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BOUNDING THE PROBABILITY OF THE UNION OF
EVENTS BY THE USE OF AGGREGATION AND
DISAGGREGATION IN LINEAR PROGRAMS

Andras Prékopa Béla Vizvari Gabor Regos Linchun Gao

Abstract. Given a sequence of n arbitrary events in a probability space, we as-
sume that the individual probabilities as well as some or all joint probabilities of
up to m events are known, where m < n. Using this information we give lower
and upper bounds for the probability of the union. The bounds are obtained as
optimum values of linear programming problems or objective function values corre-
sponding to feasible solutions of the dual problems. If all joint probabilities of the
k-tuples of events are known, for k not exceeding m, then the LP is the large scale
Boolean probability bounding problem. Another type of LP is the binomial moment
problem, where we assume the the knowledge of some of the binomial moments of
the number of events which occur. The two LP’s can be obtained from each other
by aggregation/disaggregation procedures. In this paper we define LP’s which are
obtained by partial aggregation/disaggregation from these two LP’s. This way we
can keep the size of the problem low but can produce very good bounds in many
cases. One of our new results is a generalization of Hunter’s upper bound for the
probability of the union of events. Numerical examples are presented.
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1 Introduction

The problem to compute or approximate the probability of the union of events, i.e., the event
that at least one of them occurs, frequently comes up in applications of probability theory,
statistics, reliability theory, stochastic programming, and other stochastic sciences. Typical
example is the reliability problem of communication networks, where the arcs randomly
work or fail and we want to compute or approximate the node-to-node or the all terminal
reliability of the system. The former one means the probability that there exists at least
one path, connecting two designated nodes such that all arcs in it are working. The latter
one looks for the probability of the existence of at least one spanning tree consisting of all
working arcs. For descriptions of a number of applications the reader is referred to Barlow
and Proschan (1975), N.H. Roberts et al. (1981), F. Roberts et al. (eds., 1991).

Sometimes we want to compute or approximate the probability of the intersection of
events. In this case the formula P(4; N..NA4,) = 1 — P(A4,U..UA,) can be used
along with a method to compute or approximate the probability of the union. In probability
theory and statistics we are frequently facing with the problem to approximate values of
the joint probability distribution function of some random variables X, ..., X,,. This means
that the probability of the joint occurence of the events X; < z;, ¢ = 1,...,n has to be
approximated. Similar problem comes up in stochastic programming, where constraints of
the type P(gi(z) > X;, i = 1,..,n) > p are formulated and the solution methods
require the subsequent evaluation of the constraining function values (see Prékopa (1995)).
As multivariate probability distributions are more and more important in many applications,
more and more emphasis is on finding good approximation methods for the probability of
the union.

A classical formula, that gives the probability of the union of events A, ..., A, in terms
of the intersection probabilities of the same events, is the inclusion-exclusion formula.

P(A1UUAn) - Sl - Sz —|— —|— (_1)11—15'”7

where
Sp = Y P(Aan...nAg).

1Si1 ngkgn

The use of this formula in practice is limited, however, if the number of events is large. In

this case the calculation of S7, S, ... breaks down at some point, leaving us with the task to

create lower and upper bounds for P(A; U...U 4,,), based on Sy, ..., Sy, for some m < n.
The well-known Bonferroni (1937) bounds, stating that

P(A1UUAn) Z Sl_Sz—I_"'—I_(_]-)m_lSm,
if m is even, and
P(A1UUAn) S Sl_Sz—I_"'—I_(_]-)m_lSm,

if m 1s odd, are, on the other hand, weak, in general.
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To obtain the best possible, or sharp lower and upper bounds in terms of Si,..., S,
Prékopa (1988) has formulated linear programming problems with objective function to be
minimized or maximized, respectively. These yield lower and upper bounds of the form

=1

=1

where £ = (21, ..., Zm)T and y = (91, ..., Ym)? are the optimal dual solutions to the minimiza-
tion and maximization problems, respectively. We also know (see Prékopa (1988) and Boros
and Prékopa (1989)) that the components of # and y have alternating signs, starting with
+, and |z1] > ... > |2wl, [yl = - > |ym].

The bounds for the probability of the union become better, if we use the available in-
formation in more detailed form, i.e., we use individually the probabilities in the sums Sy,
E = 1,...m. A classical result in this respect is Hunter’s upper bound (Hunter(1976))
which states that if we create the n-node complete graph and assign the weight P(A; N A;)
to the arc {7, 7}, then

P(A4U...UA,) <81 — > P(A4inNA)),
(2,5)€T

where T 1s the heaviest spanning tree in the graph.

Bounding problems, where we use Sy, ...5,,, will be called aggregated problems and those,
where we use the individual probabilites in the sums, will be called disaggregated problems.
The purpose of the paper is to improve on existing bounds for the probability of the union
of the events by the use of partial aggregation/disaggregation.

Let A4, ..., A, be arbitrary events in some probability space, and introduce the notations

then we have

Sk = Z Diy g k= 1,...,71,.

1S1,1<<1,k S’I’L

Let Sy = 1, by definition. If v designates the number of those events (among Ay, ..., A,)
which occur, then we have the relations (see, e.g., Prékopa (1995)):

E[( Z )] = Sy k=0, ...n (1)

The equations (1) can be written in the more detailed form
"o
Z ( L ) v, = Sk, k:(),...,n,

=0

where v; = P(v =1), it =0,...,n.
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The values S; are called the binomial moments of v. If we know all binomial moments
of v, then the probabilities v, ...,v,, and also P(A; U...UA4,) = v+ ... + v, can be
determined. If, however, we only know Sy, ...,S,,, where m < n, then we look for bounds
on the probability of the union. To obtain them we formulate two closely related types of
linear programming problems (see Prékopa (1988, 1990, 1995)) :

n
min (max) Z T;

=1

subject to (2)
- ?
Z T, = Sk, k= 1, ,m
=1 ( k )
z; >0, 1=1,...n,

and

min (max) Z T;

=0

subject to (3)

1
T, = Sk, k= 0,...,77”1,
=0 ( k )

?
z; >0, ¢t=0,..,n.

Problems (2) can be obtained from problems (3) by removing the constraint corresponding
to k = 0 and the variable zq. The optimal values of problems (3) will be called the sharp
lower and upper bounds for the probability of the union. The optimal values of problems (2)
and (3) are in the following simple relationship. The optimum values of the two minimization
problems coincide. If V4, is the optimum value of the maximization problem (2), then the
optimum value of the maximization problem (3) is min(Viaz, 1).

The reason why we look at problems (2) too, and not only at problems (3), is that it is
easier to generate the bounds by the use of problems (2).

In addition to the optimum values of the above problems, any dual feasible basis of any
of the minimization (maximization) problems provides us with a lower (upper) bound for
the optimum value, hence also for the probability of the union. A basis in a linear program
is called dual feasible if the optimality condition, written up with that basis, is satisfied. For
a brief presentation of the main concepts and algorithms of linear programming the reader
is referred to Prékopa (1996).

