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General Theme
• As optimization models grow, so do the number of 

estimated or sampled parameters
• The chance of rare estimation events increases 

(close to 1)
• Optimization models are driven to extremes and 

naturally focus on “rare events” that slow 
convergence (or increase errors) and increase 
dependence on dimension

• Challenge: Can we find a way to avoid these 
problems? (Better ways to use available data?)
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Example: Financial Portfolio Optimization 
Quadratic program (Markowitz Portfolio):
find investments x=(x(1),…,x(n)) to 

                        min xT Q x 

                        s.t. rT x = target, eT x=1

 where Q and r are typically estimated from historical data.
Correlations from University of Michigan CIO:

 DomCommon SmallCap InteCommon EmerMarkets AbsoluteReturnVentCap RealEst Oil and Gas Commodities FixedIncome IntFixedInc

DomCommon 1 0.79 0.58 0.56 0.6 0.44 0.25 0.01 -0.3 0.43 0.2
SmallCap 0.79 1 0.48 0.61 0.65 0.56 0.24 0.01 -0.05 0.31 0.1
InteCommon 0.58 0.48 1 0.37 0.45 0.25 0.38 -0.04 -0.17 0.35 0.55
EmerMarkets 0.56 0.61 0.37 1 0.3 0.3 0.07 -0.19 -0.07 -0.07 0.1
AbsoluteReturn 0.6 0.65 0.45 0.3 1 0.35 0.2 -0.2 0.11 0.35 0.25
VentCap 0.44 0.56 0.25 0.3 0.35 1 0.21 -0.02 -0.18 0.19 0.15
RealEst 0.25 0.24 0.38 0.07 0.2 0.21 1 0.08 -0.53 0.15 0.2
Oil and Gas 0.01 0.01 -0.04 -0.19 -0.2 -0.02 0.08 1 0.54 -0.18 -0.3
Commodities -0.3 -0.05 -0.17 -0.07 0.11 -0.18 -0.53 0.54 1 -0.3 -0.08
FixedIncome 0.43 0.31 0.35 -0.07 0.35 0.19 0.15 -0.18 -0.3 1 0.55
IntFixedInc 0.2 0.1 0.55 0.1 0.25 0.15 0.2 -0.3 -0.08 0.55 1
Cash 0.27 0.08 0.23 0.04 0.45 0.14 0.37 -0.07 -0.13 0.67 0.1
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Results from Optimization
 Amt.  to invest
DomCommon -54079107483.07
SmallCap -17314640179.88
InteCommon -7098209713.34
EmerMarkets 21285151081.48
AbsoluteReturn 65911278495.65
VentCap 3346118938.17
RealEst -68300117027.99
Oil and Gas 66227880616.79
Commodities -104263997812.77
FixedIncome -72656761795.57
IntFixedInc 117884874179.2
Cash 49057530702.32

Return 0.1
Variance -1.65E+019

What happened 
here?
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Problems in Markowitz Model

• Consistent time series
– Correlations from different time series may not 

yield PD covariance matrices
– Caution for general parameter estimates

• Number of Correlation Parameters
– For n assets, n(n-1)/2 correlations to estimate
– Chances of estimation error increase rapidly in 

n
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Chance of Negative Correlation 
Observations

• Assume all true correlations are 3 standard deviations 
above 0 and each estimate is independent (not so but..)

• How does the probability of negative correlation 
observation relate to n (no. of assets)?
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Problem Statement

• Large problems with n variables and m 
constraints/objective coefficients lead to (at least) 
mn estimates

• Probability of significant deviation from mean 
values increases rapidly in mn

• Deviant estimates drive optimal solutions 
• How can we construct large models that yield 

consistent results with high probability?
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The General Questions
• Consider the basic problem (stochastic 

program):
       MinxεX  Eξ[f(x,ξ)]            (P)
• Suppose the only information for ξ is through 

samples:   ξ1,…,ξν

• What can we say about solutions of sampled 
problems:

 Minxε X (1/ ν)∑i=1
ν  f (x,ξi)  

in relation to solution x* to (P)?
• Are there better ways to use those samples?
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General Sampling Result
(King-Rockafellar (1993, e.g.): Suppose xν  solves:
minxϵ X (1/ ν)∑i=1

