DIMACS – RUTCOR Workshop January 19-22, 2009

ON VARIOUS RELAXATIONS BASED ON REFORMULATION-LINEARIZATION FOR 0-1 MIPs and specialization to Pseudo-Boolean Optimization

in memory of Peter L. Hammer

M. MINOUX University Paris 6 – France

SUMMARY

- 1. INTRODUCTION
- 2. CONNECTION BETWEEN RANK-1 L&P AND RANK-1 RLT
- 3. THE RANK-d SRL* RELAXATION FOR ARBITRARY d AND CONNECTIONS WITH P_{RLT}^d AND $P_{L\&P}^d$
- 4. THE CASE OF LINEARY CONSTRAINED PSEUDOBOLEAN FUNCTION OPTIMIZATION
- 5. PRELIMINARY COMPUTATIONAL EXPERIMENTS ON LINEARLY CONSTRAINED PBO
- 6. CONCLUSIONS

1. INTRODUCTION

We consider here the mixed 0-1 integer set P corresponding to the set of feasible solutions to:

(I)
$$\begin{cases} \sum_{j=1}^{n+m} a^{j} x_{j} \leq b & \text{(1)} \\ x_{j} \leq 1 \quad \forall j \in E = \{1, 2, ..., n\} & \text{(2)} \\ -x_{j} \leq 0 \quad \forall j \in N = \{1, 2, ..., n+m\} & \text{(3)} \\ x_{j} \in \{0, 1\} \forall j \in E & \text{(4)} \end{cases}$$

Where : $a^j \in \mathbb{R}^c$ ($\forall j \in \mathbb{N}$), $b \in \mathbb{R}^c$ (c = number of constraints (1))

In the above, there are n + m variables, n 0-1 integer variables and m real variables subject to non negativity conditions.

The linear relaxation, denoted \overline{P} , is the polyhedron defined by (1)-(3).

We focus here on two well-known hierarchies of relaxations for P namely:

- the LIFT-AND-PROJECT (or disjunctive) hierarchy;
- the RLT hierarchy (Sherali & Adams 1990)

and we investigate connections between these two hierarchies.

As an interesting outcome of this investigation, it will be seen that a *new hierarchy* arises in a natural way: the so-called SRL* hierarchy. Some potentially interesting features of SRL* (in particular w.r.t. computational issues) will be pointed out.

d-factors:

For any integer d such that $1 \le d \le n$, we call d-factor associated with the d-element subset $J^d \subseteq E$ any degree-d polynomial $F_d(J, J^d \setminus J)$ of the form

$$F_d(J, J^d \setminus J) = \prod_{j \in J} X_j \prod_{j \in J^d \setminus J} (1 - X_j)$$

With $J \subseteq J^d$.

2. CONNECTION BETWEEN RANK-1 LIFT-AND-PROJECT AND RANK-1 RLT RELAXATIONS

(See Balas, Ceria & Cornuejols 1993, Bonami & Mx 2005)

2.1. THE RANK-1 LIFT-AND-PROJECT RELAXATION

The linear representation of $P_{L\&P}^1$ is derived from(1)-(3) as follows.

Each constraint out of the system (1)-(3) gives rise to 2 n (nonlinear) constraints :

- one for each 0-1 variable x_i ($i \in E$), obtained by multiplying both handsides by the factor F_1 ($\{i\}$, \emptyset) = x_i
- one for each 0-1 variable x_i ($i \in E$) obtained by multiplying both handsides by the factor $F_1(\emptyset, \{i\}) = 1 x_i$.

The result of this reformulation is a nonlinear system (II) composed of a set of quadratic inequalities.

The nonlinear system (II) is then *linearized* by introducing the 2n(n+m+1) variables

$$Z_{0}^{\{i\,\},\{i\,\}},\,Z_{j}^{\{i\,\},\{i\,\}},\,Z_{0}^{\emptyset,\{i\,\}},\,Z_{j}^{\emptyset,\{i\,\}}\,(i=1,\,...,n\;;j=1,\,...\,n+m)\;\text{where}:$$

$$Z_{0}^{\left\{i\right\}\left\{i\right\}}$$
 is a substitute for $F_{1}\left(\left\{i\right\}, \emptyset\right)$

$$Z_{j}^{\{i\},\{i\}}$$
 is a substitute for x_{j} F_{1} ($\{i\}$, \emptyset)

$$Z_{0}^{\emptyset,\left\{ i\right.\right\} }$$
 is a substitute for $F_{1}\left(\varnothing,\left\{ i\right\} \right)$