Lower and upper bounds for the probability that at least one out of n events occurs,
based on the knowledge of Si, ..., S, were found by Bonferroni (1937). These bounds are
not sharp. For the case of m = 2, sharp lower bound for this probability was proposed by
Dawson and Sankoft (1967). For the case of m = 2 other results are due to Galambos (1977),
and Sathe, Pradhan and Shah (1980). By the use of linear programming, Kwerel (1975a,b)

derived sharp bounds for the case of m < 3. For a general m, the linear programs (2) and (3)
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have been formulated and analyzed by Prékopa (1988, 1990). He also presented simple dual
type algorithms to solve the problems. Boros and Prékopa (1989) utilized these results and
presented closed form sharp bounds, for the case of m < 4, and other closed form bounds.
The closed form bounds for m < 4 are the following:

Lower bound, using S, S2 (Dawson, Sankoff (1967)):

2 2
P(AjU..UA,) > —85 — ————85,, 4
(s ) 2 55 h(h+1)"" (4)
where
255
ho=1 {—J
+ S,

Upper bound, using S1,S2 (Kwerel (1975a), Sathe, Pradhan and Shah (1980)):
2
n

Lower bound, using Si, S2, S5 (Kwerel (1975b), Boros and Prékopa (1989)):

h+2n—1 202h +n — 2 6
1 — gsz + ———095s,

P(AU..UA,) >
(AU Udn) h(h+ 1)n h(h+ 1)n

~ (h+1n

where

h =1 .

Upper bound, using Si, S2, S5 (Kwerel (1975b), Boros and Prékopa (1989)):

) 2(2h — 1) 6
< - = —_
P(A;U...UA4,) < min (,5'1 hh 4 1) Ss + h(h—l—l)S?” 1), (7)
where 56
h = 2 —3J
+ |5

Upper bound, using Si, S, S5, S4 (Boros and Prékopa (1989)):

2((h = 1)(h = 2) + (2h = 1))

2

P(Al U UAn) S min (Sl —

h(h + 1)n
6(2h 4+ n — 4) 24
h(h+1n % h(h+ 1)n54’ 1) ’ ®)

where

b 14 {(n—2)52 + 3(n —4)S; — 12S4J'

(n - 2)52 - 353
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A closed form lower bound for the last case also exists, but it is too complicated, therefore
we disregard its presentation.

Problems (2) and (3) use the probabilities p;, ;, in aggregated forms, i.e., S1,..., S,, are
used rather than the probabilities in these sums. This way we trade information for simplicity
and size reduction of the problems. We call (2) and (3) aggregated problems.

The linear programs which make us possible to use the probabilities p;, ;,, 1 <4 < ... <
tr < n individually, will be called disaggregated, and can be formulated as follows. Let D
be the n x 2" — 1 matrix, the columns of which are formed by all 0,1-component vectors
which are different from the zero vector.

Let us call the collection of those columns of D;, which have exactly k components equal
to 1, the &k block, 1 < k < n. Assume that the columns in D; are arranged in such a way
that first come all vectors in the first block, then all those in the second block, etc. Within
each block the vectors are assumed to be arranged in a lexicographic order, where the 1’s
precede the 0’s. Let dy, ..., d, designate the rows of D;, and define the matrix Dy, 2 < k < m,
as the collection of all rows of the form: d;,...d;,, where the product of the rows d;,, ..., d;, is
taken componentwise. Assume that the rows in D}, are arranged in such a way that the row

subscripts (71, ...,%;) admit a lexicographic ordering, where smaller numbers precede larger
ones. Let
D,
A =
Dy,

1 17

0 D
A = ,

0 D,

where 1 is the 2" — 1-component vector, all components of which are 1, and the zeros in the
first column mean zero vectors of the same sizes as the numbers of rows in the corresponding
D; matrices.

Let pT = (piy.i,, 1 <41 < ... <ir <m, k=1,...,m), where the order of the components
follow the order of the rows in A, and pT = (1,pT). The disaggregated problems are:

min(max) fz
subject to (9)

Ax = p

x>0,
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and

min(max)fT:E

subject to

Az = p

& > 0,
where T = (1,...,1), and fT = 0, 1), 27 = (20, z7).

The duals of the above problems are:
max(min)pTy
subject to
ATy <(2) f,

and

max(min)p’ §
subject to
ATy < (2) f,

RRR 4-2001

(10)

(11)

(12)

where 47 = (yo,yT). Since the dual vector y multiplies the vector p in problem (11), it is

appropriate to designate the components of y by v;, 4., 1 <41 < .. < <n, k=1,....,m.

The more detailed form of problems (11) is the following:

max(min) Z Z Diy i Yiy . i

k=1 1Si1 <<lk S’I’L
subject to

m

D, > Yiriy = (=) 1.

=1 1<y <. <y <n
and the more detailed form of problems (12) can be written as:

max(min) {yo + > > pil...ik:’/il...ik}

k=1 1Si1 <<lk S’I’L
subject to

Yo + > > Yiip < (>) 1.

=1 1< < ... << n

(13)

The probability bounding schemes (13)-(14) can be attributed to George Boole (1854).
A detailed account on it was presented by Hailperin (1965). Kounias and Marin (1976) made

use of problem (14) to generate bounds for the case of m = 2.
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The optimum values of the minimization problems (9) and (10) are the same. The
optimum values of the maximization problems (9) and (10) are also the same provided
that the optimum value corresponding to (9) is smaller than or equal to 1. Otherwise, the
optimum value of problem (10) is 1.

Another way to come to problems (9) and (10) is the following. Define

1 iIcy
M=o, I¢J

vy = P((mjeJAj)m(mjeJ’Aj))
pr = P(Njes4;)

for any I,J C {1,...,n}. Then we have the equation

> avy = pr, IC{l,..,n}

With these notations problems (9) can be written up in the following way

min (max) Z T
0£JC{1,...,n}
subject to
> apm; =p, |[I|<m
0£JC{1,...,n}
zy > 0, JC{l,..,n}.

The new form of problems (10) can be obtained from here if we remove the restriction ) # J
from the constraints..

In Section 2 we outline the connection between the aggregated and disaggregated prob-
lems. In Sections 3, 4, 5, 6 we present two different aggregation/disaggregation methods and
numerical examples. In Sections 7 and 8 graph structures are exploited to obtain bounds.
Finally, in Section 9 and 10 we make some examples and present conclusions.

2 Connection Between the Aggregated and Disaggre-
gated Problems

Any feasible solution of problems (9) gives rise, in a natural way, to a feasible solution of
problems (2). Similarly, any feasible solution of problems (10) gives rise to a feasible solution
of problems (3).

Conversely, any feasible solution of the aggregated problem (2) or (3) gives rise to a
feasible solution of the corresponding disaggregated problem. In fact, we obtain problems
(9) or (10) from problems (2) or (3) in such a way that we split rows and columns. Splitting
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a column in the aggregated problem means its representation as a sum of columns taken
from the corresponding disaggregated problem.

Another question is that which bases in the aggregated problem produce bases, by split-
ting columns, in the disaggregated problem. We can create simple examples in case of the

minimization problem (2), when m = 2. The corresponding disaggregated problem we
has n + ( g ) rows. The " and j columns in problem (2) split into ( 7; ) and ( 7; )

columns, respectively. A necessary condition that these columns form a basis in problem (9)
is that ( 7; ) + ( 7; ) =n+ ( g ), where ¢ < j. This condition holds if ¢ = 1 and j = 2,

ort=n—2and j =n — 1. On the other hand these are in fact bases in problem (9), as it
1s easy to see.

The structures of the dual feasible bases of problems (2) and (3) have been discovered
by Prékopa (1988, 1990). We recall the relevant theorem concerning problem (2).

