
An Effective Upperbound on Treewidth Using
Partial Fill-in of Separators

Boi Faltings ∗ Martin Charles Golumbic ‡

June 28, 2009

Abstract

Partitioning a graph using graph separators, and particularly clique
separators, are well-known techniques to decompose a graph into smaller
units which can be treated independently. It was previously known
that the treewidth was bounded above by the sum of the size of the
separator plus the treewidth of disjoint components, and this was ob-
tained by the heuristic of filling in all edges of the separator making
it into a clique.

In this paper, we present a new, tighter upper bound on the
treewidth of a graph obtained by only partially filling in the edges
of a separator. In particular, the method completes just those pairs
of separator vertices that are adjacent to a common component, and
indicates a more effective heuristic than filling in the entire separator.

We discuss the relevance of this result for combinatorial algorithms
and give an example of how the tighter bound can be exploited in the
domain of constraint satisfaction problems.

Keywords : treewidth, partial k-trees, graph separators

∗Artificial Intelligence Laboratory (LIA), Ecole Polytechnique Fédérale de Lausanne
(EPFL), 1015 Lausanne, Switzerland. E-mail: boi.faltings@epfl.ch

‡Caesarea Rothschild Institute and Department of Computer Science, University of
Haifa, Mt. Carmel, Haifa 31905, Israel. E-mail: golumbic@cs.haifa.ac.il

1

1 Introduction

Let G = (V, E) be an undirected graph. We denote by GX = (X, EX) the
subgraph of G induced by X ⊆ V where EX = {(u, v) ∈ E | u, v ∈ X}.

A tree decomposition for a graph G is defined as a tree T whose nodes are
labelled by subsets of V called “clusters” (or “bags”) such that

(1) every vertex v ∈ V appears in at least one cluster,
(2) if (u, v) ∈ E, then u and v co-occur in some cluster, and
(3) for every v ∈ V , the set of nodes of T which include v in their cluster

induces a connected subgraph (i.e., a subtree) of T , denoted T (v).
The width of a tree decomposition T is the size of the largest cluster minus

1, and is denoted by width(T).
A given graph G may have many possible tree decompositions, includ-

ing the trival representation as a single node with cluster equal to V . The
treewidth tw(G) of a graph G is defined to be the minimum width over all
tree decompositions for G. Such a tree decomposition is called a minimum
tree decomposition for G.

Remark 1 The treewidth of a tree equals 1, of a chordless cycle equals 2, of a
clique on k vertices equals k−1, and of a stable (independent) set equals zero.
It is also well known, that a chordal graph has a minimum tree decomposition
where each cluster is a maximal clique of the graph, thus, the treewidth of a
chordal graph is the size of its largest clique minus 1.

The theory of treewidth, introduced by Robinson and Seymour [9], is
a very rich topic in discrete mathematics, and has important algorithmic
significance, since many NP-complete problems may be solved efficiently on
graphs with bounded treewidth. The reader is referred to [1, 2, 7] for further
treatment of the subject.

Partitioning a graph using graph separators, and particularly clique sepa-
rators, is well-known as a method to decompose a graph into smaller compo-
nents which can be treated independently. It was previously known ([5]) that
the treewidth was bounded above by the sum of the size of the separator plus
the treewidth of disjoint components, and this was obtained by the heuristic
of filling in all edges of the separator making it into a clique.

In Section 2, we present a new, tighter upper bound on the treewidth
of a graph whose novelty is by filling in fewer edges of the separator. Our
method completes just those pairs of separator vertices that are adjacent to a

2

common component, giving a lower treewidth of the augmented supergraph.
This is followed by an example in Section 3 to illustrate our method. In
Section 4, we conclude by discussing its application to solving constraint
satisfaction problems combining search with dynamic programming, which
was our motivation for having studied the question of improving the bounds
on treewidth.

2 Our result

We first recall the Helly property which is satisfied by subtrees of a tree [6].
By definition, if (u, v) ∈ E then T (u) ∩ T (v) 6= ∅. The Helly property for
trees states that if a collection of subtrees of a tree pairwise intersect, then the
intersection of the entire collection is nonempty. This immediately implies
the following well-known (folklore) remark [4], which will be used below.

Remark 2 Let T be a tree decomposition for G. If C is a clique of G, then
there is a cluster X (labelling a node of T) such that C ⊆ X.

Let G = (V, E) be an undirected graph and let S ⊆ V be a subset of the
vertices. We consider the connected components H1, . . . , Ht of GV \S, i.e., the
connected subgraphs obtained from G by deleting all vertices of S and their
incident edges. We denote by Vi the vertices of Hi, that is, Hi = (Vi, EVi

).
Finally, let Si ⊆ S denote the subset consisting of all vertices of S which
have neighbors in Hi.

Define (x, y) to be a fill-in edge if (x, y) /∈ E and x, y ∈ Si for some i,
and let F be the set of all fill-in edges. Define the graph H = (V, E ′) to be
the supergraph of G , where E ′ = E ∪ F . In other words, an edge is filled
in between u, v ∈ S in E ′ if there is a path in G from u to v using only
intermediate vertices of some component Hi. Thus, each Si becomes a clique
in HS.

