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1. INTRODUCTION 
 
We consider here the mixed 0-1 integer set P corresponding to the set of feasible 

solutions to : 
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Where : aj ∈ Rc (∀ j∈ N), b ∈ Rc  (c = number of constraints (1)) 

In the above, there are n + m variables, n 0-1 integer variables and m real variables 

subject to non negativity conditions. 

The linear relaxation, denoted P, is the polyhedron defined by (1)-(3). 

 



 

We focus here on two well-known hierarchies of relaxations for P namely : 

- the LIFT-AND-PROJECT (or disjunctive) hierarchy ; 

- the RLT hierarchy (Sherali & Adams 1990) 

and we investigate connections between these two hierarchies. 



 
 

 

As an interesting outcome of this investigation, it will be seen that a new 

hierarchy arises in a natural way : the so-called SRL* hierarchy. Some 

potentially interesting features of SRL* (in particular w.r.t. computational 

issues) will be pointed out. 



 
d-factors : 
 
For any integer d such that 1 ≤ d ≤ n, we call d-factor associated with the d-element 

subset Jd ⊆ E any degree-d polynomial Fd (J, Jd \J) of the form  

Fd (J, Jd \J) = )x1( j
J\dJj

jJj
x −ΠΠ
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With J ⊆ Jd. 



2.  CONNECTION BETWEEN RANK-1 LIFT-AND-PROJECT AND RANK-1 
RLT RELAXATIONS 

 (See BALAS, CERIA & CORNUEJOLS 1993, BONAMI & MX 2005)  
 

2.1. THE RANK-1 LIFT-AND-PROJECT RELAXATION 

The linear representation of 
1

P&LP  is derived from(1)-(3) as follows. 

Each constraint out of the system (1)-(3) gives rise to 2 n (nonlinear) constraints : 

- one for each 0-1 variable xi (i ∈ E), obtained by multiplying both handsides by the 

factor F1 ({i}, ∅) = xi 

- one for each 0-1 variable xi (i ∈ E) obtained by multiplying both handsides by the 

factor F1 (∅, {i}) = 1 – xi. 

The result of this reformulation is a nonlinear system (II) composed of a set of 

quadratic inequalities. 



The nonlinear system (II) is then linearized by introducing the 2n(n+m+1) variables 
{ } { }i,i

0Z , 
{ } { }i,i

jZ , 
{ }iØ,

0Z , 
{ }iØ,

jZ  (i = 1, …, n ; j = 1, … n+ m) where : 

{ } { }i,i

0Z  is a substitute for F1 ({i}, Ø) 

{ } { }i,i

jZ  is a substitute for xj F1 ({i}, Ø) 

{ }iØ,

0Z  is a substitute for F1 (Ø, {i}) 
{ }iØ,

jZ  is a substitute for xj F1 (Ø, {i}) 



The resulting linearized system defining 
1

P&LP  is : 

(II’) 
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We note that in the above linear representation, for any pair i ∈ E, j ∈ E, i ≠ j both 

variables 
{} { }i,i
jZ  and 

{ } { }j,j
iZ  formally correspond to the product xixj but they have to be 

considered as distinct variables (i.e. they are not requested to take on equal values). 
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2.2. AN APPLICATION TO MAX-2-SAT PROBLEMS  
 
Let F be a 2-SAT formula in CNF form involving n Boolean variables α1, α2, …, αn 
and m clauses 
C = C1 ∪ C2 ∪ C3 
Where C1  is the set of clauses of the form (αi ∨ αj)  ( i < j) 
  C2  “  “   “ (α i ∨ αj)  ( i ≠ j) 
  C3  “  “   “ (α i ∨ α j)  ( i < j) 
A natural formulation of MAX-2-SAT as a 0-1 MIP is : 
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The computational experiments show that for (M2S) the relaxation provided by 1
PL&

P  

is fairly strong and makes possible the efficient solution of fairly large problems.



 

      CPLEX 9.0 Iterated Lift & Project TOOLBAR(*) 

