Outline

1. Stochastic Dominance
 - Definition
 - Characterization of Stochastic Dominance by Lorenz Functions

2. Dominance Constrained Optimization

3. Conjugate Function Method for Equal Probabilities

4. Quantile Cutting Plane Methods for General Probability Spaces
 - The Scaled Methods
 - The Unscaled Method

5. Numerical Experience
 - Performance Comparison
 - Implied Utility Functions
 - Implied Risk Measures
Stochastic Dominance

Distribution Functions

\[
F_1(X; \eta) = \int_{-\infty}^{\eta} P_X(dt) = P\{X \leq \eta\} \text{ for all } \eta \in \mathbb{R}
\]

\[
F_k(X; \eta) = \int_{-\infty}^{\eta} F_{k-1}(X; t) \, dt \text{ for all } \eta \in \mathbb{R}, \quad k = 2, 3, \ldots
\]

kth order Stochastic Dominance

\[
X \succeq_{(k)} Y \iff F_k(X, \eta) \leq F_k(Y, \eta) \text{ for all } \eta \in \mathbb{R}
\]
Second-Order Stochastic Dominance

\[F_2(X, \eta) = \int_{-\infty}^{\eta} F_1(X, t) \, dt = \mathbb{E}(\eta - X)_+ \text{ for all } \eta \in \mathbb{R} \]
The Lorenz Function (O. Lorenz, 1905)

Quantile function

\[F_{(-1)}(X; p) = \inf \{ \eta : F_1(X; \eta) \geq p \} \]

Absolute Lorenz function

\[F_{(-2)}(X; p) = \int_0^p F_{(-1)}(X; t) \, dt \quad \text{for} \quad 0 < p \leq 1, \]

\[F_{(-2)}(X; 0) = 0 \quad \text{and} \quad F_{(-2)}(X; p) = +\infty \quad \text{for} \quad p \notin [0, 1]. \]
Integrated Distribution Function and the Lorenz function

\[F_2(X; \eta) \]

\[\eta - \mu_x \]

\[0 \]

\[F_{(-2)}(X; p) \]

Fenchel conjugate function

\[F^*(p) = \sup_u \{ pu - F(u) \}. \]

Ogryczak - Ruszczyński (2002)

\[F_{(-2)}(X; :) = [F_2(X; :)^* \quad \text{and} \quad F_2(X; :) = [F_{(-2)}(X; :)^*} \]
Characterization of Stochastic Dominance by Lorenz Functions

\[
X \succeq_{(2)} Y \iff F_{(-2)}(X; p) \geq F_{(-2)}(Y; p) \quad \text{for all } 0 \leq p \leq 1.
\]
Given $Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$ - benchmark random outcome

Inverse Stochastic Dominance Constraints

$$\max f(z)$$

$$\text{s.t. } F_{(-2)}(G(z); p) \geq F_{(-2)}(Y; p), \quad \forall \ p \in [\alpha, \beta],$$

$$z \in Z$$

Z is a closed subset of a vector space \mathcal{L}, $[\alpha, \beta] \subset (0, 1)$

$G : \mathcal{L} \rightarrow \mathcal{L}_1(\Omega, \mathcal{F}, P)$ and $f : \mathcal{L} \rightarrow \mathbb{R}$ are continuous.

Equivalent formulation

$$\max_{z, \eta(\cdot)} f(z)$$

$$\text{s.t. } \eta(p) - \frac{1}{p} \mathbb{E} \max(0, \eta(p) - G(z)) \geq \frac{1}{p} F_{(-2)}(Y; p), \quad \forall \ p \in [\alpha, \beta]$$

$\eta(\cdot)$ - nondecreasing, $z \in Z$

with $\eta(p)$ a p-quantile of $G(z)$.

Darinka Dentcheva and Andrzej Ruszczynski
Discrete Equiprobable Probability Space

Assumption

\[\Omega = \{\omega_1, \ldots, \omega_N\} \text{ with probabilities } p_i = \mathbb{P}\{\omega_i\} = 1/N, \ i = 1, \ldots, N. \]

The Lorenz curves \(F_{(-2)}(G(z); \cdot) \) and \(F_{(-2)}(Y; \cdot) \) are convex and piecewise linear with break points at \(\pi_i = i/N \).