The following is our new result:

Theorem 1 tw(G) ≤ maxi{tw(HS), |Si|+ {tw(Hi)}}

Proof. Let TS be a minimum tree decomposition for the subgraph HS,
and let Ti be a minimum tree decomposition for Hi. We will now construct
a tree decomposition T for G.

3

Since the set Si forms a clique in HS, by Remark 2, there is a cluster Xi

in TS containing Si. To form T , we now (i) add the members of Si to each
cluster of Ti, and (ii) add a new edge from the node xi with label Xi to an
arbitrary node vi of Ti.

We now show that T is a tree decomposition for H and thus also for G.
Condition (1) of the definition of tree decomposition is trivial, and condition
(3) is proven as follows: Each T (v) for v ∈ V \ S remains unchanged and is
therefore a subtree of T . Also, each T (x) for x ∈ S is a subtree of T since
it consists of the union of its former subtree TS(x) and, for each i in which
x has neighbors in Hi, the entire tree Ti along with the new edge (vi, xi)
connecting Hi with the node with label Xi.

We prove condition (2) in three cases.
Case 1: u, v ∈ V \ S: If (u, v) ∈ E, then u and v are in the same

connected component, say Hj, and they appear together in some cluster at
a node of Tj.

Case 2: u ∈ V \ S and v ∈ S: If (u, v) ∈ E where u is in the component
Hj, then v ∈ Sj and they now appear together in some (in fact, in every)
cluster of Tj where u appears.

Case 3: u, v ∈ S: If (u, v) ∈ E, then (u, v) ∈ E ′
S, so u and v co-occur in

some cluster at a node of TS, hence in T .
Thus, T is a tree decomposition for H and thus also for G.
It now remains to show that w = width(T) is at most max{tw(HS), |Si|+

tw(Hi)|i = 1, . . . , t}.
We first observe that tw(GV \S) = max{tw(Hi)|i = 1, . . . , t}, since the Hi

are disjoint graphs.
Let Y be the largest cluster in T , that is, w = |Y | − 1. If Y is the label

of a node in TS, then w = tw(HS). Otherwise, Y is the new label of a node
in Tj for some component Hj, that is, Y = Sj ∪ B where B is the largest
(original) cluster in Tj, and tw(Hj) = |B| − 1. Therefore,

w = |Y | − 1 = |Sj|+ |B| − 1 = |Sj|+ tw(Hj)

which proves the claim. Q.E.D.

Corollary 1 tw(G) ≤ tw(HS) + tw(GV \S) + 1

Proof. This follows since |Si| ≤ |Xi| ≤ tw(HS) + 1 for all i and
tw(GV \S) = maxi{tw(Hi)}.

4

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�� ��

��

��
��

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

Figure 1: Example graph

Remark 3 Our result can be seen as a strengthening of the notion of safe
separators [3] and of w-cliques [5] where these authors fill-in all pairs of
vertices in S making it a clique, and giving the weaker upperbound tw(G) ≤
|S|+ maxi{tw(Hi)} = |S|+ tw(GV \S).

3 Example

Consider the example graph shown in Figure 1. It has a tree decomposition
into the following cliques:

C1 = {v1, v2, v3}
C2 = {v3, v4, v5}
C3 = {v3, v4, v8}
C4 = {v5, v6, v7}
C5 = {v8, v9, v10}

5

that are all of size 3, and the subgraph with vertices {v1, v2, v3} has no tree
decomposition into smaller cliques. Thus, its treewidth is 2. (In fact, it a
chordal graph, and C1–C5 a clique decomposition.)

To illustrate our method, and provide an example for the application de-
scribed in Section 4, choose S = {v3, v4, v5, v8}, thus leaving three connected
components H1 = {v1, v2}, H2 = {v6, v7} and H3 = {v9, v10}.

Earlier lemmas give a bound on the treewidth of G as

tw(G) ≤ |S|+ maxi{tw(Hi)} = 4 + 1 = 5

Using Theorem 2, we obtain a tight bound, as follows. Note that we have
S1 = {v3}, S2 = {v5} and S8 = {v8}, that HS = GS since none of the Hi is
connected via multiple vertices, and that tw(HS) = 2. Now we have:

tw(G) ≤ maxi{tw(HS), |Si|+ tw(Hi)} = maxi{2, 1 + 1} = 2

which is exactly the treewidth of G.
To be fair, we should note that for the earlier result, the best possible

choice for S would have been S ′ = {v3, v5, v8}, thus leaving an additional
disjoint component H4 = {v4}, giving a bound of 4 instead of 5. Using our
new Theorem, this separator would not give a bound that is as good because
the S4 associated with the new component H4 includes all vertices in S ′, and
thus the bound will be 3. While this is still better than the earlier result, it
is an indication that S ′ does not give the best decomposition. This fact is
important in the application example below.

4 Application to Constraint Satisfaction Prob-

lems

Although this paper may be regarded as purely mathematical, it has its moti-
vation in an important heuristic method for solving various problems includ-
ing constraint satisfaction ([8]), satisfiability and Bayesian inference ([5]).