$$Z_{i}^{\emptyset,\{i\}}$$
 is a substitute for $x_{j} F_{1}(\emptyset,\{i\})$

The resulting linearized system defining $P_{L\&P}^{1}$ is :

$$\begin{cases} \sum_{j=l}^{n+m} a^{j} Z_{J}^{J,\{i\}} - b \ Z_{0}^{J,\{i\}} \leq 0 & \forall i \in E, \ \forall J \subseteq \{i\} \\ Z_{j}^{J,\{i\}} - Z_{0}^{J,\{i\}} \leq 0 & \forall j \in E, \ \forall i \in E, \ \forall J \subseteq \{i\} \\ Z_{j}^{J,\{i\}} \geq 0 \ Z_{0}^{J,\{i\}} \geq 0 & \forall j \in N, \ \forall i \in E, \ \forall J \subseteq \{i\} \\ Z_{0}^{\{i\},\{i\}} + Z_{0}^{\emptyset,\{i\}} = 1 & \forall i \in E \\ Z_{j}^{\{i\},\{i\}} + Z_{j}^{\emptyset,\{i\}} = x_{j} & \forall j \in N \end{cases}$$

We note that in the above linear representation, for any pair $i \in E$, $j \in E$, $i \neq j$ both variables $Z_j^{\{i\},\{j\}}$ and $Z_i^{\{j\},\{j\}}$ formally correspond to the product x_ix_j but they have to be considered as *distinct variables* (i.e. they are not requested to take on equal values).

X	y ^{0,1}	$y_0^{0,1}$	y ^{1,1}	$y_0^{1,1}$	y ^{0,2}		y ^{2,2}		y ^{0,3}		y ^{3,3}	
I	- I	0	- I	0								
0	0	1	0	1								
	$A^{0,1}$	-b ^{0,1}	0	0								
	0		$\mathbf{A}^{1,1}$	-b ^{1,1}								
I					- I		- I					
				ŀ		1		1				
I						•			- I		- I	
										1		1

2.2. AN APPLICATION TO MAX-2-SAT PROBLEMS

Let F be a 2-SAT formula in CNF form involving n Boolean variables $\alpha_1, \alpha_2, ..., \alpha_n$ and m clauses

A natural formulation of MAX-2-SAT as a 0-1 MIP is :

$$(M2S) \begin{cases} \min \sum_{s=1}^{m} z_s \\ s.t.: \\ -\alpha_i - \alpha_j - z_s \le -1 \\ \alpha_i - \alpha_j - z_s \le 0 \\ \alpha_i + \alpha_j - z_s \le 1 \\ \alpha \in \{0,1\}^n, z \in [0,1]^m \end{cases} \forall s \in C_1$$

The computational experiments show that for (M2S) the relaxation provided by $P_{L\&P}^{1}$ is fairly strong and makes possible the efficient solution of fairly large problems.

						CPLEX 9.0			Iterated	l Lift &	TOOLBAR(*)		
# var	# clauses	Opt	P _{L&P}	Sol time	# nodes	Sol time	Best Bound	# nodes	Bound	Sol Time	# nodes	Time	# nodes
75	525	61	585	39	49	115.9		10 ⁵	47.3	50.8	1562	57	~ 10 ⁶
75	525	65	60.9	57	275	137		$>10^{5}$	45	73.3	5289	111	$2.2 \ 10^6$
75	550	70	65.7	62.1	230	624		$\sim 5.10^5$	47.2	141.6	11176	323	$7.1.10^6$
75	600	75	70.5	63.6	245	602		$\sim 5.10^5$	53	75.8	4673	249	5.7 10 ⁶
100	700	86	79.9	155	763	> 2h	80.5	~5.10 ⁶	55.2	423	39255	> 2h	> 10 ⁷
150	850	86	79.2	336	990	> 2h	62.5	$\sim 2.10^6$	58.4	7200	~3.10 ⁵	> 2h	> 10 ⁷
150	850	85	79.3	262	567	> 2h	62.2	$\sim 3.10^6$	60.1	1959	92025	> 2h	> 10 ⁷
200	1000	94	83.8	3030	13700	> 2h	55.5	$\sim 10^6$	62.3	> 2h	223000	> 2h	> 10 ⁷
200	1000	96	85.9	4189	18725	_	_	_	59.7	> 2h	190000	> 2h	> 10 ⁷
200	1000	92	83.3	1150	4569	> 2h	54	$\sim 2.10^6$	65.2	> 2h	134 000	> 2h	> 10 ⁷

Sample results from BONAMI & M.M. (2006)

(*) de GIVRY, LARROSA, MESEGUER, SCHIEX (2003), "Solving MAX-SAT as weighted CSP"

2.3. THE RANK-1 SHERALI-ADAMS RELAXATION

The linear representation of P_{RLT}^{1} is derived in a similar way, using the *same* reformulation step, but a slightly different type of *linearization* is applied to the resulting nonlinear system (II).

