either positive (labeled 1) or negative

(labeled 0). The data points, together with the

positive/negative classifications will be denoted bfs.

An extension of s is a Boolean function f such that

f agrees with s.

The aim is to find an extension of f which will be a

good ‘generalization’ of the data.



Many extensions of a given data set. Finding one of

a particular type is a natural and central problem in

machine learning and data mining.

We analyse the ‘generalization accuracy’ of threshold

decision list extensions. In doing so, we employ a

probabilistic framework that has been used

extensively in the modelling of machine learning.



Decision lists

Suppose K is a set of functions from Rn to {0,1}.

f : Rn→ {0,1} is a decision list based on K if there

are fi ∈ K and ci ∈ {0,1} such that

if f1(y) = 1 then f(y) = c1

else if f2(y) = 1 then f(y) = c2

. . .

. . .

else if fr(y) = 1 then f(y) = cr

else f(y) = 0.



We write

f = (f1, c1), (f2, c2), . . . , (fr, cr),

Each fj is a test (or a query) and the pair (fj, cj) is

a term of the decision list.



Threshold functions

t : Rn→ {0,1} is a threshold function if there are

w ∈ Rn and θ ∈ R such that

t(x) =

 1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,

where 〈w, x〉 = wTx is the inner product of w and x.

Thus,

t(x) = sgn(〈w, x〉 − θ).



Threshold decision lists

A decision list in which the tests are threshold

functions is a threshold decision lists. Studied by

Marchand and colleagues, who called them neural

decision lists, and Turan and Vatan, who called them

linear decision lists.



Formally, a threshold decision list

f = (f1, c1), (f2, c2), . . . , (fr, cr)

has each fi : Rn→ {0,1} of the form

fi(x) = sgn(〈w, x〉 − θ),

where sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0.

The value of f on y ∈ Rn is f(y) = cj if

j = min{i : fi(y) = 1} exists, or 0 otherwise (that is,

if there are no j such that fj(y) = 1).



Geometrical motivation: Given s, it’s unlikely that

the positive and negative points can be separated by

a hyperplane. But we can use a hyperplane to

separate off a set of points all having the same

classification. These points can then be removed

from consideration and the procedure iterated until

no points remain.

This procedure is similar in nature to one of

Jeroslow, but at each stage in his procedure, only

positive examples may be ‘chopped off’ (not positive

or negative).



Example: Suppose s is all of {0,1}n, labeled

according to parity. (So the classification is 1

precisely when the point has an odd number of

ones.)

Best we can do at the first stage is chop off one of

the points (since the neighbors of any point have the

opposite classification). Suppose we chop off the

origin. We may take the first hyperplane to be

x1 + x2 + · · ·+ xn = 1/2.

We then ignore the origin and consider the remaining

points.



We can next chop off all neighbors of the origin, all

the points which have precisely one entry equal to 1.

All of these are positive points and the hyperplane

x1 + x2 + · · ·+ xn = 3/2 will separate them from the

other points.

These points are then deleted from consideration.

We can continue in this manner.



The procedure iterates n times, and at stage i in the

procedure we ‘chop off’ all data points having

precisely (i− 1) ones, by using the hyperplane

x1 + x2 + · · ·+ xn = i− 1/2, for example. (These

hyperplanes are in fact all parallel, but this is not in

general possible.)



What we end up with (assuming n even) is a TDL

representing parity, with terms

(sgn(〈−1, x〉+ 1/2),0),

(sgn(〈−1, x〉+ 3/2),1),

...

(sgn(〈−1, x〉+ n− 3/2),0),

(sgn(〈−1, x〉+ n− 1/2),1).



As indicated, this ‘chopping’ procedure constructs a

threshold decision list extension of the data set.

The Jeroslow method results in a restricted form of

decision list, in which all terms are of the form

(fi,1). But this is just the disjunction

f1 ∨ f2 ∨ . . . .

The problem of decomposing a Boolean function

into the disjunction of threshold functions has been

considered by Hammer, Ibaraki and Peled, and by

Zuev and Lipkin.