Theorem 2.1 Let ay, ..., a,, designate the columns of the matriz of problems (2) and I C
{1,....;n}, | I |= m. Then, {a;, ¢ € I} is a dual feasible basis if and only if I has the

structure:

m even m odd
min problem hoh+1,....7,7+1 hoh+1,....7,75+1,n
max problem 1,h.h+1,....75,7+1,n 1A h+1,....5,7+1.

n
2
the columns in the first two blocks, form a dual feasible basis in the minimization problem
n
2
problem (9) form a dual feasible basis in the same problem. The corresponding dual vectors
can be computed from the equations produced by the aggregated problems:

(ylv y2)(a17 a2) = (17 1)7

In view of this theorem, the first n + columns of the matrix of problem (11), i.e.

(2). Similarly, the n+ columns in the second to the last, and third to the last blocks of

and
(y1, yz)(an—2, an—l) - (17 1)7

respectively. The detailed forms of these equations are:

Y1 =1
29+ y2 = 1

and

(n—2)y1 +

[N]

-2
" )y2:1

(n— 1)y +

/\/_\
s
Lo |
—_
SN——
<2
(5%
I
—_
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respectively. The first system of equations gives y; = 1, y, = —1, and the second one gives:
y1 = 2/(n — 1), y2 = =2/(n — 1)(n — 2). If we assign y; = 1 to all vectors in the first
block and y, = —1 to all vectors in the second block of problem (9), then we obtain the dual
vector corresponding to the first dual feasible disaggregated basis. Similarly, if we assign
y1 = 2/(n —1) to all vectors in block n —2 and y» = —2/(n —2)(n — 1) to all vectors in block
n—1 of problem (9), then we obtain the dual vector to the other dual feasible disaggregated
basis. The first dual vector gives the Bonferroni lower bound:

Z pij = S1— 5a.
1<ei<g<n
The second dual vector gives the lower bound

9 2
P(AlU...UAn) > ——5 — (n—2)(n—1)

n — 1 Sz.
The optimal lower bound, produced by the aggregated problem (2), corresponds to that dual
feasible basis (ap, apy1) which is also primal feasible. This gives h = 1 4+ [255/51], and the
bound is the same as given by (4).

If we want to find the sharp lower bound for P(A; U ...U A,), by the use of problem
(9), for m = 2, then we may start from any of the above mentioned two dual feasible bases
and use the dual method of linear programming, to solve the problem. Since we want lower
bound, we have a minimization problem. This suggests that the second dual feasible basis
is a better one to serve as an initial dual feasible basis. The reason is that in blocks n — 2,
and n — 1 the coefficients of the variables are larger, and since it is a minimization problem,
we may expect that we are closer to the optimal basis than in case of the first dual feasible
basis.

Numerical Example. Let n = 6, and assume that

pr =030 p, =035 ps =055 py =040 ps =0.30 ps =0.35
p12 = 0.15 p13 =0.25 p1a =0.05 p15 =0.15 p1g =0.15

Ppas = 0.25 paga = 0.15 pos = 0.15 pog = 0.05

p3a = 0.25 p35 = 0.25 p3g = 0.25

pas = 0.15 pge = 0.15

pse = 0.15

We used the dual method to solve the minimization problem (9). As initial dual feasible
basis we chose the collection of vectors in blocks n —2 = 4 and n —1 = 5. These vectors have
indices 42, ...,62. After twenty iterations an optimal basis was found, the indices of which
are:

12,13 .16 ,20 ,22 , 25 ,28 ,29 .36 ,38 .39 ,43 ,44 45 48 , 50 .51 .52, 54 ,55 ,56.

The basic components of the primal optimal solution are:

z12 = 0.01, z15 = 0.02, 16 = 0.10, x50 = 0.03, x93 = 0.08, zs5 = 0.01, x5 = 0.03,
xog = 0.03, x36 = 0.05, 35 = 0.02, 239 = 0.05, 243 = 0.02, 244 = 0.03, z45 = 0.01, z4s = 0.01,
x50 = 0.08, 251 = 0.00, x52 = 0.06, 54 = 0.05, 55 = 0.01, z5¢ = 0.01.
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The components of the dual optimal solution are:

y1 = 04, yo = 0.6, y3 = 0.6, ys = 0.8, y5 = —0.2, yg5 = 0.0, y1o = —0.2, y353 = —0.2,
Y1a = —0.4, y15 = 0.2, y16 = —0.2, yo3 = —0.2, y24 = —0.4, yo5 = 0.0, yo6 = —0.2, y34 = —0.4,
yss = 0.0, y36 = —0.2, ya5 = 0.2, y46 = —0.4, y56 = 0.0.

The optimum value equals 0.71. The optimum value corresponding to the aggregated
problem 1s 0.70.

In this example we generated the right-hand side vector p for problem (9) in such a

way that we defined z° = (:132, j = 1,...,63)T, where w? i1s different from zero only if

g =4k, k=1,...,15, and for these j values we made the assignments w? = 0.05; then we set

p = Az®. In this case E?il w? = 0.75 and z) = 0.25. The optimum value of the maximization
problem (9) is 1.

3 Bounds, using partial aggregation and disaggrega-
tion
Let X; =1, 1f A; occurs and X; = 0, otherwise, ¢ = 1,....n. Then we have
vV = X1 + ...+ Xn

and (see e.g., Prékopa (1995)):
v
p )= > X, .. X (15)
1S11<<lksn
which implies equation (1). A simple consequence of equation (15) is
Theorem 3.1 For k > 1 we have
v—1
Xi ( E—1 ) - Z X“Xl (16)
1<y < ... <1, <n
i € {i1,.... 0}
and
v—1
FE\|X; b1 = Z Diy ..y, (17)
1<y < ... <1, <n

i € {i1,..., 08}

Let us introduce the relation
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In view of (17) we have the equations

kg3 J—]_

> ( b1 ) ij = > Piy iy (18)
=1 1<iy<..<ir<m

i € {i1,..., 108}

If we introduce the new variables y;; = x;;/7, then (18) can be rewritten as
S(1)w-7 % » (19
k y@] - pll...lk'

=1 1<iy<..<ip<n
i € {i1,..., 108}

T =

In addition, we have the following simple theorem

Theorem 3.2 The following equation holds:

k3 k3

ZZyij = P(A1U...UA,). (20)

=1 j5=1

We omit the proof.
By the use of (19) and (20) we formulate linear programming problems for bounding the
probability P(A; U...U A,):

min(max) Yr, i1 Yig
subject to
n 7 /
2= ( k )yij = Sipy k=1,.,my

Yij > 07 ivj:]-v"'vnv

where 1 <m; <n,t=1,...,n and

Sie = 7 Z Diyins HE=1,..n.
1<y <. . <1, <n
i € {i1, ... 5}

Let L(U) designate the optimum value of the minimization (maximization) problem (21).
Also, let L;(U;) designate the optimum value of the minimization (maximization) problem:

min(max) X7 yi;
subject to

2?21 ( ']ZZ ) Yi; = Sz/kv k= 1,...,mi
Yij > 0, jzl,...,n.

(22)
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The minimization (maximization) problem (21) splits into the n minimization (maxi-
mization) problems (22). The matrix of the equality constraints in (21) has the matrices
of (22) in its main diagonal and the objective function in (21) is the sum of the objective
functions in (22). This implies that

L=1IL+ .. +0L,
U="0 + .. +U, (23)
L < P(4U..UA,) < U. (24)

In addition, if L; (U;) is defined as the objective function value corresponding to any dual
feasible basis in the minimization (maximization) problem (22), 1 < ¢ < n, then with the
L and U, defined by (23), the relations (24) hold true as well (but may not be as good as
those, corresponding to the optimum values).