More specifically (II) is linearized by introducing the $\frac{n(n+1)}{2} + nm + m$ variables w_0^J ($\forall J \subseteq E \mid J \mid \leq 2$), w_j^\varnothing ($\forall J \in N \setminus E$) and $w_j^{\{i\}}$ ($\forall i \in E, \forall j \in N \setminus E$)

where:

$$\begin{cases} w_0^J \text{ is a substitute for } & F_{|J|}(J,\varnothing) & (\forall \, J \subset E, \big| \, J \big| \leq 2) \\ w_j^\varnothing & \text{is a substitute for } & x_j & (\forall \, j \in N \setminus E) \\ w_j^{\{\,i\,\}} & \text{is a substitute for } & x_j \, F_1(\big\{\, i\,\big\},\varnothing) & (\forall \, j \in N \setminus E, \forall \, i \in E) \\ \text{and it is assumed that } & w_0^\varnothing & = 1. \end{cases}$$

By introducing the notation:

$$\begin{split} W_0^{J,\left\{i\right\}} &= F_1\left(J,\left\{i\right\}\setminus J\right) & \forall \ i \in E, J \subseteq \left\{i\right\} \\ W_j^{J,\left\{i\right\}} &= x_j \ F_1\left(J,\left\{i\right\}\setminus J\right) & \forall \ i \in E, J \subseteq \left\{i\right\}, j \in N \end{split}$$

the nonlinear system (II) can be rewritten as:

$$(III) \begin{cases} \sum_{j=l}^{n+m} a^{j} W_{j}^{J,\{i\}} - b W_{0}^{J,\{i\}} \leq 0 & \forall i \in E, \forall J \subseteq \{i\} \\ W_{j}^{J,\{i\}} - W_{0}^{J,\{i\}} \leq 0 & \forall i \in E, \forall J \subseteq \{i\}, \ \forall j \in E \\ W_{j}^{J,\{i\}} \geq 0 & \forall i \in E, \forall J \subseteq \{i\}, \ \forall j \in N \\ W_{0}^{J,\{i\}} \geq 0 & \forall i \in E, \forall J \subseteq \{i\} \end{cases}$$

The *linearized* version of (II) in terms of the w variables (denoted (III)') is then deduced from (III) by carrying out the following substitutions:

$$W_0^{J,\{i\}} = \sum_{J \subset H \subset \{i\}} (-1)^{|H \setminus J|} w_0^H \quad \forall i \in E, \forall J \subseteq \{i\}$$
 (5)

(this yields
$$W_0^{\{i\},\{i\}} = W_0^{\{i\}}$$
 for $J = \{i\}$

and
$$W_0^{\emptyset, \{i\}} = W_0^{\emptyset} - W_0^{\{i\}} = 1 - W_0^{\{i\}}$$
 for $J = \emptyset$).

$$W_{j}^{J,\{i\}} = \sum_{J \subseteq H \subseteq \{i\}} (-1)^{|H \setminus J|} w_{0}^{H \cup \{j\}} \quad \forall i \in E, \forall J \subseteq \{i\}, \forall j \in E$$
 (6)

$$W_{j}^{J,\{i\}} = \sum_{J \subset H \subset \{i\}} (-1)^{|H \setminus J|} w_{j}^{H} \quad \forall i \in E, \forall J \subseteq \{i\}, \forall j \in N \setminus E$$
 (7)

As an immediate property of the above linearization we note the so-called wsymmetry * condition satisfied by the W variables in P^1_{RLT} :

$$\forall i \in E, \forall j \in E: \quad W_j^{\{i\},\{i\}} = W_i^{\{j\},\{j\}}$$
(8)

(both values being equal to $w_0^{\{i,j\}}$)

On the other hand it is easily seen that $P_{L\&P}^1$ is a relaxation of P_{RLT}^1 :

Proposition 1:
$$P_{RLT}^1 \subseteq P_{L\&P}^1$$

Proof:

Let \overline{w} denote a solution to the linearized system (III)' and $\overline{W} = (\overline{W}_j^{J,\{i\}})$ the values of the W variables corresponding to \overline{W} through (5) (6) (7).