Hammer et al. defined the threshold number of a

Boolean function to be the minimum s such that f is

a disjunction of s threshold functions, and they

showed that there is an increasing function with

threshold number
( n
n/2

)
/n.

Zuev and Lipkin showed that almost all increasing

functions have this order of threshold number, and

that almost all Boolean functions have a threshold

number that is Ω(2n/2) and O(2n lnn/n).



Note that Jeroslow’s method requires 2n−1 iterations

in the parity-based Example given above, since at

each stage it can only ‘chop off’ one positive point.



The practicalities of the chopping procedure have

been investigated by Marchand et al., who derive a

greedy heuristic for constructing a sequence of

‘chops’. This relies on an incremental heuristic for

the NP-hard problem of finding at each stage a

hyperplane that chops off as many remaining points

as possible.



Multilevel threshold functions

In the parity example, the hyperplanes of the TDL

were parallel. By demanding that the hyperplanes

are parallel, we obtain a special subclass of TDLs,

known as the multilevel threshold functions (or

multithreshold functions).

An s-level threshold function f is one representable

by a TDL of length at most s with the test

hyperplanes parallel to each other.



Equivalently, f is an s-level threshold function if

there is a weight-vector w = (w1, w2, . . . , wn) such

that

f(x) = F

 n∑
i=1

wixi

 ,
where the function F : R→ {0,1} is piecewise

constant with at most s+ 1 pieces. (Without loss,

we may suppose that the classifications assigned to

points in neighboring regions are different.)



This method of classification is reasonably powerful.

For example, Bohossian and Bruck observed that

any Boolean function is a 2n-level threshold function,

an appropriate weight-vector being

w = (2n−1,2n−2, . . . ,2,1).



Generalization from random data

Recall: an extension of a labeled data set s is f

agreeing with the classifications of the points in s,

and a partial extension is one agreeing with at least

some proportion of the classification in s.



If a particularly simple type of extension (or a good

partial extension) to a fairly large data set can be

found we might expect, given the success of this

simple function in explaining the large data set, that

this extension will perform well on ‘most’ unseen

data.

We use the ‘PAC’ probabilistic model of learning.



We assume that the (partial) extensions produced all

belong to a particular class, H, of functions, known

as the hypothesis space. The choice of H might

reflect either our belief about the mechanism by

which the data points are labeled or our intention

only to accept simple types of explanation of the

data, even if these do not match the data exactly.



Following a form of Valiant’s PAC model of

computational learning theory, we assume that the

labeled data points (x, b) (where x ∈ Rn and

b ∈ {0,1}) have been generated randomly (perhaps

from some larger corpus of data) according to a

fixed probability distribution P defined on

Z = Rn × {0,1}. Thus, if s is of length m, we may

regard s as an element of Zm, drawn randomly

according to the product probability distribution Pm.



Given any function f ∈ H, we measure how well f

extends the data set s through its sample error

ers(f) = m−1|{(x, b) ∈ s : f(x) 6= b}| (which is the

proportion of points of s incorrectly classified by f)

and we measure how well f performs on further

examples by means of its error

er(f) = P ({(x, b) ∈ Z : f(x) 6= b}) ,

the probability that a further randomly drawn

labeled data point would be incorrectly classified by

f .



What we want is some guarantee that the sample

error ers(f) is a good approximation to the error

er(f) for all f , so that an f with small sample error

will likely have small error and therefore be a good

model of the data labels.

We can do this using results of Vapnik and

Chervonenkis, and some combinatorics.



Growth function

To use results from statistical learning theory, we use

the growth function. Suppose H is a set of functions

from X = Rn to {0,1}. Let ΠH : N→ N be given by

ΠH(m) = max{|H|S| : S ⊆ X, |S| = m},

where H|S denotes H restricted to domain S. Note

that ΠH(m) ≤ 2m for all m. The function ΠH is

known as the growth function of H, and it measures

how expressive the hypothesis class H is.



Bounding error

We employ are the following bound, due to Vapnik

and Chervonenkis.

For any ε ∈ (0,1),

Pm ({s : ∀ f ∈ H, er(f) < ers(f) + ε})

is greater than

1− 4 ΠH(2m) e−mε
2/8.