# 
var 

# 
clauses Opt 

1
P&L

P  Sol 
time 

# 
nodes 

Sol 
time 

Best 
Bound

# 
nodes Bound

Sol 
Time

# 
nodes Time

# 
nodes 

75 525 61 585 39 49 115.9  105 47.3 50.8 1562 57 ∼ 106 

75 525 65 60.9 57 275 137  >105 45 73.3 5289 111 2.2 106 

75 550 70 65.7 62.1 230 624  ∼5.105 47.2 141.6 11176 323 7.1.106 

75 600 75 70.5 63.6 245 602  ∼5.105 53 75.8 4673 249 5.7 106 

100 700 86 79.9 155 763 > 2h 80.5 ∼5.106 55.2 423 39255 > 2h > 107 

150 850 86 79.2 336 990 > 2h 62.5 ∼2.106 58.4 7200 ∼3.105 > 2h > 107 

150 850 85 79.3 262 567 > 2h 62.2 ∼3.106 60.1 1959 92025 > 2h > 107 

200 1000 94 83.8 3030 13700 > 2h 55.5 ∼ 106 62.3 > 2h 223000 > 2h > 107 

200 1000 96 85.9 4189 18725 − − − 59.7 > 2h 190000 > 2h > 107 

200 1000 92 83.3 1150 4569 > 2h 54 ∼ 2.106 65.2 > 2h 134 000 > 2h > 107 

 
Sample results from BONAMI & M.M. (2006) 
 
(*) de GIVRY, LARROSA, MESEGUER, SCHIEX (2003), “Solving MAX-SAT as weighted CSP” 



2.3. THE RANK-1 SHERALI-ADAMS RELAXATION 

The linear representation of 
1

RLTP  is derived in a similar way, using the same 
reformulation step, but a slightly different type of linearization is applied to the 
resulting nonlinear system (II). 

More specifically (II) is linearized by introducing the mnm2
)1n(n +++  

variables J
0w  (∀ J ⊆ E  ⏐ J ⏐ ≤ 2),   Ø

jw   (∀ J ∈N \ E)  
and { }i

jw  (∀ i ∈ E, ∀ j ∈ N \ E) 

where : 
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and it is assumed that Ø
0w  = 1. 



By introducing the notation : 

{ }i,J
0W  = F1 (J, {i} \ J)  ∀ i ∈ E, J ⊆ {i} 

{ }i,J
jW  = xj F1 (J, {i} \ J)  ∀ i ∈ E, J ⊆ {i}, j ∈ Ν 

the nonlinear system (II) can be rewritten as : 

 

(III) 
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The linearized version of (II) in terms of the w variables (denoted (III)’) is then 

deduced from (III) by carrying out the following substitutions : 

{ }i,J
0W  =  { }

H
0

J\H

iHJ
w)1(−

⊆⊆
Σ  ∀ i ∈ Ε, ∀ J ⊆ {i}     (5) 

(this yields  { } { }i,i
0W  = { }i

0w  for J = {i} 

 and { }i,Ø
0W  = { }i

0
Ø
0 ww −  = 1 – { }i

0w  for J = Ø). 

{ }i,J
jW  = { }

{ }jH
0

J\H

iHJ
w)1( ∪

⊆⊆
−Σ  ∀ i ∈ Ε, ∀ J ⊆ {i}, ∀ j ∈ Ε  (6) 

{ }i,J
jW  = { }

H
j

J\H

iHJ
w)1(−

⊆⊆
Σ  ∀ i ∈ Ε, ∀ J ⊆ {i}, ∀ j ∈ Ν \ E  (7) 



 

As an immediate property of the above linearization we note the so-called 

« symmetry » condition satisfied by the W variables in 1
RLTP  : 

∀ i ∈ E, ∀ j ∈ E :  { } { }i,i
jW  = { } { }j,j

iW       (8) 

(both values being equal to { }j,i
0w ) 



On the other hand it is easily seen that 1
P&LP  is a relaxation of 1

RLTP  : 

 

Proposition 1 : 1
RLTP  ⊆ 1

P&LP  

 
Proof : 

Let w  denote a solution to the linearized system (III)’ and W = ⎭
⎬
⎫

⎩
⎨
⎧ i,J

jW( ) the 

values of the W variables corresponding to W through (5) (6) (7).  

Then Z = W is a solution to (II)’ i.e. belongs to 1
P&LP . 



 
The following result shows that there is a simple relationship between 1

P&LP  and 1
RLTP . 

 
Proposition 2 

Let (II)’’ be the linear system deduced from (II)’ by adding all « symmetry » 

conditions of the form : 

  { } { }i,i
jZ  = { } { }j,j

iZ  ∀ i ∈ E, ∀ j ∈ E. 

Then (II)’’ is a linear representation of 1
RLTP . 

Proof :  see BALAS et al. (1993), BONAMI & MX (2005). 

 

QUESTION : 

DOES THIS SIMPLE RELATIONSHIP EXTEND TO RANK ≥ 2 ? 



TO INVESTIGATE THIS ISSUE WE WILL INTRODUCE A NEW HIERARCHY 

OF RELAXATIONS (DENOTED SRL*) : 

 

 P  ⊇ 1
*SRLP  ⊇ 2

*SRLP  ... ⊇ n
*SRLP  ≡ n

RLTP  ≡ P. 
 