Then $Z = \overline{W}$ is a solution to (II)' i.e. belongs to $P_{L\&P}^1$.

The following result shows that there is a simple relationship between $P_{L\&P}^1$ and P_{RLT}^1 .

Proposition 2

Let (II)" be the linear system deduced from (II) by adding all «symmetry» conditions of the form:

$$Z_{j}^{\{i\},\{i\}} = Z_{i}^{\{j\},\{j\}} \quad \forall i \in E, \forall j \in E.$$

Then (II)" is a linear representation of P_{RLT}^1 .

Proof: see Balas et al. (1993), Bonami & MX (2005).

QUESTION:

DOES THIS SIMPLE RELATIONSHIP EXTEND TO RANK ≥ 2 ?

TO INVESTIGATE THIS ISSUE WE WILL INTRODUCE A NEW HIERARCHY OF RELAXATIONS (DENOTED SRL*) :

$$\overline{P} \supseteq P^1_{SRL^*} \supseteq P^2_{SRL^*} \dots \supseteq P^n_{SRL^*} \equiv P^n_{RLT} \equiv P.$$

3. THE RANK-d SRL* RELAXATION FOR ARBITRARY d, AND CONNECTIONS WITH P_{RLT}^d AND $P_{L\&P}^d$

All three relaxations are obtained via linearization of the nonlinear system deduced from (1)-(3) by multiplication of each inequality by every possible d-factor : $\forall \ J^d \subset E, \ |\ J^d\ | = d, \ \forall \ J \subset J^d$:

$$\begin{cases} \sum_{j=1}^{n+m} a^{j} x_{j} F_{d}(J, J^{d} \setminus J) - b F_{d}(J, J^{d} \setminus J) \leq 0 & (9) \\ x_{j} F_{d}(J, J^{d} \setminus J) - F_{d}(J, J^{d} \setminus J) \leq 0 & \forall j \in \mathbb{E} \\ x_{j} F_{d}(J, J^{d} \setminus J) \geq 0 & \forall j \in \mathbb{N} \\ F_{d}(J, J^{d} \setminus J) \geq 0 & (12) \end{cases}$$

The rank-d RLT (Sherali-Adams) relaxation

The linear description of P_{RLT}^1 is obtained by linearizing (9)-(12) by introducing new variables w_0^J and w_i^J with the following interpretation :

$$\begin{cases} w_0^J \text{ is a substitute for } F_{|J|}(J,\varnothing) & \forall J \subseteq E, \ J \leq Min\left\{d+1,n\right\} \\ w_j^J \text{ is a substitute for } x_j F_{|J|}(J,\varnothing) & \forall j \in N \setminus E, \forall J \subseteq E, \left|J\right| \leq d \end{cases}$$
 (we agree to set : $w_0^\varnothing = F_0(\varnothing,\varnothing) = 1$; $w_0^{\left\{i\right\}} = x_i, \ \forall \ i \in E$; $w_j^\varnothing = x_j \quad \forall \ j \in N \setminus E$)

The linear system describing P^1_{RLT} is then obtained by carrying out the following substitution, $\forall J^d \subseteq E, |J^d| = d, \forall J \subseteq J^d$:

$$\begin{cases} x_{j} F_{d} (J, J^{d} \setminus J) \text{ is replaced with the expression: } & \sum_{J \subseteq H \subseteq J^{d}} (-1)^{\mid H \setminus J \mid} w_{0}^{H \cup \left\{ j \right\}} \ \forall \ j \in E \\ x_{j} F_{d} (J, J^{d} \setminus J) \text{ is replaced with the expression } & \sum_{J \subseteq H \subseteq J^{d}} (-1)^{\mid H \setminus J \mid} w_{j}^{H} \quad \forall \ j \in N \setminus E \\ F_{d} (J, J^{d} \setminus J) \text{ is replaced with the expression } & \sum_{J \subseteq H \subseteq J^{d}} (-1)^{\mid H \setminus J \mid} w_{0}^{H} \\ & \sum_{J \subseteq H \subseteq J^{d}} (-1)^{\mid H \setminus J \mid} w_{0}^{H} \end{cases}$$