For \(\eta = (\eta_1, \ldots, \eta_N) \), and \(g_m(z) = [G(z)](\omega_m) \), set

\[
q_i = \frac{1}{\pi_i} F_{(-2)}(Y; \pi_i) = \frac{1}{i} \sum_{k=1}^{i} y[k].
\]

Equivalent formulation

\[
\max_{z, \eta} f(z)
\]

subject to

\[
\eta_i - \frac{1}{i} \sum_{m=1}^{N} \max(0, \eta_i - g_m(z)) \geq q_i \quad \forall \ i = 1, \ldots, N
\]

\[z \in Z\]
Conjugate Function Method

Step 0: Set $k = 0$.

Step 1: Solve the problem and obtain $(\hat{z}^k, \hat{\eta}^k)$:

$$\max_{z, \eta} f(z)$$

subject to

$$\eta_{ij} - \frac{1}{i_j} \sum_{m \in A_j} (\eta_{ij} - g_m(z)) \geq \varrho_{ij} \quad \forall j = 1, \ldots, k$$

$$z \in Z$$

Step 2: Let $\delta_k = \max_{1 \leq i \leq N} \left\{ \varrho_i - \hat{\eta}_{ik}^k + \frac{1}{i} \sum_{m=1}^{N} \max(0, \hat{\eta}_{ik}^k - g_m(\hat{z}^k)) \right\}$. If $\delta_k \leq 0$, stop; otherwise, continue.

Step 3: Let i_k be the index at which the maximum in Step 2 is achieved, and let $A_k = \{ m : \hat{\eta}_{ik}^k > g_m(\hat{z}^k) \}$.

Step 4: Increase k by one, and go to Step 1.
New Dominance Characterization for General Probability Spaces

Theorem

Suppose $X, Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$. Then $X \succeq_{(2)} Y$ if and only if

$$\mathbb{E}[X|A] \geq \frac{1}{P(A)} F_{(-2)}(Y; P(A)) \quad \forall A \in \mathcal{F}: P(A) > 0.$$

Corollary

$X \succeq_{(2)} Y$ if and only if

$$\mathbb{E}[X|X \leq t] \geq \frac{1}{F(X; t)} F_{(-2)}(Y; F(X; t)) \quad \forall t \in \mathbb{R}, F(X; t) > 0.$$

Corollary

Suppose X has a discrete distribution with N realizations, and $Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$. Then $X \succeq_{(2)} Y$ if and only if

$$\sum_{k=1}^{j} \pi_k x_k \geq F_{(-2)}(Y; \sum_{k=1}^{j} \pi_k), \quad j = 1, \ldots, N.$$
Quantile Cutting Plane Methods: The Scaled Method

Step 0: Set $k = 0$.

Step 1: Solve the problem to obtain z^k and $X^k = G(z^k)$:

$$\max f(z)$$

s.t. $\mathbb{E}[G(z)|S^i] \geq \frac{1}{P(S^i)} F(-2)(Y; P(S^j)) \quad j = 1, \ldots, k$

$z \in Z$

Step 2: Consider the sets $A_t^k = \{X^k \leq t\}$ and let

$$\delta_k = \sup_t \left\{ \frac{1}{P(A_t^k)} F(-2)(Y; P(A_t^k)) - \mathbb{E}[X^k|A_t^k] : P(A_t^k) > 0 \right\}.$$

If $\delta_k \leq 0$, stop; otherwise, continue.

Step 3: Find t_k such that $P(X^k \leq t_k) > 0$ and

$$\mathbb{E}[X^k|A_{t_k}^k] - \frac{1}{P(A_{t_k}^k)} F(-2)(Y; P(A_{t_k}^k)) \leq -\frac{\delta_k}{2}.$$

Step 4: Set $S^{k+1} = A_{t_k}^k$, increase k by one, and go to Step 1.
Theorem. Assume that $Z \subset \mathbb{R}^n$ is compact, $f(\cdot)$ is continuous, and the operator $G(\cdot) : \mathbb{R}^n \to \mathcal{L}_\infty(\Omega, \mathcal{F}, P)$ is Lipschitz continuous on Z. If problem (\mathcal{P}_{-2}) has a nonempty feasible set, then either the scaled method stops at a solution of it, or every accumulation point of the sequence $\{z^k\}$ generated by the method is a solution of (\mathcal{P}_{-2}).

In finite probability space Ω, the scaled method converges in finitely many iterations.