Problems (21) can be obtained from problems (9) by aggregation (of variables and con-
straints) and each problem (22) can be obtained from problem (3) by disaggregation. This
implies that both bounds in (24) are at least as good as the corresponding binomial moment
bounds.

The following examples are based on known binomial moment bounds (see Prékopa
(1995), Sections 6.2.1-6.2.5).

Example 1. We mentioned in Section 2 the binomial moment lower bound for the case
of m = 2 (Dawson-Sankoff bound). Using this and (24) we obtain

” 2 / 2 /

=1

where

23,
hi = 1+ {Sng’ i=1,..,n.

This is the lower bound obtained by Kuai, Alajaji and Takahara (2000) which generalizes
De Caen’s (1999) lower bound.

Example 2. If m = 2, then the optimum value of the maximization problem (3) equals
) 2
min{S; — —9,, 1}.
n

This implies that
n ' 2 '
P(A4,U...UA,) < min (Z(Sﬂ — =85), 1) : (26)
=1 n
Example 3. If m = 3, then the optimum value of the minimization problem (3) equals

h+2n—1 2(2h +n — 2) 6

(h+1)n h(h+1)n =2 " h(h+ 1)n53’
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where
BIRE = @
Thus we have the lower bound
P(A U ...UA,) Z(h +—2+n1)_n1 o
jfﬁ%jﬁl}f) Sia + h(h6+ l)nS’{?’) ’ (28)

where

g eeey

—6S;5 +2(n — 2)S; :
hi =1 o 2, i=1
* { =257, + (n — 1)5, J Y

Example 4. By the use of the optimum value of the maximization problem (3), for
the case of m = 3, we obtain the new bound:

P(ALU...UA,) <

. i ) 2(2hi—1) ) 6 /
SR e P 5.1 2
min (; (Szl hz(hz—l_]-) 512 —I_ hl(hl_l_l)SzS)? )7 ( 9)
where /
hi = 2 + {3523J i=1,..,n.

Example 5. If we use the optimum value of the maximization problem (3) for the case
of m = 4, then the new bound is obtained as

P(A,U..UA,) < min (fj (Sgl _ b= Dhi =2) + (2hs = 1n o

=1 hz(h@ + ]_)n 72
2h; +n—4 24 /
TN - —5, 1
' Ghl(hi +1)n S hi(hi + l)nSH) 7 ) 7 (30)

where

b1+ —125;, + 3(n — 4)S;5 + (n — 2)S,, P
v (n — 2)S., — 351 oo T

4 Numerical Examples for Section 3

In this section we present two examples to show how the new method improves on the
bounds. In both examples we subdivide the collection of events A, ..., A, into two groups.
For those events A; which belong to the first group we create lower and upper bounds based
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101010
010100
101010
010000
100011
011010
010011
R=[001101 (31)
101000
000110
010110
010000
100101
010000
101011

on S}, S;y, Sis and the linear programs (22). For those events A; which are in the second
group we use ;1, ;2 and the linear programs (22) to create the bounds. The values (23) and
(24) provide us with the overall bounds. If we apply suitable subdivision of the collection
of events, we may be able to save a lot of computing time. Below we discuss and present
numerical results in connection with three subdividing strategies that we call order, greedy
and passive. The order method means that we enlist each event that belongs to the first half
of the sequence, written up in the original order, into the first group and all other events
go to the second group. To describe the other two methods first we arrange the events in
such a way that their probabilities form a decreasing sequence. The greedy method means
that the first (second) half of the events belongs to the first (second) group. The passive
method does just the opposite, The first (second) half of the events belongs to the second
(first) group.

Examplel. First we look at one of the examples presented in Kuai, Alajaji and
Takahara (2000, p157). There are 6 events in the example: A, ..., Ag. The sample space has
15 elements 1,2, ..., 15 with probability x;, z,, ..., 215 respectively. The events are defined by
the matrix R = (r;;) in (31), where r;; = 1,if ¢ € Aj;, otherwise r;; = 0. We have
z; = 0.012, 2z, = 0.022, 25 = 0.023, 24 = 0.033, 25 = 0.034,z¢ = 0.044, 27 = 0.045, 25 =
0.055,z9 = 0.056,z190 = 0.066, 21, = 0.067, 212 = 0.077, 215 = 0.078, 214 = 0.088, 215 =
0.089.

The lower and upper bounds for the system are presented in Table 1.

Column 1 in Table 1 contains the bounds obtained by (4) and (5). Column 2 contains
the bounds presented in (25) and (26). Column 3,4,5 contain the bounds obtained by the
passive, order and greedy subdivisions of the events into two groups. The word “Mixture”
refers to the fact that in each of these bounds two and three binomial moments are used
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Table 1: Results for Example 1

Bound S1, 85 S;»l,S;»z | Mixture (passive) | Mixture (order) | Mixture (greedy) | 5;1,5;»2,5;3

Lower | 0.6933333 | 0.7221667 0.7221667 0.7314500 0.7314500 0.7314500

Upper | 1.0000000 | 1.0000000 1.0000000 0.8038333 0.8038333 0.8038333
100010O0O0O0OO0O0OT1TO0OO0OT1TO0O0OT1TO0T1
01010010011 0O0O01O0O0O0T11IO00O0
101010010O0O0O0O0OO0CO0OT1TO0TO0T1IO0
01 0001001001001 O0O0T11O00O0
10101001001 0O01O0O01O0T10
01001010101 10O0T1O0T1O0O01
1001010100101 0O01O00O00

Rr=|010100001O010O0O0O011O0101 (32)

101 00101O01O01CO0T1O0O0O0T1O0T1
1001001001001 0O0O01O0O0C0O0
010010101001 0101O01O01
000100011 O0O0CI1TO0O011O0O01O0O00O0
1001010001 O0O01O010O0T1O0T1
0100010010001 O0O011O0O0T10
0001 00O0O0CO0O0OCOOOOOO0OO0O0O01

in a mixed manner, computed by (25), (26), (28) and (29). Column 6 contains the bounds
where in case of each A; three binomial moments are used. We use the same notations in
other tables in this section.

Table 1 shows that the passive method does not prove to be a good strategy. More
information is used to compute the bounds in Column 3, but there is no increase in them as
compared to those in column 2. On the other hand both the order and the greedy method
produce the same bounds as what are contained in the last column.

Example2. This is an extension of example 1. We define three event sequences
Apj, g=1,...,20, k=1, 2, 3. The elementary events are again 1,...,15 and %1, ..., 215 are
the corresponding probabilities respectively. Define the matrices Ry, = (ry;;) where r4;; = 1
e Akj and Thij = 0if 2 Qé Akj, k= 1,2.3.

System 1: z; = 0.01221377, =, = 0.02223128, z3; = 0.02328652, =4, = 0.03397571,
x5 = 0.03476138, z¢ = 0.04458161, =, = 0.04594259, s = 0.05518453, =9 = 0.0564044,
z10 = 0.06631682, x17 = 0.06768523, 12 = 0.07737555, x15 = 0.07864836, x14 = 0.08887805,
z15 = 0.2925142.