The rank-d SRL* relaxation

The linear description of $P^d_{SRL^*}$ is obtained by linearizing the nonlinear terms in (9)-(12) by introducing new variables θ^J_0 and θ^J_i with the following interpretation:

$$\begin{cases} \theta_0^J \text{ is a substitute for } F_{|J|}(J,\varnothing) & \forall \, J \subseteq E, \big| J \big| \leq d \\ \theta_j^J \text{ is a substitute for } x_j \, F_{|J|}(J,\varnothing) & \forall \, j \in N \setminus J, J \subseteq E, \big| J \big| \leq d \end{cases}$$
 (we agree to set : $\theta_0^\varnothing = F_0(\varnothing,\varnothing) = 1$ and $\theta_j^\varnothing = x_j, \, \forall \, j \in N,$ moreover θ_j^J is identified with θ_0^J for $j \in J$)

The linear system describing $P^d_{SRL^*}$ is then obtained by carrying out the following substitutions, $\forall J^d \subseteq E, \ |\ J^d\ | = d, \ \forall\ J \subseteq J^d$:

$$\begin{cases} x_{j} F_{d}(J, J^{d} \setminus J) \text{ is replaced with the expression:} & \sum_{J \subseteq H \subseteq J^{d}} (-1)^{\mid H \setminus J \mid} \theta_{j}^{H} \quad \forall \ j \in N \\ F_{d}(J, J^{d} \setminus J) \text{ is replaced with the expression:} & \sum_{J \subseteq H \subseteq J^{d}} (-1)^{\mid H \setminus J \mid} \theta_{0}^{H} \end{cases}$$

DIFFERENCES BETWEEN SRL* AND RLT

- → RLT avoids using the variables w_j^H for $j \in E$ because the identification $w_j^H = w_0^{H \cup \{j\}}$ is carried out implicitly (note however that the variables w_j^H for all $j \in N \setminus E$ are required in RLT)
- \rightarrow By contrast SRL* involves all the variables θ_j^H , for all $j \in N \setminus H$ (even if $j \in E$) As a result for $j \in E$, θ_j^H and $\theta_0^{H \cup \left\{j\right\}}$ are allowed to take on distinct values.

Thus RLT uses fewer variables, as confirmed by the comparison in terms of # of variables :

DIFFERENCES (continued)

Another essential difference between SRL* and RLT is that, contrary to RLT,

SRL* features decomposable structure

Indeed in the rank d RLT closure there is only one variable associated with the pair

$$(j,\,J^d)$$
 when $j\in E\setminus J^d$ and $J^d\subseteq E$ which is : $w_0^{J^d\cup\{j\}}$

whereas, in rank d SRLT* there are d + 1 distinct variables associated with this pair,

namely all the variables
$$\theta_k^{\left[J^d \cup \{j\}\right] \setminus \{k\}}$$
 for $k \in J^d \cup \{j\}$

Each block in the rank d SRL* closure corresponds to a cardinality d subset $H \subseteq E$ and involves the subset of all variables θ_j^H having the same superscript H.

The generalized « symmetry » conditions

Consider the $P_{SRL^*}^d$ relaxation for the MIP set P expressed in terms of the θ_0^J and θ_j^J variables above.

Definition

For any positive integer $p \le d$ we call generalized « symmetry » conditions at rank p the set of equality constraints of the form :

$$\theta_{j}^{J} = \theta_{i}^{(J \setminus \{i\}) \cup \{j\}} \qquad \forall J \subset E, |J| = p, i \in J, j \in E \setminus J.$$

Observe that the validity of the above set of constraints with respect to P follows from the identity $x_j F_p(J, \emptyset) = x_i F_p((J \setminus \{i\} \cup \{j\}), \emptyset)$ (when p = |J|).

We denote S_p the set of all equality constraints expressing the generalized symmetry conditions at rank p.

Now, the following result shows a simple connection between the linear representation of P_{SRL*}^d and P_{RLT}^d :

Theorem: (M.M. & H.O. 2008)

The linear description of $P^d_{SRL^*}$ strengthened with S_d yields a linear description of P^d_{RLT} .

 $(P_{SRL^*}^d$ thus appears as a relaxation of P_{RLT}^d).

Remark

It can be shown (M.M. & H.O. 2008) that all the generalized « symmetry » conditions up to rank d-1 are implicitly satisfied by all θ vectors solving the linear description of $P_{SRL^*}^d$.

In view of this it is enough to include the constraints in S_d to ensure that all conditions in $S_1, S_2, ..., S_d$ are satisfied.

Now, an interesting question is : how does $P_{L\&P}^d$ relate to P_{SRL*}^d and/or P_{RLT}^d ?

It turns out that $P_{L\&P}^d \equiv P_{SRL^*}^d$ is only true for d = 1.