Modification

If the operator $G(\cdot) : \mathbb{R}^n \to \mathcal{L}_1(\Omega, \mathcal{F}, P)$ is Lipschitz continuous on Z, then we can modify the method to ensure convergence.
Assumption

The operator \(G(\cdot) : \mathbb{R}^n \rightarrow \mathcal{L}_1(\Omega, \mathcal{F}, P) \) is Lipschitz continuous on \(Z \).

We modify the method to ensure convergence by changing the following steps

Step 2a: Consider the sets \(A^k_t = \{ X^k \leq t \} \) and let

\[
\delta_k = \sup_t \left\{ \frac{1}{P(A^k_t)} F(-2)(Y; P(A^k_t)) - \mathbb{E}[X^k | A^k_t] : P(A^k_t) \geq \varepsilon_k \right\}.
\]

Step 2b: If \(\delta_k \leq 0 \), replace \(\varepsilon_k \) by \(\varepsilon_k / 2 \) and go to Step 2a; otherwise, continue.

Step 4: If \(\delta_k < \varepsilon_k \) then set \(\varepsilon_{k+1} = \min\{\delta_k, \varepsilon_k\} / 2 \); otherwise set \(\varepsilon_{k+1} = \varepsilon_k \). Set \(S^{k+1} = A^k_{t_k} \), increase \(k \) by one, and go to Step 1.

Observe that it is possible for the method to cycle between Steps 2a and 2b, without increasing the iteration index \(k \).
Quantile Cutting Plane Methods: The Unscaled Method

The method uses cutting planes in a different form.

Step 2: Consider the sets \(A_t^k = \{ X^k = G(z^k) \leq t \} \) and let

\[
\delta_k = \sup_{t} \left\{ F(-2)(Y; P(A_t^k)) - F(-2)(X^k; P(A_t^k)) : P(A_t^k) > 0 \right\}.
\]

If \(\delta_k \leq 0 \), stop; otherwise, continue.

Step 3: Find \(t_k \) such that \(P(X^k \leq t_k) > 0 \) as well as

\[
F(-2)(X^k; P(A_{t_k}^k)) - F(-2)(Y; P(A_{t_k}^k)) \leq -\frac{\delta_k}{2}.
\]

Difference: no normalization by \(P(A_t^k) \).

Theorem. Assume that \(Z \subset \mathbb{R}^n \) is compact, \(f(\cdot) \) is continuous, and the operator \(G(\cdot) : \mathbb{R}^n \rightarrow \mathcal{L}_1(\Omega, \mathcal{F}, P) \) is Lipschitz continuous on \(Z \). If problem \((\mathcal{P}_{-2})\) has a nonempty feasible set, then either the unscaled method stops at a solution of \((\mathcal{P}_{-2})\), or every accumulation point of the sequence \(\{z^k\} \) is a solution of \((\mathcal{P}_{-2})\).
Assets $j = 1, \ldots, n$ with random return rates R_j
Reference return rate Y (e.g. index, existing portfolio, etc.)
Decision variables z_j, $j = 1, \ldots, n$, Z -polyhedral set
Portfolio return rate $R(z) = \sum_{j=1}^{n} z_j R_j$

$$
\begin{align*}
\max & \quad f(z) \\
\text{s.t.} & \quad \sum_{j=1}^{n} z_j R_j \succeq Y \\
& \quad z \in Z
\end{align*}
$$

$f(x) = \mathbb{E}[R(x)]$ or $f(x) = \varrho[R(x)]:$ measure of risk.
Linear Programming Formulation

\[
\text{maximize } \sum_{i=1}^{N} p_i \sum_{k=1}^{n} r_{ik} z_k \\
\text{s.t. } \sum_{k=1}^{n} r_{ik} z_k + s_{ij} \geq y_j, \quad i = 1, \ldots, N, \quad j = 1, \ldots, N, \\
\sum_{i=1}^{N} p_i s_{ij} \leq F_2(Y; y_j), \quad j = 1, \ldots, N, \\
s \geq 0, \quad z \in \mathbb{Z}.
\]
Table: Dimensions of the three formulations.

<table>
<thead>
<tr>
<th>Events</th>
<th>Direct LP</th>
<th>Conjugate Formulation</th>
<th>Quantile Formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n = 500$ and Y is the return rate of the S&P 500 index.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Variables</td>
<td>Constraints</td>
<td>Variables</td>
</tr>
<tr>
<td>50</td>
<td>3000</td>
<td>2551</td>
<td>550</td>
</tr>
<tr>
<td>100</td>
<td>10500</td>
<td>10101</td>
<td>600</td>
</tr>
<tr>
<td>150</td>
<td>23000</td>
<td>22651</td>
<td>650</td>
</tr>
<tr>
<td>200</td>
<td>40500</td>
<td>40201</td>
<td>700</td>
</tr>
<tr>
<td>250</td>
<td>63000</td>
<td>62751</td>
<td>750</td>
</tr>
<tr>
<td>300</td>
<td>90500</td>
<td>90301</td>
<td>800</td>
</tr>
</tbody>
</table>

Table: Performance on problems with equal probabilities of elementary events.