ν f(x,ξi)
then, under a suitable set of conditions (X polyhedral, 

f smooth, unique optimum), 
we can find a random vector, u, that solves another 

optimization problem such that
 ν0.5(xν - x*) converges to u

Note: similar to a Central Limit Theorem but maybe 
even better.  u is often Gaussian but often projected 
onto constraints. 
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Example of Asymptotic 
Distribution

• The asymptotic distribution of u depends on 
the constraints

• Example: Find x to 
minx ≥a E[|| x - ξ || ]
where  ξ ~ N(0,1).

Note: x* = a  for a≥0, 0 for a < 0. 
• What is the value of u ~ limν ν0.5(xν - x*) for 

different a?
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Possible Distributions for 
Example

• a < 0, u ~ N(0,1)

• a=0, P[u=0]=0.5 
F(u)=Φ(u), u>0

            for Φ normal cdf

• a>0, u = 0
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Observations: The Good News

• Asymptotic distribution of optimal solution of 
sampled problem is:
– Sometimes multivariate normal
– Sometimes projection of multivariate normal onto 

constraints
– Sometimes an atom at a single point

• Questions for large data sets:
– When do we start to observe the asymptotic behavior?
– How big must ν (no. of samples) be?
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Quantitative Results
Goal: Universal Confidence Sets (e.g., Pflug (2003), 

Vogel (2008))

• Possible (sometimes explicit), e.g., Dai, Chen, JRB 
(2000)
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Observations and Questions
• Have appealing asymptotic results that 

indicated confidence intervals might be 
possible 

• Have universal bounds that indicate 
exponential convergence 

Questions: 1. When do asymptotic properties 
appear? (Size of the constants?)

2. What are the effects of dimension? of 
multiple uncertainties? of constraints?

3. Are there better ways to use samples and, if 
so, when? 
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Form of Examples: Mean-Risk

Objective is composed of risk and return:
E[f(x,w)] = - exp.return(x) + risk(x)
For portfolios, often mean-variance, but can
be different.
For uncertainty, sometimes only in the return, 

sometimes only in risk and sometimes in 
both – (this can effect convergence)
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Example Problem 

• Consider the following problem:
minx  Eξ [ -ξTx + ε || x ||1 ]
s. t. -1<= x <= 1
where || .||1 is the 1-norm (so equivalent to a linear program) and 

E[ξ]=0.
The optimal solution should be x*=0. 
 How long to achieve limiting distribution? 
How long will it take a sample solution to approach x*  

exponentially?  i.e., when does Log (P{||xν-x*||≥ε} decrease 
linearly? 
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Sample Problem
• Assume that ξj ~ N(0,1) for all j,
the solution is xνj = 0 if |ξj|≤ε, and ± 1 o.w.
So, P{||xν-x*||≥ 1} = P{| xνj |≥ 1, some j}
= P{|ξj|≥ ε, some j} = 1-(1-2Φ(- γν0.5))n

where Φ is the standard normal c.d.f.
Note: already normal 
When is Log(P(error≥1)) linear in ν? 
What is the effect of dimension? (Note n)
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Results 
Log (P(error ≥1)) v. sample size (ν)
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Observations
• Some delay in approach to exponential error 

decrease with dimension
• Increase in the delay (size of the constants 

in the universal bound) is less than linear in 
dimension (in fact, less than linear in Log of 
dimension)

• Same kinds of effects for objective
• Good results but could they be even better? 

Can we reduce the effect of the dimension? 
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How Can We Reduce the 
Required Number of Samples?

• Use of sub-samples or batch mean
• Suppose that we divide the ν samples into k  

batches of ν/k each, let ξν
i be the mean of batch 

i=1,…,k, then solve with ξν
i  to obtain xνi

• Let xν,k=(1/k)∑i=1
k xνi 

• Can this do better? 
• In particular, can we do better in the worst case? 
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Result for Sub-sample Batch 
Optimization

• What is the chance that one component in 
the decision variable is far off? 