3. THE RANK-d SRL* RELAXATION FOR ARBITRARY d, AND 

CONNECTIONS WITH d
RLTP  AND d

P&LP  

All three relaxations are obtained via linearization of the nonlinear system deduced 

from (1)-(3) by multiplication of each inequality by every possible d-factor :  

∀ Jd ⊆ E, ⏐Jd⏐= d,  ∀ J ⊆ Jd : 
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The rank-d RLT (Sherali-Adams) relaxation 

The linear description of 1
RLTP  is obtained by linearizing (9)-(12) by introducing new 

variables J
0w  and J

jw  with the following interpretation : 
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(we agree to set : Ø
0w  = F0

 (Ø, Ø) = 1 ; { }i
0w  = xi, ∀ i ∈ E ; Ø

jw  = xj ∀ j ∈ N  \ E) 

The linear system describing 1
RLTP  is then obtained by carrying out the following 

substitution, ∀ Jd ⊆ E, ⏐Jd⏐= d, ∀ J ⊆ Jd : 
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The rank-d SRL* relaxation 

The linear description of d
*SRLP  is obtained by linearizing the nonlinear terms in (9)-

(12) by introducing new variables J
0θ  and J

jθ  with the following interpretation : 
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(we agree to set : Ø
0θ  = F0 (Ø, Ø) = 1  and  Ø

jθ  = xj, ∀ j ∈ N, moreover J
jθ  is identified 

with J
0θ  for j ∈ J) 

The linear system describing d
*SRLP  is then obtained by carrying out the following 

substitutions, ∀Jd ⊆ E, ⏐Jd⏐ = d, ∀ J ⊆ Jd : 
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DIFFERENCES BETWEEN SRL* AND RLT 

→ RLT avoids using the variables H
jw  for j ∈ E because the identification 

H
jw  = {j}H

0w ∪  is carried out implicitly 

(note however that the variables H
jw  for all j ∈ N \ E are required in RLT) 

→ By contrast SRL* involves all the variables H
jθ , for all j ∈ N \ H (even if j ∈ E) 

As a result for j ∈ E, H
jθ  and { }jH

0
∪θ  are allowed to take on distinct values. 

Thus RLT uses fewer variables, as confirmed by the comparison in terms of 
# of variables : 
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DIFFERENCES (continued) 

Another essential difference between SRL* and RLT is that, contrary to RLT,  

SRL* features decomposable structure 

Indeed in the rank d RLT closure there is only one variable associated with the pair  

(j, dJ ) when j ∈ E \ 
dJ  and dJ  ⊆ E  which is : {j}dJ

0w ∪  

whereas, in rank d SRLT* there are d + 1 distinct variables associated with this pair, 

namely all the variables 
{k} \{j}dJ

k
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θ   for k {j}dJ ∪∈  

 

Each block in the rank d SRL* closure corresponds to a cardinality d subset H ⊆ E and 

involves the subset of all variables H
jθ  having the same superscript H. 



The generalized « symmetry » conditions 

Consider the d
*SRLP  relaxation for the MIP set P expressed in terms of the J

0θ  and J
jθ  

variables above. 

Definition 

For any positive integer p ≤ d we call generalized « symmetry » conditions at rank p 

the set of equality constraints of the form : 

  J
jθ  = { } { }j)i\J(

i
∪θ   ∀ J ⊂ E, ⏐J⏐= p, i ∈ J, j ∈ E \ J. 

Observe that the validity of the above set of constraints with respect to P follows from 

the identity  xj Fp (J, Ø) = xi Fp ((J \ {i} ∪ {j}), Ø)  (when p = ⏐J⏐). 

We denote Sp the set of all equality constraints expressing the generalized symmetry 

conditions at rank p. 

Now, the following result shows a simple connection between the linear representation 

of d
*SRLP  and d

RLTP  :



Theorem : (M.M. & H.O. 2008) 

The linear description of d
*SRLP  strengthened with Sd yields a linear description of 

d
RLTP . 

( d
*SRLP  thus appears as a relaxation of d

RLTP ). 

Remark 

It can be shown (M.M. & H.O. 2008) that all the generalized « symmetry » conditions 

up to rank d-1 are implicitly satisfied by all θ vectors solving the linear description of 
d

*SRLP . 

In view of this it is enough to include the constraints in Sd
 to ensure that all conditions 

in S1, S2, …, Sd are satisfied. 



Now, an interesting question is : how does d
P&LP  relate to d

*SRLP  and/or d
RLTP  ? 

