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1. INTRODUCTION

We consider here the mixed 0-1 integer set P corresponding to the set of feasible

solutions to :

ntm

JZZI alx;<b (1)
(I) ngl VJEE:{LZ,,H} (2)
—XjSO ‘v’jeN:{l,Z,...,n+m} (3)

Xje{O,l}VjeE (4)

Where : a' € R°(V je N), b € R® (c=number of constraints (1))

In the above, there are n + m variables, n 0-1 integer variables and m real variables

subject to non negativity conditions.

The linear relaxation, denoted ﬁ, 1s the polyhedron defined by (1)-(3).



We focus here on two well-known hierarchies of relaxations for P namely :
- the LIFT-AND-PROJECT (or disjunctive) hierarchy ;

- the RLT hierarchy (Sherali & Adams 1990)

and we investigate connections between these two hierarchies.



As an interesting outcome of this investigation, it will be seen that a new
hierarchy arises in a natural way : the so-called SRL* hierarchy. Some
potentially interesting features of SRL* (in particular w.r.t. computational

1ssues) will be pointed out.



d-factors :

For any integer d such that 1 < d <n, we call d-factor associated with the d-element
subset JY ¢ E any degree-d polynomial Fy (J, J*\J) of the form

Fe(J,J9\)=TIIx. I (1-x.)
jel Jiedy

With J < J4.



2. CONNECTION BETWEEN RANK-1 LIFT-AND-PROJECT AND RANK-1
RLT RELAXATIONS
(See BALAS, CERIA & CORNUEJOLS 1993, BONAMI & MX 2005)

2.1. THE RANK-1 LIFT-AND-PROJECT RELAXATION

1
The linear representation of PL &P 1s derived from(1)-(3) as follows.

Each constraint out of the system (1)-(3) gives rise to 2 n (nonlinear) constraints :

- one for each 0-1 variable x; (1 € E), obtained by multiplying both handsides by the
factor F; ({1}, D) =x;

- one for each 0-1 variable x; (1 € E) obtained by multiplying both handsides by the
factor F, (&, {i})=1 —x,.

The result of this reformulation 1s a nonlinear system (II) composed of a set of

quadratic inequalities.



The nonlinear system (II) is then linearized by introducing the 2n(n+m+1) variables

ipti) {iblip _elil _o.lil

Z, ,Zj , L, ,Zj i=1,...,n;j=1, ... n+ m) where :

Z. is a substitute for x; F; ({1}, 9)

i |
Z, is a substitute for F; (9, {i})

0,1 ]
Z, is a substitute for x; F; (9, {i})



1
The resulting linearized system defining P o, 1s :

n+m

jZ:lan?{i}—b zh1<0 VieE, VIic|i)
zH -z <o VjeE,VieE,VIc|i)
A0) oz > 0 Z5 >0 VieN,VieEVIc|il
Zhslil 70 0o VieE
z\H oy 72 =x VieN

We note that in the above linear representation, for any pair1 € E, j € E, 1 # j both

B G

variables Zj1 and Z formally correspond to the product x;x; but they have to be

considered as distinct variables (i.e. they are not requested to take on equal values).



0,1

yO,l Yo y1,1 ygl yo,z yz,z yo,3 y3,3
-1 0 -1 0
0 1 0 1
A B0 0
0 A | bt
-1 -1
-1




2.2. AN APPLICATION TO MAX-2-SAT PROBLEMS

Let F be a 2-SAT formula in CNF form involving n Boolean variables o, o, ..

and m clauses
C= C1 N\ C2 N\ C3

Where C, isthe set of clauses of the form (o v @) (1<))
C2 113 113 113 (al V. (X:J) ( 1 iJ)
C3 (14 (14 (14 (al\/ a]) ( i <j)
A natural formulation of MAX-2-SAT as a 0-1 MIP 1s :
m
Min Z Zg
s=1
S.t.:
(Mzs) —OLi—OLj—ZSS—l VSECI
oci—ocj—ZSSO VseC,
ai+aj—zs£1 VseCy
ae{0,1]%,z€l0,1]™

The computational experiments show that for (M2S) the relaxation provided by P

.5 Op

1
L&P

1s fairly strong and makes possible the efficient solution of fairly large problems.



