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ROI on IT security

Large and small, for-profit or not, modern organizations are
struggling with managing their information technology (IT) assets,
trying to make them secure at reasonable cost.

The problem is to maintain right balance between over-investing
into IT security (which often negatively influences productivity of
the workers) and under-investing (with contingent potential
catastrophic losses, if the IT infrastructure is compromised).

One should remember that the costs of the investment into
security are not just direct ones, but the inherent externalities: how
many minutes every day your Windows machine goes through all
the security checks as it boots?

One the other hand, the externalities of underinvesting are even
more pronounced: botnets do not do harm to the computer they
infect, only to others...
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Return on Investment in security

ROI in security in notoriously hard to quantify: one derives profit
from the events that are not actualy happening. A random
example from the literature:

Question: what is ROI in fire extinguishers? Answer: $3
for each $1 invested, according to some studies.

This talk is addressing a specific model of business efficiency of
investment in IT security: the Gordon-Loeb model, and some of its
critiques and apologies.
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Gordon-Loeb model

In 2002 Gordon and Loeb introduced a simple model for return on
IT security, which proved very influential (Google scholar returned
433 citations today (October 11, 2011). Perhaps a right
combination of simplicity and versatility was the root to its
popularity.

They stipulated that a firm, facing potential loss L from a
cyber-security risk, can invest a certain amount z to mitigate the
risk, that is to reduce the probability of loss.

The defining primitive of the model is the residual vulnerability
S(z), that is the probability of the loss to happen, given the
investment level z .

Parenthetically, they actually considered some extra parameters,
like the vulnerability of the software, etc, but these parameters do
not play any role in the overall analysis.
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Gordon-Loeb model, cont’d

Henceforth, our basic assumption is that given investment z , the
expected loss is LS(z) for some function S .

As only risk neutral firms are considered, we absorb the probability
of the loss at z = 0 into the factor L, thus normalizing S(0) = 1.

Risk neutrality implies that the optimal security investment should
be the value z∗ minimizing the total expected loss and the costs of
mitigation, solving

min
z>0

(LS(z) + z). (1)
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Gordon-Loeb model, cont’d

Thus we are facing a minimization problem:

min
z>0

(LS(z) + z). (2)

Following customary economic intuition Gordon and Loeb
postulated that the function S is

I differentiable;

I non-increasing;

I converges to 0 as z →∞, and

I is convex.
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Gordon-Loeb model, cont’d

Further, Gordon and Loeb investigated two natural parametric
families of functions S satisfying these requirements and found,
remarkably, that

the optimal investment z∗ does not exceed 1/e-th
fraction of the total value at risk:

z∗ ≤ L/e.

The families G&L restricted their attention to were

S(z) =
1

(az + 1)b
, a, b > 0, andS(z) = exp(−az), a > 0.
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refutations

And what about other functions?

It is easy to construct functions S , satisfying all of the properties
above, yet such that the optimal investment levels z∗ are arbitrarily
close to the total value at risk L, see Willemson’06, Hausken’06
(obviously, a risk neutral agent will not spend more on risk
mitigation than the expected risk itself).

Here is the idea:
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back to basics

My contribution to the problem is twofold:

I I introduce an axiomatic framework allowing to recover G&
L’s setup from first principles, and

I I show that the resulting functions S do in fact imply the 1/e
rule.

Let’s start.
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the model

Where these functions S are coming from? Let’s look at the roots.

I posit that the mitigation process consists of a variety of
independent actions (like installs of software patches), each of
which reducing the loss probability insignificantly and similarly
requiring small investment.

A firm is free to choose a collection of the mitigating actions best
addressing its demands, to maximize the total utility of such
investment.

We introduce several axioms formalizing these notions.
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axioms

A0 We assume that elementary protective actions are elements of
a separable measurable space (Ω,F), and that the protective
actions are tantamount to measurable subsets of Ω.
To each (measurable) subset A ⊂ Ω, we can associate

I the cost z(A) of protective measure A, and
I the residual security risk s(A).

Informally, this axiom expresses the smallness of individual
protective actions.

A1 We will assume that the costs of protective actions are
additive: in other words, for disjoint actions A1,A2,

z(A1 q A2) = z(A1) + z(A2).

i.e. z is a positive non-atomic measure on Ω.
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axioms, cont’d

A2 Similarly, we will require that the residual security risks are
multiplicatively independent, i.e. for disjoint A1,A2,

s(A1 q A2) = s(A1)s(A2).

so that u := log(s) is a (non-positive), non-atomic measure
on Ω.

A3 Lastly, we will require that achieving perfect protection cannot
be free, i.e. that the range of the vector valued measure (s, u),

{(z(A), u(A)),A ∈ F}

does not contain (0,−∞).
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from measures to functions

The range
{(z(A), u(A)),A ∈ F}

of the measures z , u encodes the potential possibilities of
investment into IT security for the firm.

We can now recover S(z) assuming that this is the best residual
risk a protective action A feasible under the budget z can achieve.
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from measures to functions, cont’d

Formally, let us define

S(z) = inf
A∈F :z(A)≤z

s(A) = exp( inf
A∈F :z(A)≤z

u(A)).

z

u

R=range of (z,u)

S(z)

z

exp
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Lyapunov convexity

Proposition

Under Axioms A0-A3,

a) the range of the (vector-valued) mapping

A 7→ (z(A), u(A))

is a convex closed subset R ⊂ R2 (in fact, a proper subset of
the forth quadrant {z ≥ 0, u ≤ 0}).

b) for any z, the value S(z) is attained on a protective measure
A ∈ F ;

c) the function v : z 7→ log(S(z)) is convex.
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Lyapunov convexity, cont’d

In other words, S is well defined, non-increasing, and log-convex
(hence, convex).

z

u

R=range of (z,u)

S(z)

z

exp
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1/e rule vindicated

Theorem

Let S be a non-increasing nonnegative log-convex function, and z∗
is a solution to the optimization problem

min
z≥0

LS(z) + z .

Then
z∗ ≤ L/e. (3)

Log convexity, unlike mere convexity, implies the 1/e rule.
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quick proof

Denote by f (z) := LS(z), and set z∗ to be a point where f (z) + z
attains its minimum on [0,∞). Then f lies above the linear
function l(z) := f (z∗) + (z∗ − z) (and touches it at z∗), and, by
log-convexity, also lies above some exponential function
a exp(−qz) that is tangent to l at z∗.

Now one has

aq exp(−qz∗) = 1 and f (z) ≥ a exp(−qz),

in particular f (0) ≥ a.

Now
z∗

f (0)
≤ z∗

a
=

qz∗
exp(qz∗)

≤ 1/e.
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back to Gordon-Loeb

One can easily check that both of the families, considered in the
G& L’s paper are log-convex:

S(z) =
1

(az + 1)b
, a, b > 0, andS(z) = exp(−az), a > 0.

Somewhat remarkable, they guessed the correct result!
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beyond Gordon-Loeb

Gordon-Loeb model - or rather our reinterpretation - can be
thought of as the optimization of the sequential chain: to succeed,
the attacker has to go through several independent filters, each of
which reduces its probability of success.

An obvious and interesting generalization is to move to general
topologies: what are the optimal placements of filters there? are
there any convexity properties? thus far, unknown...
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The End
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