<table>
<thead>
<tr>
<th>Events</th>
<th>Direct Linear Programming</th>
<th>Conjugate Function Method</th>
<th>Quantile Cutting Plane Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>CPU</td>
<td>Iter.</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>2.94</td>
<td>562</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>6.61</td>
<td>3170</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>21.23</td>
<td>9676</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>393.20</td>
<td>15765</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>905.11</td>
<td>34911</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table: Performance on problems with unequal probabilities of elementary events.

<table>
<thead>
<tr>
<th>Events</th>
<th>Direct Linear Programming</th>
<th></th>
<th></th>
<th>Quantile Cutting Plane Methods</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>CPU</td>
<td>Iter.</td>
<td>CPU</td>
<td>Cuts</td>
<td>Iter.</td>
<td>CPU</td>
</tr>
<tr>
<td>50</td>
<td>1.391</td>
<td>1044</td>
<td>0.718</td>
<td>23</td>
<td>98</td>
<td>0.749</td>
</tr>
<tr>
<td>100</td>
<td>7.953</td>
<td>4927</td>
<td>1.31</td>
<td>41</td>
<td>231</td>
<td>1.89</td>
</tr>
<tr>
<td>150</td>
<td>23.907</td>
<td>11548</td>
<td>1.313</td>
<td>41</td>
<td>219</td>
<td>2.309</td>
</tr>
<tr>
<td>200</td>
<td>144.171</td>
<td>21321</td>
<td>1.968</td>
<td>58</td>
<td>587</td>
<td>2.938</td>
</tr>
<tr>
<td>250</td>
<td>1928.98</td>
<td>34278</td>
<td>2.027</td>
<td>51</td>
<td>384</td>
<td>1.955</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>-</td>
<td>2.592</td>
<td>69</td>
<td>190</td>
<td>2.812</td>
</tr>
</tbody>
</table>
For any two random variables $X, Y \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$

Risk-Averse Consistency via Expected Utility

$X \succeq_{(2)} Y \iff E_u(X) \geq E_u(Y) \quad \forall$ nondecreasing concave $u : \mathbb{R} \to \mathbb{R}$.

Hadar and Russell (1969)

Risk-Averse Consistency via Rank Dependent Utility

$X \succeq_{(2)} Y$ holds true if and only if for all nondecreasing concave functions $w : [0, 1] \to \mathbb{R}$ that are subdifferentiable at 0

\[
\int_0^1 F_{(-1)}(X; p) \, dw(p) \geq \int_0^1 F_{(-1)}(Y; p) \, dw(p).
\]

Dentcheva and Ruszczyński (2006)
The Implied Rank Dependent Utility Function

Uniform inverse dominance condition (UIDC) for (Ψ_{-2})

\[\exists \tilde{z} \in Z \text{ such that } \inf_{p \in [\alpha, \beta]} \left\{ F_{-2}(G(\tilde{z}); p) - F_{-2}(Y; p) \right\} > 0. \]

Lagrangian-like functional

\[\Phi(z, w) = f(z) + \int_{0}^{1} F_{-1}(G(z); p) \, dw(p) - \int_{0}^{1} F_{-1}(Y; p) \, dw(p) \]

\(\mathcal{W}([\alpha, \beta]) \) contains all concave and nondecreasing functions

\(w : [0, 1] \rightarrow \mathbb{R} \) such that \(w(p) = 0 \) for all \(p \in [\beta, 1] \) and

\(w(p) = w(\alpha) + c(p - \alpha) \) with some \(c > 0 \), for all \(p \in [0, \alpha] \).

The dual functional \(\Psi(w) = \sup_{z \in Z} \Phi(z, w) \).