• Now, decreased dependence on n
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Results for Batch/Single Samples

Observe: more improvement as ν ↑ (from 4 to 9 
orders of magnitude)
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What about Effects of Uncertainty in 
Risk?

• Example: 

• Now, ξ  and γ are random
Suppose ξj ~N(0,1); γ~ N(1,1)
• Unconstrained solution: 
Error in solution in 2-norm is χ2 under asymptotic distribution 
True error in solution is given by: 

where F is the non-central F-ratio distribution 
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How Many Samples before the Error 
Approaches Asymptotic Distribution? 
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Observations
• Convergence now is much slower than in the case 

with just stochastic returns
• Convergence delay to the asymptotic distribution 

is almost linear in dimension
• Asymptotic distribution for the objective is again 

similar
• Asymptotic distribution for the general portfolio 

problem with multiple variance estimates (and 
inverse Wishart distribution) is even worse
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Full Portfolio Examples
• General form:

requires estimation: e.g., using sample estimates as:

and (ν-n-2)/ν  term makes solution un-biased with no 
constraints (e.g., Kan and Zhou (2007))

where ¹rand §
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Questions to Consider

• Can the use of sub-sample/batch optimal 
solutions improve convergence?

• How do the constraints affect the 
performance of the batch solution 
approximations?

• What is the effect of dimension in these 
problems? 
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Simulation Setup

Observe: histograms of relative errors in 
solutions and losses in objective
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X=[0,1]10
Solution Objective

Relatives 
differences:

Batch better: 
1000/1000

Avg. Sol. Dist. 
Diff. :  -25%

Avg. Obj. Diff.: 
-19%
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X=[-1,2]10

Relatives 
differences:

Batch better: 
638/1000

Avg. Sol. Dist. 
Diff. :  -3%

Avg. Obj. Diff.: 
-3%

Solution Objective
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  X=[-5,10]10

Relatives 
differences:

Batch better: 
231/1000

Avg. Sol. Dist. 
Diff. :  +7%

Avg. Obj. Diff.: 
+8%

Solution Objective
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Observations on Portfolios

• Batch approach improves when constraints 
can bind the sample solutions

• The batch improvement is significant when 
constraints are relatively tight (but still 
more than 3 standard deviations from 
optimum)

• Batch can improve without constraints (but 
not so much in low dimensions ~10)
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General Implications?

• How to put the batch results in terms of 
universal bounds? 

• View: consider errors distributed 
throughout X and decompose by cone 
support in face F* containing x*

X F*
x*

Positive basis of 
aff (F*)
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Assumptions

• Under mild conditions,      x* is randomly 
distributed in F*

• Assume bias is known (or bounded)

under certain regularity conditions (e.g., 
Roemisch and Schulz (1991))

• Worst error in any direction is  g/n. 
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General Result

• Under these conditions, 

• So, if unbiased, a=K1/4, 

P (error ¸ c1=2M
K 1=4 ) · 1p

K + 1
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Implications of Result
• For relatively symmetric regions, the error 

from using batches can be of order         
even when asymptotics are not achieved 
within each sub-sample

• Non-symmetric regions may present 
difficulties (v→ 1/2n, worst case: isolated 
point)

F*:

1=
p
K;



© JRBirge  Prékopa Colloquium, Dec. 1, 2009 37

Comparison to Other Approaches

• Imposing constraints (Jagannathan and Ma 
(2003))

• Shrinking variance (similar)
• “Re-sampled portfolio” (Michaud) - similar
• Robust optimization
• Bayesian updating
• Robust estimation
• Simple rules
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Summary Observations

• Convergence to asymptotic behavior may be much 
slower with optimization and different uncertainty 
forms than simple estimation

• Dimension has more effect with greater 
uncertainty

• Use of optimization in batches can improve 
estimates especially with potentially violated 
constraints and symmetric feasible regions
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Additional Questions

• Does the batch sample continue to improve 
with dimension in practical problems?

• Can these universal confidence sets be 
identified in the data? 

• Are more general confidence interval 
estimates available?

• How do these approaches perform with 
other techniques to enhance convergence?
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Thank You
and Happy Birthday, 

András!
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