CPLEX 9.0 Iterated Lift & Project | TOOLBAR(*)
# # 1 Sol # Sol Best # Sol # , #

var clauses | OP! Pl time nodes | time pg,und Nodes Bound Time Dodes Time 5 des
75 525 61 | 585 39 49 115.9 10° 473 50.8 1562 57 ~10°
75 525 65 | 609 57 275 137 >10° 45 733 5289 | 111 2.210°
75 550 | 70 | 65.7 62.1 230 | 624 ~5.10°| 47.2 1416 11176 | 323 7.1.10°
75 600 | 751|705 63.6 245 602 ~5.10° | 53 758 4673 | 249 5.710°
100 700 86 | 79.9 155 763 | >2h  80.5 ~5.10°| 552 423 39255 | >2h >10’
150 850 86 | 79.2 336 990 | >2h  62.5 ~2.10°| 584 7200 ~3.10° |>2h >10’
150 850 85 |1 79.3 262 567 | >2h 622 ~3.10°| 60.1 1959 92025 | >2h >10’
200 1000 | 94 | 83.8 3030 13700 | >2h 555 ~10°| 623 >2h 223000| >2h >10’
200 1000 | 96 | 859 4189 18725 — — — 59.7  >2h 190000 | >2h > 10’
200 1000 | 92 | 833 1150 4569 | >2h 54  ~2.10°] 652 >2h 134000 >2h >10’

Sample results from BONAMI & M.M. (2006)

(*) de GIVRY, LARROSA, MESEGUER, SCHIEX (2003), “Solving MAX-SAT as weighted CSP”




2.3. THE RANK-1 SHERALI-ADAMS RELAXATION

1
The linear representation of Py . 1s derived in a similar way, using the same

reformulation step, but a slightly different type of linearization is applied to the
resulting nonlinear system (II).

More specifically (II) 1s linearized by introducing the H(HTH)+ nm+m

variables wy (VI E 7] <2, w? (VJ eN\E)
and wi'/ (Vi e E VjeN\E)

where :
w) is a substitute for F; (J,9) (VICE,|J[£2)
W? is a substitute for X; (VJeN\E)
ng} is a substitute for X ({i},@) (V]JeN\E,VieE)

and it 1s assumed that WO® = 1.



By introducing the notation :
W =F, @, {i}\]) ViekE, Jc (i
Wh=x F (0, {i}\J)  VieEJc{i,jeN

J

the nonlinear system (II) can be rewritten as :

n+m .

2ol Wil-bwplli<o vicEvicli]
L) _wilil VieE,VJc|i{, VjeE
am whtowi i <o c{if, V]
wllilso VieE,VIc{i}, VjeN
P
11 VieE,V]cii
wi >0 ieE,vIc{i]




The linearized version of (II) in terms of the w variables (denoted (III)’) is then

deduced from (III) by carrying out the following substitutions :

wi i = }(—I)H\JWOH VieE,VJc{i (5)

JgHg{i
(this yields W({) RARRE ng | for J = {1}

and Wg)’{i}ng)—Wéi}Zl—wi)i}forJ=®).

whiil = JgHg{i}(—l)H”wg“’{j} VieE VIc{i},V]jecE 6)

whiil = {i}(—l)H”w? VieE,VJIc{i},VjeN\E (7)



As an 1mmediate property of the above linearization we note the so-called
« symmetry » condition satisfied by the W variables in PII{LT ;

VieEVjeE: W= wlitil (8)

(both values being equal to wi) b })



On the other hand it is easily seen that P| ., is a relaxation of Py,  :

" . pl 1
Proposition 1: Ppy 1+ € P ¢

Proof :

: : : — —J, 11
Let w denote a solution to the linearized system (III)’ and W = (Wj’{ 1}) the

values of the W variables corresponding to W through (5) (6) (7).

Then Z = W 1s a solution to (II)’ 1.e. belongs to Pi &P



1

The following result shows that there is a simple relationship between Pi &p and Pp, 1.

Proposition 2
Let (II)”” be the linear system deduced from (II)’ by adding all « symmetry »

conditions of the form :

z\ M=zl Ml vieE VjeE

Then (I)’’ 1s a linear representation of PELT.

Proof : sece BALAS et al. (1993), BONAMI & MX (2005).

QUESTION :
DOES THIS SIMPLE RELATIONSHIP EXTEND TO RANK > 2 ?



TO INVESTIGATE THIS ISSUE WE WILL INTRODUCE A NEW HIERARCHY
OF RELAXATIONS (DENOTED SRL¥*) :

5 1 2 _
PP Popy = Ppi 1 =P

n
SRL* = ..DOP

SRL*



3. THE RANK-d SRL* RELAXATION FOR ARBITRARY d, AND
CONNECTIONS WITH P, + AND P?.

All three relaxations are obtained via linearization of the nonlinear system deduced

from (1)-(3) by multiplication of each inequality by every possible d-factor :

VICE, |1¢=d, vIcJ:

n+m .