For example, when a separator (cutset) S of the constraint graph of a
constraint satisfaction problem (CSP) can be found which has certain good
treewidth properties, it will allow an efficient solution to the CSP using a
hybrid algorithm combining search with dynamic programming.

In search algorithms, there is a tradeoff between (1) the time complex-
ity of searching for a solution, (2) the size of the memory (or cache) to

6

store intermediate computations, and (3) for distributed implementations,
the communication complexity for sending and sharing information between
parts of the graph. Balancing these three parameters within the resources
available is the basis of our motivation.

Using dynamic programming, a CSP can be solved in time and memory
exponential in the treewidth of the constraint graph, while with search, it can
be solved in time exponential in the number of nodes but space linear in the
number of nodes. Let the example graph of Figure 1 represent a CSP with 10
variables with d possible values each, where the arcs correspond to arbitrary
unstructured constraints. Dynamic programming would require cubic time
and quadratic space in d, whereas tree search would require time on the order
of O(d10), but memory only linear in d.

When the treewidth of a constraint graph makes the memory required
for dynamic programming exceed what is available, it becomes desirable to
decompose the problem into pieces with lower treewidth that are solved using
dynamic programming, and use search over the variables in the separator.
However, the overall complexity is now exponential in the size of the sepa-
rator plus the largest treewidth of a component. In our example, choosing a
decomposition with separator S ′ = {v3, v5, v8}, searching through all combi-
nations of values for v3, v5 and v8 and collapsing the remaining nodes using
dynamic programming would reduce the space complexity from O(d2) to
O(d), but the time complexity would grow to O(d5).

The tighter bound given by our theorem allows one decompose the graph
recursively to give a more efficient solution. Intuitively, since the complexity
of the best known algorithms for solving CSP depends exponentially on the
treewidth, a decomposition for which a smaller bound on the treewidth of
the original graph can be proven has the potential to better preserve the
minimal complexity of the original graph.

In our example, we would pick the larger S = {v3, v4, v5, v8} since it allows
to show a bound of tw(G) ≤ 2 rather than 3. When using S for solving the
problem, rather than searching over all combinations of values for variables
in S, S would be decomposed again into S1 = {v3} and S2 = {v4, v5, v8},
where tw(S2) = 1.

This shows how to solve the entire CSP in cubic time and linear space in
the following steps:

1. first decomposition: remove S and collapse the remaining graph into
vertices of S.

7

(a) search through all values of v3 to collapse vertice v1 into v2 and
then v3;

(b) search through all values of v5 to collapse vertices v6, v7 into v5;

(c) search through all values of v8 to collapse verticesv9, v10 into v8;

2. second decomposition: remove S1 and use search through all values of
v3 to:

(a) collapse v5 into v4

(b) collapse v8 into v4

3. pick the best solution for v3 and extend to the collapsed variables in
reverse order.

The reader may verify that this algorithm requires only linear space and cubic
time in the domain size d, and is thus much better than the decomposition
pointed to by earlier results.

We thus believe that Theorem 2 can provide a useful heuristic for decom-
posing combinatorial problems and solving them efficiently.

Acknowledgements. The authors thank Hans Bodlaender for recom-
mending that we highlight the stronger statement of the Theorem as well
as the Corollary. This work was carried out when the second author was a
visiting professor at the Artificial Intelligence Laboratory (LIA), Ecole Poly-
technique Fédérale de Lausanne (EPFL).

References

[1] Hans L. Bodlaender, A Tourist Guide through Treewidth, Acta Cyber-
netica 11 (1993), 1–21.

[2] Hans L. Bodlaender, Treewidth: Characterizations, Applications, and
Computations, Lecture Notes in Computer Science LNCS 4271 (2006)
1–14.

[3] Hans L. Bodlaender and Arie M.C.A. Koster, Safe separators for
treewidth, Discrete Mathematics 306 (2006) 337–350.

8

[4] Hans L. Bodlaender and Rolf H. Möhring. The pathwidth and treewidth
of cographs. SIAM J. Disc. Meth. 6 (1993) 181–188.

[5] Bozhena Bidyuk and Rina Dechter. On finding minimal w-cutset prob-
lem. In Proceedings of the 20th Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 4350, Morgan Kaufmann, 2004.

[6] Martin Charles Golumbic, Algorithmic graph theory and perfect graphs,
Academic Press, New York, 1980. Second edition, Annals of Discrete
Mathematics 57, Elsevier, Amsterdam, 2004.

[7] Ton Kloks, Treewidth: Computations and approximations, Lecture
Notes in Computer Science LNCS 842 (1994) 1–209.

[8] A. Petcu and B. Faltings. MB-DPOP: A New Memory-Bounded Algo-
rithm for Distributed Optimization. Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-07, Hyderabad,
India, Jan, 2007, pp. 1452-1457.

[9] Neil Robertson and Paul D. Seymour, Graph minors. II. Algorithmic
aspects of tree-width, J. Algorithms 7 (1986), 309–322

9