In other words, for $d \ge 2$, strengthening $P_{L\&P}^d$ by adding all « symmetry » conditions up to rank d is not enough to yield P_{RLT}^d .

Indeed it can be shown that $P^d_{SRL^*} \subseteq P^d_{L\&P}$ for all $d \ge 2$ with strict inclusion holding in the general case.

Example:

Consider the pure 0-1 set $P \subset \{0, 1\}^5$ defined by the three linear inequalities :

$$\begin{cases} 18x_1 + 15x_2 + 17x_3 + 5x_4 + 13x_5 \le 54 \\ 17x_1 + 22x_2 + 13x_3 + 9x_4 + 25x_5 \le 63 \\ 17x_1 + 19x_2 + 3x_3 + 7x_4 + 11x_5 \le 89 \end{cases}$$

It can be shown that in this case $P_{RLT}^2 \subset P_{SRL^*}^2 \subset P_{L\&P}^2$

for instance considering the objective function:

 $z = 1900 x_1 + 500 x_2 + 200 x_3 + 100 x_4 + 300 x_5$, to be maximized, the optimal values of the three relaxations are 2652.27, 2653.99, and 2668.1 respectively.

(Note that, in the above example, the $P_{SRL^*}^2$ bound significantly improves over the $P_{L\&P}^2$ bound).

A FEW PRELIMINARY COMPUTATIONAL EXPERIMENTS

We consider a series of multidimensional knapsack problems with n 0-1 variables and p inequality constraints for (n, p) ranging from (25, 20) to (50, 5):

- for each size, 5 randomly generated instances are solved.
- The Chu-Beasly (1998) random generation procedure is used.

Number of variables and rows in rank 2 L&P, SRL* and S&A relaxations :

Inst	Instance		&P	P_{SI}^2	RL*	$P_{S\&A}^2$		
n	m	nv	nc	nv	nc	nv	Nc	
25	20	31225	642400	7225	81600	2625	81600	
35	20	85715	157080	20265	209440	7175	209440	
40	10	127960	194220	30460	274560	10700	274560	
50	5	249950	341775	60075	504700	20875	504700	

Comparing strengths of rank 2 Lift-and-Project, SRL* and Sherali-Adams relaxations

Instance	Nbr int	Nbr	LP	MIP		$P_{L\&P}^2$		1	P_{SRL*}^2			$P^2_{S\&A}$	
	vars	rows	optimum	optimum	Optimum	time	gap	Optimum	time	gap	Optimum	time	gar
						(sec)	(%)	F	(sec)	(%)	- Printain	(sec)	(%)
mknap25-20-1	25	20	5267.23	4550.52	5092.31	15.37	24.41	5025.21	24.35	33.77	5000.05	38.50	37.2
mknap25-20-2	25	20	5518.78	4808.26	5318.28	12.94	28.22	5261.49	24.39	36.21	5238.14	46.19	39.5
mknap25-20-3	25	20	5514.51	4882.83	5345.26	15.78	26.79	5258.88	21.09	40.47	5234.73	40.23	44.2
mknap25-20-4	25	20	5124.31	4543.78	4936.32	22.13	32.38	4876.02	25.79	42.77	4850.14	41.05	47.2
mknap25-20-5	25	20	5463.80	4669.15	5292.61	12.71	21.54	5219.96	21.86	30.69	5195.32	43.69	33.7
mknap35-20-1	35	20	7474.18	6833.80	7374.71	63.26	15.53	7316.85	120.67	24.57	7297.53	424.64	27.5
mknap35-20-2	35	20	7423.12	6844.35	7293.34	99.57	22.42	7238.12	116.62	31.96	7214.38	405.30	36.0
mknap35-20-3	35	20	7540.20	7032.55	7419.73	80.19	23.73	7363.08	111.81	34.89	7340.73	443.21	39.5
mknap35-20-4	35	20	7865.69	7110.52	7712.40	92.07	20.30	7661.08	133.29	27.10	7640.63	490.50	29.8
mknap35-20-5	35	20	7460.34	6859.09	7318.78	59.96	23.54	7258.52	128.89	33.57	7237.11	425.60	37.
mknap40-10-1	40	10	8909.07	8487.67	8803.25	266.64	25.11	8765.02	174.64	34.18	8753.57	1480.32	36.9
mknap40-10-2	40	10	8473.43	8087.61	8414.31	155.06	15.32	8383.69	156.47	23.26	8369.33	1157.23	26.9
mknap40-10-3	40	10	9140.92	8702.34	9050.65	175.74	20.58	9002.66	134.49	31.52	8986.65	1339.67	35.
mknap40-10-4	40	10	8693.70	8276.43	8615.76	156.70	18.68	8574.76	186.70	28.50	8562.51	1249.36	31.4
mknap40-10-5	40	10	8950.21	8495.40	8850.56	273.93	21.91	8810.29	132.65	30.76	8798.76	1393.64	33.3
mknap50-5-1	50	5	11806.96	11505.21	11772.20	300.82	11.52	11762.21	190.51	14.83	11756.57	9714.17	16.7
mknap50-5-2	50	5	12262.04	11917.85	12201.18	370.16	17.68	12180.94	257.07	23.56	12175.98	11532.94	25.0
mknap50-5-3	50	5	11930.67	11703.91	11874.63	313.44	24.72	11852.02	264.50	34.69	11846.04	11551.98	37.3
mknap50-5-4	50	5	11725.95	11553.96	11692.77	619.62	19.29	11675.91	373.95	29.10	11668.50	10345.33	33.4
mknap50-5-5	50	5	11161.87	10815.27	11086.81	571.44	21.65	11058.60	318.50	29.79	11048.98	11253.49	32.