JZZI a'x. F; (J,J9\)=bF, (J,J9\J) <0 9)
xjFd(J,Jd\J)—Fd(J,Jd\J)SO V]€E (10)
x.F, (J,J9\0)=0 V]jeN 1D

] d
F,(J,JN"\1)>0 (12)




The rank-d RLT (Sherali-Adams) relaxation

The linear description of PllzLT is obtained by linearizing (9)-(12) by introducing new

variables Wg) and WJJ- with the following interpretation :

wj isasubstitute forF (J %)) VICE, JSMin{d+1,n}

W 1sasubst1tutef0rx F |(J @) VjeN\E,VIcCE, J‘Sd

(we agree to set : WO FO(Q D)y=1; W{O}_Xi,ViEE;Wj@:Xj Ve N\E)

The linear system describing PllzLT is then obtained by carrying out the following

substitution, V J* c E, | J¢ | =d, VIcJ:
X Fy (J,J9\1)is replaced with the expression:: 2 ( 1) H\| HU{ ) VjeE
JCHCJ
X, F,(J,] 4\ J)is replaced with the expression 2 ( 1) Y ‘ VijeN\E
JgHgJ
d. ... : . | H\J \ H
F q (J,J \J)isreplaced with the expression 2 S (-1 W,

JcHCc]



The rank-d SRL* relaxation

The linear description of PSRL* 1s obtained by linearizing the nonlinear terms in (9)-

(12) by introducing new variables Og) and GJJ. with the following interpretation :

Og)isasubstituteforlﬂﬂ(J,@) VICE,|J|<d

OJJ- is a substitute for x; F|J|(J,@) VjeN\],JcE,

(we agree to set : OOQ) =Fy(0,0)=1 and 6? =X, V ] € N, moreover GJJ- 1s 1dentified
with 6{, forj e J)

J|<d

The linear system describing PSRL* 1s then obtained by carrying out the following
substitutions, VI'C E, | 1| =d, v I < J¢:

X Ky (J, 14\ J)is replaced with the expression: 2 d(— 1) H| 9? VjeN
JcHCcJ

F,(J,] 4\ J)is replaced with the expression: J C%C y (-1 HV| Ggl




DIFFERENCES BETWEEN SRL* AND RLT

— RLT avoids using the variables WJH for j € E because the 1dentification

wh = Wi
] 0

(note however that the variables w? for all j € N \E are required in RLT)

1s carried out implicitly

— By contrast SRL* involves all the variables G)JH, forallj e N\H (evenifj € E)

As aresult forj € E, 9? and Oé{u{j | are allowed to take on distinct values.

Thus RLT uses fewer variables, as confirmed by the comparison in terms of
# of variables :

min {d+1,n} d d d
RLT: X (1)+m 2 (1] SRL*: 2 (1)+ 2 n+m—k) (1

k=1

T T T T
#wp)  (#w)) (#0p)  (#6)



DIFFERENCES (continued)
Another essential difference between SRL* and RLT 1s that, contrary to RLT,
SRL* features decomposable structure

Indeed in the rank d RLT closure there is only one variable associated with the pair
0, Jd) when ) € E \J4 and J4 c E which s : Wg i

whereas, in rank d SRLT* there are d + 1 distinct variables associated with this pair,

(Jdu{j}J\{k}

L fork eJ4U )

namely all the variables O

Each block 1n the rank d SRL* closure corresponds to a cardinality d subset H C E and

involves the subset of all variables GJH having the same superscript H.



The generalized « symmetry » conditions

Consider the PSRL* relaxation for the MIP set P expressed in terms of the O(J) and GJJ.

variables above.
Definition
For any positive integer p < d we call generalized « symmetry » conditions at rank p

the set of equality constraints of the form :

eJJ:ei(J\{i})U{j} vV JCE,

Jl=p,iel,je E\J.

Observe that the validity of the above set of constraints with respect to P follows from

the identity x; F, (J, @) =x; F, ((7\ {i} U {j}), @) (whenp=|J]).

We denote S, the set of all equality constraints expressing the generalized symmetry
conditions at rank p.