The dual problem

\[(\mathcal{D}_{-2}) \quad \min_{w \in \mathcal{W}([\alpha, \beta])} \Psi(w). \]
The Implied Rank Dependent Utility Function

Theorem

Under the UIDC if problem \((\mathcal{P}_{-2})\) has an optimal solution, then problem \((\mathcal{D}_{-2})\) has an optimal solution and the optimal values of both problems coincide. The optimal solutions of the dual problem \((\mathcal{D}_{-2})\) are the rank dependent utility functions \(\hat{w} \in \mathcal{W}([\alpha, \beta])\) satisfying the dominance constraint and

\[
\int_0^1 F_{(-1)}(G(\hat{z}); p) \, d\hat{w}(p) = \int_0^1 F_{(-1)}(Y; p) \, d\hat{w}(p)
\]

for an optimal solution \(\hat{z}\) of the problem \(\max_{z \in Z} \Phi(z, \hat{w})\).
The Implied Rank Dependent Utility Function

Darinka Dentcheva and Andrzej Ruszczyński

Inverse Stochastic Dominance Constraints
A measure of risk ϱ assigns to an uncertain outcome $X \in \mathcal{L}_p(\Omega, \mathcal{F}, P)$ a real value $\varrho(X)$ on the extended real line $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$.

A coherent measure of risk is a functional $\varrho : \mathcal{L}_1(\Omega, \mathcal{F}, P) \rightarrow \overline{\mathbb{R}}$ satisfying the axioms:

- **Convexity**: $\varrho(\alpha X + (1 - \alpha) Y) \leq \alpha \varrho(X) + (1 - \alpha) \varrho(Y)$ for all $X, Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$ and $\alpha \in [0, 1]$.
- **Monotonicity**: If $X, Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$ and $Y(\omega) \geq X(\omega) \ \forall \omega \in \Omega$, then $\varrho(Y) \leq \varrho(X)$.
- **Translation Equivariance**: If $a \in \mathbb{R}$ and $X \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$, then $\varrho(X + a) = \varrho(X) - a$.
- **Positive homogeneity**: If $t > 0$ and $X \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$, then $\varrho(tX) = t\varrho(X)$.

Artzner, Delbaen, Eber and Heath; Ruszczynski, Shapiro
Kusuoka Representation of Measures of Risk

Definition

Average Value at Risk of X at level p is defined as

$$\text{AVaR}_p(X) = -\frac{1}{p} F_{(-2)}(X; p) = \frac{1}{p} \int_0^p \text{VaR}_t(X) \, dt.$$

Theorem

For every law invariant, finite-valued coherent measure of risk on $L_\infty(\Omega, \mathcal{F}, P)$ on atomless space Ω, a convex set $\mathcal{M} \subset \mathcal{P}((0, 1])$ exists such that for all X

$$\varrho(X) = \sup_{\mu \in \mathcal{M}} \int_0^1 \text{AVaR}_p(X) \, \mu(dp).$$

Definition

A measure of risk ϱ is called **spectral** if \mathcal{M} is a singleton.
Mean-Risk Models as a Lagrangian Relaxation

Theorem (necessary optimality conditions):

Under the UIDC, if \(\hat{z} \) is an optimal solution of \((\Psi_{-2}) \), then a spectral risk measure \(\hat{\varrho} \) and a constant \(\kappa \geq 0 \) exist such that \(G(\hat{z}) \) is also an optimal solution of the problem

\[
\max_{z \in Z} \left\{ f(z) - \kappa \hat{\varrho}(G(z)) \right\} \quad \text{and} \quad (1)
\]

\[
\kappa \hat{\varrho}(G(\hat{z})) = \hat{\varrho}(Y). \quad (2)
\]

If the dominance constraint is active, then condition (2) takes on the form \(\hat{\varrho}(G(\hat{z})) = \hat{\varrho}(Y) \).

The support of the measure \(\mu \) in the spectral representation of \(\hat{\varrho}(\cdot) \) is included in \([\alpha, \beta]\).
The Implied Measure of Risk

\[\varrho_{100}(X) = 0.1069 \text{AVaR}_{0.1772}(X) + 0.014 \text{AVaR}_{0.3101}(X) + 0.0274 \text{AVaR}_{0.3636}(X) + 0.0577 \text{AVaR}_{0.4093}(X) + 0.3073 \text{AVaR}_{0.4594}(X) + 0.2935 \text{AVaR}_{0.4967}(X) + 0.1077 \text{AVaR}_{0.5081}(X) + 0.0576 \text{AVaR}_{0.557}(X) + 0.0213 \text{AVaR}_{0.5647}(X) + 0.0066 \text{AVaR}_{0.575}(X) \]