It turns out that d
P&LP  ≡ d

*SRLP  is only true for d = 1. 

In other words, for d ≥ 2, strengthening d
P&LP  by adding all « symmetry » conditions up 

to rank d is not enough to yield d
RLTP . 

Indeed it can be shown that d
*SRLP  ⊆ d

P&LP  for all d ≥ 2 with strict inclusion holding in 

the general case. 



Example : 

Consider the pure 0-1 set P ⊂ {0, 1}5 defined by the three linear inequalities : 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤++++
≤++++
≤++++

895x114x73x32x191x17
635x254x93x132x221x17

545x134x53x172x151x18
 

It can be shown that in this case 2
RLTP  ⊂ 2

*SRLP  ⊂ 2
P&LP   

for instance considering the objective function : 

z = 1 900 x1 + 500 x2 + 200 x3 + 100 x4 + 300 x5, to be maximized, the optimal values 

of the three relaxations are   2 652.27,   2 653.99, and   2 668.1 respectively. 

(Note that, in the above example, the 2
*SRLP  bound significantly improves over the 

2
P&LP  bound). 



A FEW PRELIMINARY COMPUTATIONAL EXPERIMENTS 

We consider a series of multidimensional knapsack problems with n 0-1 variables and 

p inequality constraints for (n, p) ranging from (25, 20) to (50, 5) : 

- for each size, 5 randomly generated instances are solved. 

- The Chu-Beasly (1998) random generation procedure is used. 
 

Number of variables and rows in rank 2 L&P, SRL* and S&A relaxations : 

Instance 2
P&LP  2

*SRLP  2
A&SP  

n m nv nc nv nc nv Nc 

25 20 31225 642400 7225 81600 2625 81600 

35 20 85715 157080 20265 209440 7175 209440 

40 10 127960 194220 30460 274560 10700 274560 

50 5 249950 341775 60075 504700 20875 504700 



 



 
4.  THE CASE OF LINEARLY CONSTRAINED PSEUDOBOOLEAN 

FUNCTION OPTIMISATION PROBLEMS 

 

Let f be a pseudo-boolean function of degree d in n variables indexed in E = {1, 2, …, n}, 

of the form :  

 F(x) = c0 + )x(c jJjJEJ
dJ

∈⊂
≤

ΠΣ  

where c0 and cJ (J ⊂ E, ⏐J⏐ ≤ d) are given reals. 



 

 

K ⊆ Rn being a polyhedron (specified by a given set of linear equality / inequality 

system) we are interested in the following linearly constrained pseudo-boolean 

optimization problem : 

 

(PBO) 
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The above problem is classically reformulated as the following MIP with linear 

objective function : 

 (MIP-PBO) 
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The linear relaxation ( PBOMIP− ) of the above is obtained by replacing  

x ∈ K ∩ {0, 1}n with x ∈ K ∩ [0, 1]n. 



Then we have : 

 

Proposition (M.M. & H.O. 2008) 

For any integer k ≤ d, both rank k relaxations k
*SRLP  and k

RLTP  of (MIP-PBO) coincide. 

 

[In the special case d = 2 (quadratic pbf optimization) the coincidence between 1
RLTP  

and 1
P&LP  was already pointed out in Bonami & Mx (2006)] 



 

Moreover, it can be shown (M.M. & H.O. 2008) that the presence of all constraints of 

the form : 
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characterizes those MIPs for which 
d

*SRLP  and 
d
RLTP  coincide. 



5. PRELIMINARY COMPUTATIONAL EXPERIMENTS ON LINEARLY  

CONSTRAINED PBO 

 

We consider the problem of minimizing a quadratic submodular pseudoboolean 

function in n variables under a double-sided constraint of the form : 

αn ≤ n)1(x j

n

1j
α−≤

=
Σ  

(with α chosen in the range [0, 
2
1 ]). 

This problem is known to be NP-hard (GAREY & JOHNSON, 1979, p. 210). 



Comparing strengths of rank 2 SRL*, RLT and L&P relaxations for MIN-QPBF 
with cardinality constraints (0.4 n ≤ Σ xi ≤ 0.6 n) 

 
L&P SRL* RLT  

[α-β] 
 

Instance
 

# 
var 

# 
quad 
terms 

 
MIP 
opt 

 
LP 

relax
Opt. 
Val. 

Time 
(sec.) 

Gap 
closed 

(%) 

Opt. 
Val. 

Time 
(sec.) 

Gap 
closed 

(%) 

Opt. 
Val. 

Time 
(sec.) 