4. THE CASE OF LINEARLY CONSTRAINED PSEUDOBOOLEAN FUNCTION OPTIMISATION PROBLEMS

Let f be a pseudo-boolean function of degree d in n variables indexed in $E = \{1, 2, ..., n\}$, of the form :

$$F(\mathbf{x}) = c_0 + \sum_{\substack{J \subset E \\ |J| \le d}} c_J \left(\prod_{j \in J} \mathbf{x}_j \right)$$

where c_0 and c_J ($J \subset E$, $|J| \le d$) are given reals.

 $K \subseteq \mathbb{R}^n$ being a polyhedron (specified by a given set of linear equality / inequality system) we are interested in the following linearly constrained pseudo-boolean optimization problem :

(PBO)
$$\begin{cases} \text{Minimize } f(x) \\ \text{s.t.:} \\ x \in K \cap \{0,1\}^n \end{cases}$$

The above problem is classically reformulated as the following MIP with linear objective function:

$$(MIP-PBO) \begin{cases} \operatorname{Min} c_0 + \sum_{\substack{J \subset E \\ |J| \le d}} c_J u_J \\ \text{s.t.:} \\ \sum_{k \in J} x_k - u_J \le |J| - 1 \\ u_J \le x_j \\ x \in K \cap \{0,1\}^n \end{cases} \forall J \subseteq E, |J| \le d, j \in J$$

The linear relaxation ($\overline{MIP-PBO}$) of the above is obtained by replacing $x \in K \cap \{0, 1\}^n$ with $x \in K \cap [0, 1]^n$.

Then we have:

Proposition (M.M. & H.O. 2008)

For any integer $k \le d$, both rank k relaxations $P_{SRL^*}^k$ and P_{RLT}^k of (MIP-PBO) coincide.

[In the special case d = 2 (quadratic pbf optimization) the coincidence between P_{RLT}^1 and $P_{L\&P}^1$ was already pointed out in Bonami & Mx (2006)]

Moreover, it can be shown (M.M. & H.O. 2008) that the presence of all constraints of the form :

$$\begin{cases} \sum_{k \in J} x_k - u_J \le |J| - 1 & \forall J \subseteq E, |J| \le d \\ u_J \le x_j & \forall J \subseteq E, |J| \le d, j \in J \end{cases}$$

characterizes those MIPs for which P_{SRL*}^d and P_{RLT}^d coincide.

5. PRELIMINARY COMPUTATIONAL EXPERIMENTS ON LINEARLY CONSTRAINED PBO

We consider the problem of minimizing a quadratic submodular pseudoboolean function in n variables under a double-sided constraint of the form :

$$\alpha n \le \sum_{j=1}^{n} x_j \le (1-\alpha) n$$

(with α chosen in the range $[0, \frac{1}{2}]$).

This problem is known to be NP-hard (GAREY & JOHNSON, 1979, p. 210).