Thus, we can obtain (probabilistic) bounds on the

error er(f) of a (partial) extension from a class H

when we know something about the growth function

of H.



Growth function bounds

We start with general threshold decision lists. We

consider the set of threshold decision lists on Rn

with at most some number s of terms. (So, the

length of the list is no more than s.)

Theorem Let H be the set of threshold decision

lists on Rn with at most s terms, where n, s ∈ N.

Then, for m > n,

ΠH(m) < 4s
e(m− 1)

n

ns .



Proof: Let S ⊆ Rn, |S| = m. Two decision lists

f = (f1, c1), . . . , (fs, cs), g = (g1, d1), . . . , (gs, ds) in H.

(We can assume both are of length exactly s by

padding.)

If

(i) ci = di for each i and

(ii) fi(x) = gi(x) for all x ∈ S,

then f and g are equal on S.



For fixed i, the condition in (ii) is an equivalence

relation among functions in K, and the number of

equivalence classes is |K|S| where K is the set of

threshold functions. This is bounded by ΠK(m),

which, it is well known, is bounded above as follows:

ΠK(m) = 2
n∑
i=0

(m− 1

k

)
< 2

e(m− 1)

n

n .



So

|H|S| ≤ 2s
2

e(m− 1)

n

ns .
Here, the first 2s factor corresponds to the number

of possible sequences of ci and the remaining factor

bounds the number of ways of choosing an

equivalence class (with respect to S) of threshold

functions, for each i from 1 to s.



It can be shown that any threshold decision list is a

threshold function of threshold functions. But this is

nothing more than a two-layer threshold network. So

another way of bounding the growth function of

threshold decision lists is to use this fact in

combination with some known bounds for the

growth functions of linear threshold networks. This

gives a similar, though slightly looser, upper bound.



Growth of multithreshold functions

Bounding the growth function of the class of s-level

threshold functions has been considered in a number

of papers.



Takiyama (1985) published an upper bound, but

Olafsson and Abu-Mostafa (1988) showed it to be

incorrect, and gave the following upper bound:

Theorem Suppose H is class of s-level threshold

functions. Then

ΠH(m) ≤
s∑

l=0

(m− 1

l

) n−1∑
i=0

((m
2

)
− 1

i

)
.



Ngom et al. (1999) subsequently claimed to have

proved that

ΠH(m) ≤
(m− 2

s− 1

) n∑
i=0

(m− 1

i

)
.

However, this is incorrect.



The following bound improves Olafsson and

Abu-Mostafa. It agrees with the known (tight) result

for the case s = 1; and is, for fixed s and n, tight to

within a constant.

Theorem Let H be the set of s-level threshold

functions on Rn. Then

ΠH(m) ≤ 2
n+s−1∑
i=0

(sm
i

)
.



Interesting combinatorial question: can we get good

bounds on the VC-dimension?



Theorem Let δ ∈ (0,1). Then, with probability at

least 1− δ: If f is a TDL with at most s terms, then,

for m > n, the error er(f) of f and its sample error

on s, ers(f) are such that

er(f) < ers(f) + ε1(m, δ),

where ε1(m, δ) is√√√√√ 8

m

2s ln 2 + ns ln

e(2m− 1)

n

 + ln
(

8

δ

).



Theorem Let δ ∈ (0,1). Then, with probability at

least 1− δ: If f is an s-level threshold function, then,

for m ≥ n+ s,

er(f) < ers(f) + ε2(m, δ),

where ε2(m, δ) is√√√√ 8

m

(
(n+ s− 1) ln

(
2ems

n+ s− 1

)
+ ln

(
8

δ

))
.



If there is f that is an extension of s, with no sample

errors—in particular, if the labels correspond to a

threshold decision list of length at most s, or to an

s-level threshold function—then tighter bounds can

be obtained.



But one does not necessarily know a priori how many

terms a suitable threshold decision list will have.

The following results, in which s is not prescribed in

advance, are therefore potentially more useful.



Theorem With the same notations,

If f is a threshold decision list, then

er(f) < ers(f) + ε3(m, δ),

where ε3(m, δ) is√√√√√ 8

m

2s ln 2 + ns ln

e(2m− 1)

n

 + ln

14s2

δ

,
for m ≥ n+ s, where s is the number of terms of f .