System 2: z; = 0.008964634, z, = 0.02492217, =3 = 0.02109813, =z, = 0.03779353,
x5 = 0.0463261, x5 = 0.04284324, z; = 0.07804262, =g = 0.02536991, =y = 0.01916672,
z10 = 0.06340085, =17 = 0.07315289, x1, = 0.07732742, =15 = 0.0224802, x4 = 0.09164494,
z15 = 0.3674566.
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6101010010101 0O01001090
1101000001 01011001°O01
10111001010O01O0O0O0O0O0T1FQ0
c110011010011000010O00
0c111100000O0O0CO0OT1TO0OO0OT1TT1T1F¢O0
100000101111 1010000O01
1100001 1010O01O0O01O0O0O00O0
Rhb=110010100101010010101 (33)
6010010001 O00O0O1O0O0O0T1O0T1
11010001010O001O0O0O0O0T1FQ0
c10110001101001100°O0T1
10010100000O00O01O0100O01
6100110001001 0O0O0O010O00
0c1100100O0O0OO0O0C1O0O010O0T10
co00100100O0O0O0O0OO0O0CO0OO01O00O0

System 3: z; = 0.1017688, =z, = 0.112992, x5 = 0.01514044, z, = 0.05684733, =5 =
0.03270125, ¢ = 0.1005075, 7 = 0.07306695, s = 0.01743922, zg = 0.06284498, x19 =
0.05830101, x1; = 0.06833096, x12 = 0.07153743, x5 = 0.04503293, x4 = 0.03487869,
z15 = 0.1486024.

The upper bounds in all cases are equal to 1, while the lower bounds for the different
systems are presented in Table 2.

In Table 2, we can see that the bounds obtained by the use of Sj;, S, are much better
than those obtained by the use of S;,S5,. We also observe that the bounds obtained by
the greedy method are much better than those obtained by the use of 5217 51{2. The greedy
method outperforms the other two mixture methods. Furthermore, if we compare the bounds
in column 5 and 6, we see that the bounds obtained by the use of S, S;y, S;5 are only a little
better than those obtained by the greedy method.

Finally, let’s compare the results obtained by S, 53,53 and the mixture methods. The
results are presented in Table 3.

We notice in Table 3 that we have obtained better bounds (at least in most cases) by
any of the order and greedy mixture methods than what we have obtained by the use of the
binomial moments Sy, Ss, Ss.

5 Another Method of Partial Disaggregation to Gen-
erate Bounds

In this section we split the sequence of events Ay, ..., A, into subsequences and apply to the
latter the bounding technique based on the multivariate binomial moment problem. The
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01 000O0OO0OCO0OCT1TO0OOOOOOO0O0O0GO01
100100O0O0O0GC1TO0OO0OOOCOOO0O0T11IO0
001 0001O0O0O0C1TO0OT1TO0O0O0CO0UO0OO0DQO0
0 0o00O0O0OO0ODO0GCTOOOTTO0OO0OO0OO0OO0OT1IO0
010010011001 O0O011O0O01O0O00O0
100100101001 O0O01O01O0O0T1
01 0100O0O0CO0O110O0O0OO0CO0T11IO0UO0TO00

Rs=10100010O0O0O01O0O0O0T1TO0O0OO0TO0T1 (34)
000001011 O0O0CI1O0O0O0CO0T11IO0O0O00QO0
100010O0O0O0CO0O0OO0OO0OT1TO0OO0OT11IO0O0T1
01 000O0OO0OO0CO0O11010O0T1O0O0T11IO00
10000O0O0OT1O0O010O0O01O01O0O0T1
01 00010O0O0O0CO0O0OCTTOO0OO0CO0T1IO00
001 000O0O0GC1TO0O0OO0OO0OO0CO0OO0C1TO0T10
0 0o01010O0O0O0O0O0OO0OT11O0O0CO0O0OTO0OOQO0

Table 2: Results for Example 2

System S1, 85 S;»l,S;»z | Mixture(passive) | Mixture(order) | Mixture(greedy) | 5;1,5;»2,5;3
1 0.8275266 | 0.8580833 0.86123 0.8698107 0.8832994 0.886446
2 0.8658182 | 0.9100646 0.9111695 0.9264307 0.9343052 0.93541
3 0.8985498 | 0.9435812 0.9446198 0.9537189 0.9577441 0.9587778

Table 3: Comparison of the results obtained by S, S, S5 and mixture methods
System | Bound | S1,82, 53 | Mixture (passive) | Mixture (order) | Mixture(greedy) |
Examplel Lower | 0.7025667 0.7221667 0.73145 0.73145
Examplel Upper | 0.8130000 1.0000000 0.8038333 0.8038333
Example2(1) | Lower | 0.8553803 0.8612300 0.8698107 0.8832994
Example2(2) | Lower | 0.8944319 0.9111695 0.9264307 0.9343052
Example2(3) | Lower | 0.930407 0.9446149 0.9537189 0.9577441
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efficient bounds are algorithmic rather than given by closed form formulas.

Let Ey, ..., E, be pairwise disjoint nonempty subsets of the set {1,...,n} exhausting the
set {1,...,n}, and introduce the notation n; =| E; |, j = 1,...,s.

Out of the events Ay, ..., A, we create s event sequences, where the i*" one is {A;, i €
E;, 1 <j <s}. Any of the events Ay, ..., A, is contained in one and only one event sequence.
For the events in these sequences we will use the alternative notations:

A117 ey Alnl
(35)
Agty ey Ay,
Let X;; designate the number of those events which occur in the 3t sequence, and
So o = E ( X ) ( X, )]
(a4] Mg
(36)
0<a;<mn;, 3=1,..,s.
We formulate the multivariate binomial moment problem (see Prékopa (1992, 1998)):
min (max) Z Z fiyia®iy i,
21=0 2s=0
subject to (37)

1 Mg . .
2 : 2 : 11 ls _ S

o o xil...is — @1...00g
21=0 1s=0 1 s

a; >0,3=1,...,8, s +... +Fa, <m
\V/’I:l, ...,’1:3 . xil...is Z 0

The Su,..a, (1 + ... + s < m) multivariate binomial moments can be computed from the
probabilities p;, i, (1 < i3 < ... < i < m). In order to simplify the rule how to do this,
assume that £y = {1,....n1}, ... B, ={n1 + ...+ n,_1 +1,....n1 + ... + n,}. Then, we have
the equality

SOél...Oés - E pill...ilal...isl...isas7

where the summation is extended over those indices which satisfy the relations

1 Sill < ... <’I:1041 §n1

N+ o+ 01+ 1 <ty <o < g, <N+ o+ N
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For example, if n = 6 and E; = {1,2,3}, E» = {4,5,6}, then

S10 = p1 + p2 + p3, So1 = ps + ps + pe.
S50 = P12 + p13 + P23, Soz = Pas + Pac + Pses
S11 = pra + P15 + P16 + P2a + P25 + Pas + Psa + P35 + Pss,
S91 = D124 + D125 + P126 + Pisa + Piss + Pise + Pasa + Pass + Pases
So2 = P124s + P124c + P1256 + P13as + Pisas + Pisse + P2sas + Pasas + P2sse

ete.

We have yet to formulate suitable objective functions for problems (37). Since we want
to create bounds for the union of all events in (37), our choice is:

0 3f (i1y.nydy) = (0,...,0)
Jirrda = (38)

1 otherwise.

Problems (37) reduce to problems (2), if s = 1, and to problems (10), if s = n. Problems
(37) are disaggregated counterparts of problems (2), and aggregated counterparts of problems
(10). Further notations are presented below.

Let P designate the probability that at least one out of Ay,..., A, occurs. Let L (U)
designate the optimum value of the minimization (maximization) problem (10) and I (u)
designate the optimum value of the minimization (maximization) problem (37).