Comparing strengths of rank 2 SRL*, RLT and L&P relaxations for MIN-QPBF with cardinality constraints (0.4 n $\leq \Sigma$ x_i \leq 0.6 n)

			#				L&P			SRL*			RLT	
[α-β]	Instance	#	quad	MIP	LP	Opt.	Time	Gap	Opt.	Time	Gap	Opt.	Time	Gap
		var	terms	opt	relax	Val.	(sec.)	closed	Val.	(sec.)	closed	Val.	(sec.)	closed
								(%)			(%)			(%)
	15-1	15	78	734	00.0	734	111	100	734	26	100	734	25	100
0.4-	15-2	15	78	686	0.00	686	75	100	686	23	100	686	23	100
0.6	15-3	15	78	818	0.00	818	108	100	818	24	100	818	23	100
	15-4	15	78	719	0.00	719	68	100	719	24	100	719	24	100
	15-5	15	78	619	0.00	619	68	100	619	24	100	619	23	100
	25-1	25	150	1238	0.00	1209.70	1413	97.7	1210	327	97.7	1210	312	97.7
	25-2	25	150	1118	0.00	1118	1061	100	1118	1060	100	1118	1054	100
0.4-	25-3	25	150	1148	0.00	1148	1206	100	1148	521	100	1148	1019	100
0.6	25-4	25	150	1297	0.00	1256.60	1492	96.9	1256.8	335	96.9	1256.8	324	96.9
	25-5	25	150	1309	0.00	1239.34	1293	94.7	1239.6	673	94.7	1239.6	680	94.7
	25.1	25	150	1279	0.00	1263.66	1695	98.8	1264.3	244	98.8	1264.3	757	98.8
	25.2	25	150	1207	0.00	1203.02	2275	99.7	1203.8	868	99.7	1203.8	1380	99.7
0.45-	25-3	25	150	1264	0.00	1225.5	1750	97	1226	686	97	1226	759	97
0.55	25-4	25	150	1358	0.00	1310.63	1633	96.5	1311.2	234	96.5	1311.2	838	96.5
	25-5	25	150	1385	0.00	1294.32	1593	93.4	1294.7	496	93.5	1294.7	909	93.5

Rank-2 SRL* relaxation for MIN-QPBF instances with cardinality constraints

Instance	Nbr nodes	Nbr edges	α	β				
					Optimum	Time (sec.)	Gap (%)	Time (sec)
Mincut-45-50-1.rdy	45	495	0.4	0.6	7741.84	0:06:18	87.36	0:16:50
Mincut-45-50-2.rdy	45	495	0.4	0.6	7788.73	0:00:47	88.70	0 :16 :49
Mincut-45-50-3.rdy	45	495	0.4	0.6	8129.05	0:00:47	87.47	0 :16 :49
Mincut-45-50-4.rdy	45	495	0.4	0.6	7634.36	0:03:07	85.96	0:16:50
Mincut-45-50-5.rdy	45	495	0.4	0.6	8147.92	0:05:41	87.41	0:16:49
Mincut-55-25-1.rdy	55	371	0.4	0.6	4926.36	0:02:24	87.30	0 :46 :21
Mincut-55-25-2.rdy	55	371	0.4	0.6	4967.47	0:02:16	87.39	0 :46 :19
Mincut-55-25-3.rdy	55	371	0.4	0.6	4767.53	0:02:15	89.95	0 :46 :19
Mincut-55-25-4.rdy	55	371	0.4	0.6				
Mincut-55-25-5.rdy	55	371	0.4	0.6	4760.89	0:02:36	92.27	0 :46 :19

RANK 2 SRL* FOR QUADRATICALLY CONSTRAINED PROBLEMS

(2 quadratic constraints + cardinality constraints)

Instance	$[\alpha, \beta]$	CPLEX	K BRANC	CH & BO	UND	SRL*				
	-	best bound	Best int sol	Time (sec.)	# nodes	Opt. Val.	Time (sec.)	Gap closed (%)		
45.1	[0.4,06]	6421.5	8089	3600	180757	6987.39	250	86.4		
45.2	[0.4,06]	6845.5	7539	3600	150668	6973.74	298	92.5		
45.3	[0.4,06]	6468.26	7759	3600	185655	6948.02	113	89.5		
45.4	[0.4,06]	6709.2	8103	3600	179806	7061.34	55	87.1		
45.5	[0.4,06]	7123	8549	3600	164323	7505.94	64	87.8		
55.1	[0.4,06]	7500.71	12516	7200	144511	10208.99	152	81.6		
55.2	[0.4, 06]	7094.05	11906	7200	193971	9761.26	152	82		
55.3	[0.4, 06]	8030.00	12698	7200	154964	10424.08	168	82.1		
55.4	[0.4, 06]	8228.55	13314	7200	194101	10792.79	488	81.1		
55.5	[0.4,06]	8364.53	13189	7200	153789	10850.53	167	82.3		