If f is a multilevel threshold function, then

er(f) < ers(f) + ε4(m, δ),

where ε4(m, δ) is√√√√√ 8

m

(n+ s− 1) ln
(

2ems

n+ s− 1

)
+ ln

14s2

δ

,
for m ≥ n+ s, where s is the number of levels

(planes) of f .



Large margins

As is often the case, better generalization bounds

can be given if we consider ‘margins’. Learning with

a large margin is central to SVMs, for instance.

Idea is: if a classifier has managed to achieve a

‘wide’ separation between (most of) the points of

different classification, then this indicates that it is a

good classifier, and it is possible that a better (that

is, smaller) generalization error bound can be

obtained.



Classical example:linear separation. If we have found

a linear threshold function that classifies the points

of a sample correctly and the points of opposite

classifications are separated by a wide margin (so

that the hyperplane gives a ‘definitely’ correct

classification), then we might have a better classifier

of future, unseen, points than one which ‘merely’

separates the points correctly, but with a small

margin.



Large margin bounds for TDLs

Here, we suppose (following Bennett et al.) that, for

each example in the training sample, each plane

clears all examples by a certain margin (and not just

the examples it ‘deals with’).



Suppose h is a threshold decision list, with s terms,

and suppose that the tests are threshold functions

t1, t2, . . . , ts. Suppose ti is represented by weight

vector wi and threshold θi. Then h classifies the

labelled example (x, b) (correctly, and) with margin

γ > 0 if h(x) = b and all 1 ≤ i ≤ s, |〈wi, x〉 − θi| ≥ γ.



Given s = ((x1, b1), . . . , (xm, bm)), the error of h on s

at margin γ, denoted erγs(h), is proportion of labelled

examples in s that are not classified by h with margin

γ.

So, erγs(h) is the fraction of the sample points that

are either misclassified by h, or are classified correctly

but are distance less than γ from one of the planes.



Can allow different margins for each test:

Given Γ = (γ1, γ2, . . . , γs), say h classifies (x, b) with

margin Γ if h(x) = b and, for all 1 ≤ i ≤ s,

|〈wi, x〉 − θi| ≥ γi.

Then erΓ
s (h) is the proportion of labelled examples in

s not classified with margin Γ.



Following a method used by Bennett et al, together

with covering number bounds of Zhang, we can get

generalization error bounds that are better than in

the non-margin case (and improve upon results of

Bennett et al. on ‘perceptron decision trees’).



Assume, for simplicity, R ≥ 1 and γi ≤ 1.

Theorem Let Z = BR × {0,1}, where

BR = {x ∈ Rn : ‖x‖ ≤ R}. Fix s ∈ N and let H be the

set of all threshold decision lists with s terms,

defined on BR. Let γ1, γ2, . . . , γs ∈ (0,1] be given.

Then, with probability at least 1− δ, for s ∈ Zm: if

h ∈ H and Γ = (γ1, γ2, . . . , γs), then

erP(h) < erΓ
s (h)+

√√√√ 8

m

(
576R2D(Γ) log2 (8m) + ln

(
2

δ

))
,

where D(Γ) =
∑s
i=1(1/γ2

i ).



So, compared with the non-margin analysis

(simplifying to γi = γ), we’re replacing n with R2/γ2.



Versions of this can be given in which either the

observed margin error is zero and/or (quite

technical) the margins and k are not prescribed in

advance.



Proof uses ‘symmetrization’, and a covering number

bound of Zhang.

The key observation is that, as in many proofs in

learning theory, probability of large error can be

related to a sample-based probability:



If

Q = {s ∈ Zm : ∃h ∈ H with erP(h) ≥ erΓ
s (h) + ε}

and

R = {(s, s′) ∈ Zm×Zm : ∃h ∈ H with ers′(h) ≥ erΓ
s (h)+ε/2},

then Pm(Q) ≤ 2P2m(R).

Probability of R is then bounded by using

permutations and taking an empirical cover.