By construction, we have the following inequality:

I<L<P<U<u. (39)

In fact, the problems with optimum values [ and « are aggregations of problems with optimum
values L and U, respectively.

The duals of problems (37) are the following:

max(min) Z yal...asSal...as
a; >0,j=1,...,s
1<a;+...4+a,<m

subject to (40)

S () () e

a; >0,3=1,..s

1<+ ...4+a,<m
0 < < my,3=1,..,8
1+ ... +12, > L.

In the left-hand sides of the constraints of problems (40) there are values of a poly-
nomial of the variables 4y, ...,4,, defined on the lattice points of the set x3_,[0,n;]. Replacing
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z; for ¢;, the m-degree polynomial takes the form

P(zl,...,zs) == Z Yoy ..o ( 211 ) ( o ) . (4]‘)
a; >0, 9=1,...;8
a1+ ...+a, <m

Problems (37) may serve to construct polynomials P(z1, ..., zs) of the type (41) for
one sided approximation of the function f, ., which we will also designate by f(z1,..., zs).
Our method consists of construction of dual feasible bases to problem (37). Each dual feasible
basis of problem (37) determines a dual vector satisfying the inequalities (40), hence it also
determines a polynomial (41), which approximates the function f in a one-sided manner. If
the basis is dual feasible in the minimization (maximization) problem, then the polynomial is
entirely below (above) the function. given the polynomial, we replace X; for z;, i = 1,...,n,
take expectation and obtain the lower (upper) bound.

Incidentally we make two remarks. Suppose that the matrix A of the linear pro-

T, subject to Az = b, = > 0, has rank equal to its number of rows

T

gramming problem: min ¢
m. Let T be an m x m non-singular matrix and formulate the problem: min ¢* z, subject to
(TA)x = Th, © > 0. Then a basis is primal (dual) feasible in one of these two problems if
and only if it is primal (dual) feasible in the other one. In fact, if A = (a4, ..., a,), then we
have the relations

(TB)™Tb = B~
Crp — cg(TB)_lTak = ¢ — ch_lak,

which imply the assertion.

Let us associate with problem (37) a multivariate power moment problem in such a
7:1 7:3
o 1\ e,
binomial moment S,, ., on the right-hand side. A single linear transformation takes the
column vector in (37):

(( “ )( b ): a; >0, j=1,...,s; al—l—...—l—asgm)
(a4] Mg

(i a; 20, j=1,..,8 a1+ ...+ a;, <m).

1% for

way that we replace 7", ..., S

) and the power moment pi,, o, for the

into the vector

The same transformation applies to the right-hand sides. The matrix of this transformation
is non-singular (it is also triangular). Thus, the above remark applies, and therefore a basis
in the multivariate binomial moment problem is primal (dual) feasible if and only if the
corresponding basis in the multivariate power moment problem is primal (dual) feasible.
Thus, we can apply, without any change, the dual feasibility theorems proved in Prékopa
(1998, Theorems 4.1 and 4.2) for our multivariate binomial moment problems.
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Let us associate the lattice point (41, ...,4,) € R* with the vector

( (Zl )( b ): a; >0, 5=1,...,8; al—l—...—l—asgm)
(a4] Mg

of the matrix of the equality constraints of problems (37). Let Ba and B® designate the
sets of vectors corresponding to the sets of lattice points

{(P1,cests) | 2520, j=1,.0008 41 + ... + 15 < m}, (42)
and
{(n1 —i1,.ccoms — i) | 4, >0, 5 =1,...,8; 41 + ... + i, < m}, (43)

respectively. Then both Ba and B are bases in problem (37). It is easy to check that all
divided differences of the function (38) are nonnegative (nonpositive) if m + 1 is odd (even).
Combining this with the above mentioned results, we can state

Theorem 5.1 The bases Ba and B2 are dual feasible bases in the following types of prob-
lems (37), where the objective function is given by (38):
m+1 even m-+1 odd
Ba max min
BA max maz.

If a bound of this type is not satisfactory (e.g, a lower bound is negative, an upper
bound is greater than 1, or it is not enough close to the other bound), then we regard the
basis as an initial dual feasible basis, and carry out the solution of problem (37) by the dual
method of linear programming. This way we obtain the best possible bound, at least for a
given subdivision Fj, ..., E, of the set {1,...,n}.
n

Note that problem (10) has 1 +n + ( 5

) +...+ ( :z ) equality constraints and 2"

s+ m

variables, whereas problem (37) has constraints and (ng + 1)...(n, + 1) variables.

Thus, problem (37) has a much smaller size than problem (10), in general. For example,
if n =20, s =2, ny = ny = 10, m = 3, then problem (10) has sizes 1351 and 1,048,576,
whereas problem (37) has sizes 10 and 121.

To obtain the best possible bound which can be given by our method, one has to
maximize (minimize) the lower (upper) bound with respect to all subdivisions Ey, ..., E, of
the set {1,...,n}. In practice we use only a few trial subdivisions, and choose that one which
provides us with the best bound.

Another possibility to create lower (upper) bound for P(A; U ... U A,) is that we
create upper (lower) bound for P(A; N ...N A,) and then subtract from 1 the obtained
values. In this case we have to write up problems (37) with new right-hand side values and
new objective function. The new right-hand side values are S'al...as, defined in the same
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way as we have defined S,, ., but in this case we use the complementary events. The new
objective function is

1 if (’1:17 ...,’1:3) = (nl, ...,ns)
Jiroie = (44)

0 otherwise.

It is easy to check that all divided differences of any order of the function (44) are
nonnegative. Combining this with Theorem 4.2 in Prékopa (1998) we obtain

Theorem 5.2 The bases Ba and B2 are dual feasible bases in the following types of prob-
lems (37), where the objective function is given by (44):
m+1 even m-+1 odd
Ba min min
BA min maz.

The polynomials determined by the bases Ba and B2 can be taken from Prékopa
(1998). They are multivariate Lagrange interpolation polynomials with base points (42) and
(43), respectively. We designate them by La(z1,...,2,), and L?(z1, ..., z,), respectively, and
present them first in Newton’s form:

La(z1, .0y 25) =
(45)
s tj—1
3 Orecsiri i ot £ T T 25— 1)
i+ .. +i,<m J=1h=0
0 S’I,] §nj,j:1,...,s
and
LA(zl, ,Zs) =
(46)
s nj—1
Z [nl_7:17"'771'1;"';ns_isv"'vns;f]H H (zj — h).
’1:1 + ...+ ’1:3 <m J=1 h=nj—i;+1

O§ij§nj,j:1,...,s

Since we are given the multivariate binomial moments rather than the power moments, we

rewrite these polynomials in other forms. In case of the function (38) we have L2 (21, ..., z,) =
1, and

La(z1,.y25) = Yoo (Fpyptetest ( fll ) ( f ) : (47)

1Si1 -|—-|—1,3Sm



RRR 4-2001 PAGE 23

In case of the function (44) we have La(z1,...,2,) = 0, and
LA(21,y 0y 2,) =
CNitetis [ T T 2 Ng — Zs
L x (o) () e
1 §21—|——|—23§m

O§ij§nj,j:1,...,s

Theorem 5.1 and 5.2 tell us the following. If f is the function (38) and La(z1, ..., zs)
is the polynomial (47), then

La(z1,y.es25) 2 (L) f(2z1, 00y 26), (49)
if m + 1 is even (odd); if L?(21, ..., 2,) is the polynomial (48), then
L2210y 20) > F21, .0 24), (50)
no matter if m + 1 is even, or odd. If f is the function (44), then we have the inequalities
La(z1, . 25) < f(21,.0, 26), (51)
no matter if m 4 1 is even, or odd, and
L2(21, .y 2) < (2) F(21y 000 25), (52)

if m+ 1 is even (odd).