Now, the following result shows a simple connection between the linear representation

d d .
of PSRL* and Prir:



Theorem : (M.M. & H.O. 2008)

The linear description of PSRL* strengthened with S, yields a linear description of

d
PRLT :

(P§

. d
gL+ thus appears as a relaxation of Py, ;).

Remark

[t can be shown (M.M. & H.O. 2008) that all the generalized « symmetry » conditions

up to rank d-1 are implicitly satisfied by all 0 vectors solving the linear description of

d
Porps-
In view of this it is enough to include the constraints in S4to ensure that all conditions

In S, S,, ..., Sqare satisfied.



. . . < d d d
Now, an interesting question 1s : how does P| ¢, relate to Py, . and/or Py ?

d _pd _
It turns out that P . , = Pg,, . IS only true for d = 1.

In other words, for d > 2, strengthening PS &p 0y adding all « symmetry » conditions up
to rank d 1s not enough to yield PﬁLT.

Indeed it can be shown that PSRL* - PS &p for all d = 2 with strict inclusion holding in

the general case.



Example :

Consider the pure 0-1 set P — {0, 1}° defined by the three linear inequalities :
18x,+15x +17x3 +5X4 +13x.<54

| 2 5~
17X1+22X2+13x3+9X4+25X5£63

17x1+19x2+3x3+7X4+11X5£89

. . 2 2 2
It can be shown that in this case Py € Pépi« € Pl gp

for instance considering the objective function :
z=1900 x; + 500 x, + 200 x5 + 100 x4 + 300 x5, to be maximized, the optimal values

of the three relaxations are 2 652.27, 2 653.99, and 2 668.1 respectively.

(Note that, in the above example, the PS2RL* bound significantly improves over the

P’ bound).



A FEW PRELIMINARY COMPUTATIONAL EXPERIMENTS

We consider a series of multidimensional knapsack problems with n 0-1 variables and
p inequality constraints for (n, p) ranging from (25, 20) to (50, 5) :
- for each size, 5 randomly generated instances are solved.

- The Chu-Beasly (1998) random generation procedure 1s used.

Number of variables and rows in rank 2 L&P, SRL* and S&A relaxations :

Instance PI%&P PszRL* Psz&A
n m nv nc nv nc nv Nc
25 20 31225 | 642400 7225 81600 2625 81600
35 20 85715 157080 | 20265 | 209440 7175 209440
40 10 127960 | 194220 | 30460 | 274560 | 10700 | 274560
50 5 249950 | 341775 | 60075 | 504700 | 20875 | 504700




. Comparing strengths of rank 2 Lift-and-Project, SRL* and Sherali-Adams relaxations

Instance Nbrint Nbr LP MIP Plyp Pinr, Pl
vars rows optimum optimum

Optimum  time  gap Optimum  time gap Optimum time gap
(sec) (%) (sec) (%) (sec) (%)
mknap25-20-1 25 20  5267.23  4550.52 5092.31 1537 24.41 5025.21 2435 33.77 5000.05 38.50 37.28
mknap25-20-2 25 20 5518.78  4808.26 5318.28 12.94 28.22 5261.49 24.39 36.21 5238.14 46.19 39.50
mknap25-20-3 25 20 5514.51 4882.83 5345.26 15,78 26.79 5258.88  21.00 40.47 5234.73 40.23 44.29
mknap25-20-4 25 20 5124.31 4543.78 4936.32 22.13 3238 4876.02 25.79 42.77 4850.14 41.05 47.23
mknap25-20-5 25 20 5463.80  4669.15 5202.61 1271 21.54 5219.96 21.86 30.69 5195.32 43.69 33.79
mknap35-20-1 35 20 747418 6833.80 737471  63.26 15.53 7316.85 120.67 24.57 7297.53 424.64 27.58
mknap35-20-2 35 20 7423.12 684435  7293.34 99.57 2242 7238.12 116.62 31.96 7214.38  405.30 36.07
mknap35-20-3 35 20 7540.20  7032.55 7419.73 80.19 23.73 7363.08 111.81 34.89 7340.73 443.21 39.29
mknap35-20-4 35 20 7865.69 T7110.52 771240 92.07 20.30 7661.08 133.29 27.10 7640.63  490.50 29.80
mknap35-20-5 35 20 7460.34  6859.09 7318.78 59.96 23.54 7258.52 128.89 33.57 7237.11 425.60 37.13
mknap40-10-1 40 10  8809.07 8487.67 880325 266.64 25.11 8765.02 174.64 34.18 8753.57  1480.32 36.90
mknap40-10-2 40 10 B473.43  8087.61 8414.31 155.06 15.32 8383.69 156.47 23.26 8369.33  1157.23 26.98
mknap40-10-3 40 10 9140.92  B702.34 9050.65 175.74 20.58 9002.66 134.49 31.52 8986.65 1339.67 35.17
mknap40-10-4 40 10 8693.70  8276.43 8615.76 156.70 18.68 8574.76 186.70 28.50 8562.51 1249.36 31.44
mknap40-10-5 40 10 8950.21 849540  8850.56 273.93 21.91 8810.29 132.65 30.76 8798.76  1393.64 33.30
mknap50-5-1 50 5 11806.96 11505.21 11772.20 300.82 11.52 11762.21 190.51 14.83 11756.57 9714.17 16.70
mknap§0-5-2 50 5 12262.04 11917.85 12201.18 370.16 17.68 12180.94 257.07 23.56 12175.98 11532.94 25.00
mknapb0-5-3 50 5 11930.67 11703.91 11874.63 313.44 24.72 11852.02 264.50 34.69 11846.04 11551.98 37.32
mknap50-5-4 50 5 11725.95 11553.96 11692.77 619.62 19.29 11675.91 373.95 29.10 11668.50 10345.33 33.40
mknapb0-5-5 50 5 11161.87 10815.27 11086.81 571.44 21.65 11058.60 318.50 29.79 11048.98 11253.49 32.57