Gap 
closed 

(%) 
15-1 15 78 734 0 .00 734 111 100 734 26 100 734 25 100 
15-2 15 78 686 0.00 686 75 100 686 23 100 686 23 100 
15-3 15 78 818 0.00 818 108 100 818 24 100 818 23 100 
15-4 15 78 719 0.00 719 68 100 719 24 100 719 24 100 

 
0.4-
0.6 

15-5 15 78 619 0.00 619 68 100 619 24 100 619 23 100 
25-1 25 150 1238 0.00 1209.70 1413 97.7 1210 327 97.7 1210 312 97.7 
25-2 25 150 1118 0.00 1118 1061 100 1118 1060 100 1118 1054 100 
25-3 25 150 1148 0.00 1148 1206 100 1148 521 100 1148 1019 100 
25-4 25 150 1297 0.00 1256.60 1492 96.9 1256.8 335 96.9 1256.8 324 96.9 

 
 

0.4-
0.6 

25-5 25 150 1309 0.00 1239.34 1293 94.7 1239.6 673 94.7 1239.6 680 94.7 
25.1 25 150 1279 0.00 1263.66 1695 98.8 1264.3 244 98.8 1264.3 757 98.8 
25.2 25 150 1207 0.00 1203.02 2275 99.7 1203.8 868 99.7 1203.8 1380 99.7 
25-3 25 150 1264 0.00 1225.5 1750 97 1226 686 97 1226 759 97 
25-4 25 150 1358 0.00 1310.63 1633 96.5 1311.2 234 96.5 1311.2 838 96.5 

 
 

0.45-
0.55 

25-5 25 150 1385 0.00 1294.32 1593 93.4 1294.7 496 93.5 1294.7 909 93.5 



Rank-2 SRL* relaxation for MIN-QPBF instances with cardinality constraints 

Instance Nbr nodes Nbr edges α β SRL* 

     Optimum Time (sec.) Gap (%) Time (sec) 

Mincut-45-50-1.rdy 45 495 0.4 0.6 7741.84 0 : 06 : 18 87.36 0 :16 :50 

Mincut-45-50-2.rdy 45 495 0.4 0.6 7788.73 0 : 00 : 47 88.70 0 :16 :49 

Mincut-45-50-3.rdy 45 495 0.4 0.6 8129.05 0 : 00 : 47 87.47 0 :16 :49 

Mincut-45-50-4.rdy 45 495 0.4 0.6 7634.36 0 : 03 : 07 85.96 0 :16 :50 

Mincut-45-50-5.rdy 45 495 0.4 0.6 8147.92 0 : 05 : 41 87.41 0 :16 :49 

Mincut-55-25-1.rdy 55 371 0.4 0.6 4926.36 0 : 02 : 24 87.30 0 :46 :21 

Mincut-55-25-2.rdy 55 371 0.4 0.6 4967.47 0 : 02 : 16 87.39 0 :46 :19 

Mincut-55-25-3.rdy 55 371 0.4 0.6 4767.53 0 : 02 : 15 89.95 0 :46 :19 

Mincut-55-25-4.rdy 55 371 0.4 0.6     

Mincut-55-25-5.rdy 55 371 0.4 0.6 4760.89 0 : 02 : 36 92.27 0 :46 :19 

 



RANK 2 SRL* FOR QUADRATICALLY CONSTRAINED PROBLEMS 

(2 quadratic constraints + cardinality constraints) 
 
Instance [α, β] CPLEX BRANCH & BOUND SRL* 

   
best bound 

Best int 
sol 

Time 
(sec.) 

 
# nodes 

 
Opt. Val. 

Time 
(sec.) 

Gap 
closed 

(%) 
45.1 [0.4 , 06] 6421.5 8089 3600 180757 6987.39 250 86.4 

45.2 [0.4 , 06] 6845.5 7539 3600 150668 6973.74 298 92.5 

45.3 [0.4 , 06] 6468.26 7759 3600 185655 6948.02 113 89.5 

45.4 [0.4 , 06] 6709.2 8103 3600 179806 7061.34 55 87.1 

45.5 [0.4 , 06] 7123 8549 3600 164323 7505.94 64 87.8 

55.1 [0.4 , 06] 7500.71 12516 7200 144511 10208.99 152 81.6 

55.2 [0.4 , 06] 7094.05 11906 7200 193971 9761.26 152 82 

55.3 [0.4 , 06] 8030.00 12698 7200 154964 10424.08 168 82.1 

55.4 [0.4 , 06] 8228.55 13314 7200 194101 10792.79 488 81.1 

55.5 [0.4 , 06] 8364.53 13189 7200 153789 10850.53 167 82.3 