6 Numerical Examples for Section 5

We present two examples. Both are based on the knowledge of some of binomial moments
Sij, the numerical values of which are presented. However, we disregard the presentation of
the events themselves.

Example 1. Let n = 20, n;y = ny = 10, m = 3, and assume that we have obtained
the following numbers:

Sor = S10 = 4.5, So2 = S20 = 12, 511 = 20.25, Soz = S30 = 21, 512 = S = 54,

The polynomial (47) takes the form

LA(Zl,Zz) = Z1 — ( 221 ) + ( 21 ) + 29 — Z129 (53)

(5)-(3)(2)+(5)
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The dual vector corresponding to the basis Ba equals:
y =01 —-111-11—-111)7. (54)
The polynomial (48) takes the form
LA(z1,2) = 1, (55)

The dual vector corresponding to the basis B2 equals:

y = (1000000000)~. (56)
Note that Ba, and B2 correspond to the lattice points {(0,0), (0,1), (0,2), (0,3), (1,0),
(1,1), (1,2), (2,0), (2,1), (3,0)}, and {(10,7), (10,8), (10,9), (10,10), (9,8), (9,9), (9, 10),

(8,9), (8,10), (7,10)}, respectively.

By (50) we have that L2(z1,25) > f(z1,22), which is a trivial inequality in view of
(55). Since m + 1 = 4 is even, by (49) we have that La(z1,22) > f(z1,2s) for all (z1, 22).
Thus, both B2, and B, are dual feasible bases in the maximization problem (37).

The dual vector (54) produces the trivial upper bound y?S = 114.75, where

S = (SOO7 SlO7 S207 5307 SOl7 Sll7 S217 5027 5127 503)T-

The dual vector (56) produces the upper bound y7S = 1, which is at the same time the
optimum value of the maximization problem (37), and the sharp upper bound for P(U%, 4;).

The sharp lower bound is obtained by the solution of the minimization problem
(37). We have used the dual method with initial dual feasible basis Ba and obtained the
following optimal solution: xgy = 0.11, x99 = 0.055556, =z, = 0.160714, z73 = 0, z55 =
0.33,236 = 0.208333, z9s = 0, x99 = 0.075397, 109 = 0, %1010 = 0.06. This provides us
with the lower bound:

The dual vector corresponding to the optimal basis is:
y = (0,0.28,—-0.0577,0.0066, 0.2, —0.04, 0.0044, —0.0222, 0.0022, 0).

This determines the polynomial

2 3

0.0044( z21 ) 25 — 0.0222 ( Z; ) +0.00222, ( Z; ) :

which satisfies L(z1,22) < f(z1, 22) for all (z1, 22).
Example 2. In this example we consider 40 events for which all binomial moments

La(z,2) = 0.282 — 0.0577 ( “ ) +0.0066 ( i ) +0.225 — 0.042, 25 +

of order up to 11 have been computed. The 40 events have been subdivided into two
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Table 4: Univariate binomial moments, 40 events

So 1.000
Sy 8.164
Ss 94.025
S3 290.574
S 1435.025
Sy 7115.369

Se 34884.230
S7 158338.877
Ss 637735.541
So  2249527.156
S0 6955762.090
S11 18955303.836

20-element groups and all bivariate binomial moments of total order at most 6 have been
computed.

Lower and upper bounds for the probability that at least one out of the 40 events
occurs have been computed based on the two sets of data. The bounds are displayed for all
lower order binomial moments, too. Thus, we have two sequences of bounds. The bounds in
the first sequence are optimum values of problems (2). The bounds in the second sequence
are optimum values of problems (37) with objective function (38). The latter problems are
partially disaggregated problems, as compared to problems (2).

The results show that much better bounds can be obtained in the latter case. The
bounds obtained from the partially disaggregated problem for m = 6 are better than those
obtained from the aggregated problem for m = 11. The data and the bounds are presented
in the tables 4-7.
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Table 5: Bivariate binomial moments when the 40 events are subdivided into two
20-element groups

first second group

group 0 1 2 3 4 3 6
0 1.00 1.93 4.70 12.19 41.06  127.37 317.72
1 6.23 3.28 31.15 186.89  794.26 2541.64

2 46.04 31.15 29590 177541 7545.49

3 216.09  186.89 1775.41 10652.46

4 724.30  794.26 7545.49

9 1848.66 2541.64

6 3739.79

The results show that by the use of the bivariate binomial moments of order up to
5 we can obtain better bounds than by the use of univariate binomial moments of order up
to 10. The bivariate moments of order up to 6 produce better bounds than the univariate
binomial moments of order up to 11.
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Table 6: Bounds based on univariate binomial moments

Table 7: Bounds based on bivariate binomial moments

m
1
2
3
4
9
6

lower bound upper bound

0.20410
0.57400
0.63452
0.67613
0.77875
0.78559
0.79960
0.80000
0.80156
0.80191
0.80299

lower bound upper bound

0.31137
0.66045
0.79552
0.80255
0.80275
0.80325

1.00000
1.00000
1.00000
1.00000
1.00000
0.97028
0.92088
0.81438
0.81185
0.80671
0.80638

1.00000
1.00000
0.91272
0.83071
0.80583
0.80410
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7 Upper Bounds Based on Graph Structures

The bounds given in Section 5 can be interpreted as bounds based on special hypergraphs.

Let
Z1 Za
Z ailmis( . )( . )
1 [
il + ...+ is S m
0<;<mj,7=1,..,s

be any polynomial. Let N = {1,...,n}, and N; C N, j = 1,..,m with N = UJ N;,
| N; |<nj,and Vj; # ja: Nj NN = 0. Let E;, ;, be the set of all subsets of N containing
exactly ¢; elements from N;, 3 = 1,...,s. Then we define the hypergraph as follows:

H = (N, E),

where
E = U E; i,
1+ ...+, <m
OS’I,‘7 §nj,j: 1,...,3

All hyperedges lying in E;, ;, are weighted by a;,. ;,. These weights form a dual feasible
vector of problem (9). The scalar product of that and the right-hand side vector of problem
(11) provides us with the lower or upper bounds. If m = 2, then only nodes and pairs of
nodes have weights. To each node we assign the weight 1.

5 )—Vector are indexed by

In Section 7, 8 and 9, the components of an (n

11,12,....,(n = n or 1,..., depending on which notation is more convenient. The

n
2

following lemma is very simple, the proof is omitted.

Lemma 7.1 The Z -component vector (1,1,...;1, —wya, ..., —Wp_1,) is feasible in the

minimization problem (11) if and only if for all S C N containing at least two elements the
inequality Y, jes ic; wij <| S | —1 holds.

Remark. It is easy to see, that any feasible solution to the problem (11) has
Wy, ...,w, < 1. Lemma 7.1 implies that if w; = ... = w,, < 1, then V1 <¢,5 < n,i # j, we
have w;; < 1.