4. THE CASE OF LINEARLY CONSTRAINED PSEUDOBOOLEAN
FUNCTION OPTIMISATION PROBLEMS

Let f be a pseudo-boolean function of degree d in n variables indexed in E= {1, 2, ..., n},
of the form :

Fx)y=cot 2, ¢ (jl;IJ X;)
‘J‘Sd

where cpand c; (J < E, | | < d) are given reals.



K < R" being a polyhedron (specified by a given set of linear equality / inequality
system) we are interested in the following linearly constrained pseudo-boolean

optimization problem :

Minimize f (x)
(PBO) {s.t.:
xeKnM { 0,1 }n




The above problem is classically reformulated as the following MIP with linear

objective function :

MincO+JCz]:E Cyu,
‘J‘Sd
S.t.:
(MIP-PBO) | 2 xk—uJS‘J‘—l VIcE, J‘Sd
kel
uy <X, VICE,|J|<d,jel
xeKn{0,1]

The linear relaxation (MIP—-PBO) of the above is obtained by replacing
x € Kn {0, 1}" withx € KN [0, 17"



Then we have :

Proposition (M.M. & H.O. 2008)

For any integer k < d, both rank k relaxations Pé‘RL* and PELT of (MIP-PBO) coincide.

[In the special case d = 2 (quadratic pbf optimization) the coincidence between PlliLT

and Pi &p Was already pointed out in Bonami & Mx (2006)]



Moreover, it can be shown (M.M. & H.O. 2008) that the presence of all constraints of

the form :

) Xk—uJS‘J‘—l VIcE|J<d
kel

uJSXj VIcCE, |J<d,jel]

: . d d L
characterizes those MIPs for which Poprs and P, . coincide.



5. PRELIMINARY COMPUTATIONAL EXPERIMENTS ON LINEARLY
CONSTRAINED PBO

We consider the problem of minimizing a quadratic submodular pseudoboolean

function in n variables under a double-sided constraint of the form :

on < lejﬁ(l—oc)n
=

(with o chosen 1n the range [0, %]).

This problem is known to be NP-hard (GAREY & JOHNSON, 1979, p. 210).



Comparing strengths of rank 2 SRL*, RLT and L&P relaxations for MIN-QPBF
with cardinality constraints (0.4 n < X x; < 0.6 n)