Large margin bounds for Multithreshold functions

Assume all γi = γ. (Not a real restriction.) The

result for TDLs works with a covering for each of

the s terms of the list. Instead, for Multithreshold

functions, can work more directly with a covering of

the set of functions.



Theorem Suppose Z = BR × {0,1}, where

BR = {x ∈ Rn : ‖x‖ ≤ R}. Fix s ∈ N and let H be the

set of all s-level threshold functions defined on

domain BR. Let P be any probability distribution on

Z, and suppose γ ∈ (0,1] and δ ∈ (0,1). Then, with

Pm-probability at least 1− δ, erP(h) < erγs(h)+√√√√√ 8

m

1152R2

γ2
log2 (9m) + s ln

10R

γ

 + ln
(

2

δ

).



The generalization error bound from the TDL bound

is worse than this more particular one. Suppressing

constants,

R2k

γ2
lnm

is replaced by

R2

γ2
lnm+ k ln

R
γ

 .



Representing BFs by threshold networks

Using threshold decision lists gives us a way of

representing Boolean functions by threshold

networks, distinct from the obvious one based on a

DNF.



Interested in linear threshold networks with one

hidden layer. This has n inputs and some number, k,

of threshold units in a single hidden layer, together

with one output threshold unit.

If output node computes threshold function given by

weight vector β ∈ Rk and threshold φ, and the

threshold function computed by hidden node i is

fi← [w(i), θ(i)], then the network as a whole

computes f : {0,1}n→ {0,1} given by

f(y) = 1⇐⇒
k∑
i=1

βifi(y) ≥ φ.



So,

f(y1y2 . . . yn) = sgn

 k∑
i=1

βi sgn

 n∑
j=1

w
(i)
j yj − θ(i)

− φ
 ,

where sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0.



The state of the network is the (concatenated)

vector

ω = (w(1), θ(1), w(2), θ(2), . . . , w(k), θ(k), β, φ) ∈ Rnk+2k+1.

A fixed network architecture of this type (that is,

fixing n and k), computes a parameterised set of

functions {fω : ω ∈ Rnk+2k+1}. In state ω, the

network computes the function fω : {0,1}n→ {0,1}.



Standard approach

φ a DNF formula for the BF f , φ = T1 ∨ T2 ∨ · · · ∨ Tk,

where Ti =
(∧
j∈Pi uj

) ∧ (∧
j∈Ni ūj

)
. Form network with

k hidden units, one corresponding to each term of

the DNF. Label these units 1,2, . . . , k and set the

weight vector w(i) as:

w
(i)
j = 1 if j ∈ Pi,

w
(i)
j = −1 if j ∈ Ni, and w

(i)
j = 0 otherwise.

Take the threshold θ(i) to be |Pi|.

Set weight on connection between each hidden unit

and output to 1, and threshold output at 1/2.



Using threshold decision lists

Observation: a threshold decision list is a threshold

function of threshold functions.



f = (f1, c1), (f2, c2), . . . , (fk, ck)

where fi← [w(i), θ(i)]. Consider threshold network

with n inputs, k threshold units in a single hidden

layer, and one output. Let ω be the state:

ω = (w(1), θ(1), w(2), θ(2), . . . , w(k), θ(k), β,1),

where

β = (2k−1(2c1−1),2k−2(2c2−1), . . . ,2(2ck−1−1), (2ck−1)).

Then fω = f .



Parity shows that the representation arising from

TDLs can differ considerably from the standard one:

n hidden units rather than 2n−1.



If T is any term of a DNF formula, then T can be

represented by a threshold function. So if

φ = T1 ∨ T2 ∨ · · · ∨ Tk is a DNF representation of the

function f , then f is also represented by the

threshold decision list

(T1,1), (T2,1), . . . , (Tk,1).

So there is always a threshold decision list

representation whose length is no more than that of

any given DNF representation of the function.



Conclusions

• Threshold decision lists a powerful pattern

classification technique; and special case of

parallel planes has been of interest for some time.

• Have analysed generalization error using ‘classical’

PAC model.

• Can get sometimes-better results by considering

margins.



• Interesting implications for representing BFs by

threshold networks.