# L&P SRL* RLT
[o-B] | Instance | # | quad | MIP | LP Opt. | Time | Gap Opt. | Time | Gap Opt. | Time | Gap
var | terms | opt | relax | Val. (sec.) | closed | Val. | (sec.) | closed | Val. | (sec.) | closed
(%) (%) (%)
15-1 15 78 734 10.00 | 734 111 100 734 26 100 734 25 100
0.4- 15-2 | 15| 78 686 | 0.00 686 75 100 686 23 100 686 23 100
0.6 15-3 15| 78 818 | 0.00 818 108 100 818 24 100 818 23 100
15-4 | 15| 78 719 | 0.00 719 68 100 719 24 100 719 24 100
15-5 15| 78 619 | 0.00 619 68 100 619 24 100 619 23 100
25-1 | 25| 150 |1238| 0.00 | 1209.70 | 1413 | 97.7 1210 | 327 97.7 1210 | 312 97.7
25-2 | 25| 150 | 1118 | 0.00 | 1118 | 1061 100 1118 | 1060 | 100 1118 | 1054 100
0.4- 25-3 | 25| 150 | 1148 | 0.00 | 1148 | 1206 100 1148 | 521 100 1148 | 1019 100
0.6 25-4 | 25| 150 | 1297 | 0.00 | 1256.60 | 1492 | 96.9 | 1256.8 | 335 96.9 | 1256.8 | 324 96.9
25-5 | 25| 150 [1309| 0.00 | 1239.34 | 1293 | 94.7 |1239.6 | 673 94.7 |1239.6 | 680 94.7
25.1 | 25| 150 | 1279 | 0.00 | 1263.66 | 1695 | 98.8 | 1264.3 | 244 98.8 | 1264.3 | 757 98.8
252 | 25| 150 | 1207 | 0.00 | 1203.02 | 2275 | 99.7 | 1203.8 | 868 99.7 |1203.8 | 1380 | 99.7
0.45-1 953 | 25| 150 | 1264 | 0.00 | 1225.5 | 1750 | 97 | 1226 | 686 | 97 | 1226 | 759 | 97
0.55 25-4 | 25| 150 | 1358 | 0.00 | 1310.63 | 1633 | 96.5 |1311.2 | 234 96.5 | 1311.2| 838 96.5
25-5 | 25| 150 | 1385| 0.00 |1294.32 | 1593 | 93.4 | 1294.7 | 496 93.5 | 1294.7 | 909 93.5




Rank-2 SRL* relaxation for MIN-QPBF instances with cardinality constraints

Instance Nbrnodes | Nbredges SRL*
Optimum Time (sec.) | Gap (%) Time (sec)

Mincut-45-50-1.rdy | 45 495 0.4 0.6 7741.84 0:06:18 87.36 0:16:50
Mincut-45-50-2.rdy | 45 495 0.4 0.6 7788.73 0:00:47 88.70 0:16:49
Mincut-45-50-3.rdy | 45 495 0.4 0.6 8129.05 0:00:47 87.47 0:16:49
Mincut-45-50-4.rdy | 45 495 0.4 0.6 7634.36 0:03:07 85.96 0:16:50
Mincut-45-50-5.rdy | 45 495 0.4 0.6 8147.92 0:05:41 87.41 0:16:49
Mincut-55-25-1.rdy | 55 371 0.4 0.6 4926.36 0:02:24 87.30 0:46 :21
Mincut-55-25-2.rdy | 55 371 0.4 0.6 4967.47 0:02:16 87.39 0:46:19
Mincut-55-25-3.rdy | 55 371 0.4 0.6 4767.53 0:02:15 89.95 0:46:19
Mincut-55-25-4.rdy | 55 371 0.4 0.6

Mincut-55-25-5.rdy | 55 371 0.4 0.6 4760.89 0:02:36 92.27 0:46:19




RANK 2 SRL* FOR QUADRATICALLY CONSTRAINED PROBLEMS

(2 quadratic constraints + cardinality constraints)

Instance | [a, B] CPLEX BRANCH & BOUND SRL*
Best int Time Time Gap
best bound sol (sec.) #nodes | Opt. Val. (sec.) closed

(%)
45.1 [0.4, 06] 6421.5 8089 3600 180757 | 6987.39 250 86.4
45.2 0.4, 06] 6845.5 7539 3600 150668 | 6973.74 298 92.5
45.3 [0.4,06] 6468.26 7759 3600 185655 | 6948.02 113 89.5
45.4 [0.4, 06] 6709.2 8103 3600 179806 | 7061.34 55 87.1
45.5 [0.4,06] 7123 8549 3600 164323 | 7505.94 64 87.8
55.1 [0.4,06] 7500.71 12516 7200 144511 | 10208.99 152 81.6
55.2 [0.4,06] 7094.05 11906 7200 193971 | 9761.26 152 82
55.3 [0.4,06] 8030.00 12698 7200 154964 | 10424.08 168 82.1
55.4 [0.4,06] 8228.55 13314 7200 194101 | 10792.79 488 81.1
55.5 [0.4,06] 8364.53 13189 7200 153789 | 10850.53 167 82.3