The above lemma can be applied in the following way. Let G*(N, E') and G*(N, E?)
be two graphs on the vertex set N. Assume that to each {i,5},4,7 € N, ¢ # j a real number
w;; 18 assigned and the following conditions are satisfied:

(i) E*NE? =0,
(i1) if {7,7} € E* then w;; = 1,
(ii1) if {¢,7} € E? then w;; <0,
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(iv) if {¢,5} € E* U E? then w;; = 0,
(V) lf S C N,| S |Z 2, then Ei,jES,i<j w,] §| S | —1.
The first bound which can be discussed in the framework of the above lemma is

Hunter’s bound (see Hunter (1976)). Let G* = T(N, E) be any tree, and G* = (N, 0). Let

i = { 1 if{i,j} € E

0 otherwise.

Let S € N,| S |> 2 As any induced subgraph of a tree is a forest, it follows that
Yijesiciwij <| S | —1. Thus, the conditions of the lemma are satisfied. This means
that any tree determines an upper bound, and Hunter’s bound is the best among them.
Thus, Lemma 7.1 generalizes that bound.

Lemma 7.2 Ifn > 3 then

P(A;U...UA4,) < S5 — max Z (pir + pii) + (n— 3)pu. (57)

1<k<i<n iAol

Proof For a fixed k and [ let G* be the complete bipartite graph connecting %k and [ with all
other vertices, G* the edge {k,l}, and wy; = 3 —n. Thus, G* has 2n — 4 edges. Let S C N
be any subset containing at least two elements. If k,I ¢ S, then the subgraph of G* induced
by S has no edge; thus,
Z Wi; = 0.

1,J€85,4<j
If S contains only one of k£ and [, then

Z wij = | S | —1.

1,J€85,4<j
Finally, if S contains both k and [, then
o owy =2]S] —4+4+3n <|S] -1
1,J€85,4<j

Thus, the conditions of Lemma 7.1 are satisfied in all cases. O
As the structure of the graph obeys the above mentioned hypergraph scheme, the
polynomial

z
g(z1,22) = 21 + 22 — 2122 + (n—3)( 22)
satisfies the condition:
Va1, 22 € Z4 i (21,22) # (0,0), 21 <n —2, z9 <2 implies g(z1,22) > 1.

Prékopa (1999) has shown that Hunter’s bound can be represented as the objective
function value corresponding to a dual feasible basis of problem (9).
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Lemma 7.3 Assume n > 4. Let GY(N, E) be any I-tree and

C = {{u1,us}, {us, us}, ..., {ur—1, ur}, {ur, us}}

be the unique simple circuit contained in G*. Assume that k > 4. Let s, t be positive integers
with 1 < s <t <k, andt —s £ +1(mod k). Let G* be a graph containing a single edge
such that E = {{u,, u;}}. Finally, let

1 ifi<yand{i,j} € E!
wi; = 3 —1 ifi<jand {i,j} € E?
0 otherwise.

Then we have the inequality:
P(ALU..UA,) < 8 — Y 9y + Puse- (58)

{i.3reB 1<y

Proof Any subgraph of G' induced by a set S C N contains at most | S | —1 edges, except
C', which contains as many edges as vertices. But even in this case the necessary inequality,
given in Lemma 7.1, holds because of the presence of the (—1)-valued edge {u,,u;}, and
thus, the conditions of Lemma 7.1 are satisfied. O

The following method is an approximation algorithm for determining the best bound
of this type. The algorithm works on the complete graph K, (N, E). The edge {i,5} of K,,
1s weighted by p;;.

STEP 1: Find a maximum weight spanning tree of K,,, demgnate it by T'(N, ET)

STEP 2: For any edge {i,j} € E\ Er let Cj; = {{uy, vi'}, ... , {w _i ],
{ul ,u1} be the unique simple circuit of the graph T:;(N,Er U {’I,,j}), Where l;; 1s the
length of C;;. Then, let

('*7'7‘* S* t*) —
argmax {pi; — p, i iy > 4,1 <s<t<l;t—s#+tlmodl;}. (59)

If piejr — Pyiiyii > 0, then the resulting bound based on the graphs G = Tj.;» and
G*(N,{s*,t*}) is ansirr;provement on Hunters’s bound. The order of the algorithm is O(n?).
In (59) the number of pairs {i,;} to be considered is O(n?). The determination of C; is
equivalent with finding the unique simple path going from 2 to j in 7" which can be done in
O(n) steps as the sum of the degrees of the vertices in T is 2n — 2. Then, the selection of
the best possible pair {s,t} takes O(n?) operations.

A special case of this type of upper bound is obtained by restricting G* to be a
Hamiltonian circuit. Let H be the set of all Hamiltonian circuits. In this way the following
upper bound can be obtained:

P(A4,U..UA,) < 8 — max Z pi; + {sm}lngst (60)

{ig}eH <)

The second term of the right-hand side is equivalent to a travelling salesman problem which

1s known to be NP-hard. But plenty of good and fast heuristics are available to generate
approximate solutions.
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8 Comparision with the Aggregated Upper Bound
The optimal value of the maximization problem (2) with m = 2 is
2
S — =5,
n

as it is shown by Kwerel (1975a), Sathe, Pradhan and Shah (1980), and Boros-Prékopa
(1989). In this section a general lemma is proved, which makes it easy to prove for a wide
class of upper bounds, that they are at least as good as the corresponding aggregated ones.

Lemma 8.1 Let N' = {{i,j} | 1 <i,j <mji# 5}, N> ={1,2,....r}, where r = ( g )}

and assume that the function p : N* — N? defines a one-to-one correspondence between the
two sets. Let wy, ..., w, be any real numbers satisfying the equation

-
ij = n—1.
=1

Finally, let © be any permutation of the set { 1,...,n }. Then we have the inequality:

n—1 n 2
Max > W) Pontia(i)) > S (61)
i=1 j=itl

Proof The left-hand side of the inequality is the maximum of some numbers. The average
of the same numbers is

1 n-1 n
=220 D W) Poleti)x(s)-
Com og=1 j=i+1
The symmetricity of the expression implies that all p’s must have the same coefficient in the
sum, which is

Y

st Dii1 Woing) _ 2
n n
2

as there are n! permutations, the number of w’s is , and their sum is n — 1. Thus, the

n
2
above average is equal to the right-hand side of the inequality. Hence the statement follows
immediately.

Remark The proof does not use any property of the p’s, hence the statement holds
for any vector p € Rn(n2_l), and Sy = Y0t > i—iv Pij-

In the statement the w’s represent a fixed structure and the permutation of the p’s

ensures that the best sample is chosen which is isomorphic with the fixed structure. For
example, the statement that Hunter’s bound is at least as good as the aggregated bound,
follows from the lemma in two steps. First, the vector w is fixed in such a way that it
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represents a certain tree structure. The best tree is selected which is isomorphic with this
structure. Then, we look at all tree structures and the best of bests gives Hunter’s bound.
But 1t follows from the lemma that the best of any tree structure is at least as good as the
aggregated bound.

Assume that if the vector (1,1, ..., 1, —wy, ..., —w?) € R"™" represents a dual feasible
solution to problem (11). Then Lemma 8.1 is applicable and

n—1 n 2
Sy—max ) D Wi Poni) < 51— o

=1 j=i+1

9 Some Special Problem Classes

In this section we show that any upper bound mentioned in Section 7 corresponds to at least
one problem class containing (for every n) a problem such that the upper bound coincides
with the actual value of P(A; U...U A,).

Lemma 9.1 If the vector (1,...,1, —wya, ..., —w,_1,)T € R™S™ i a feasible solution of the
dual of the mazimization problem, and for every iy the inequality w;; > 0 emplies that w;; = 1,
then there is a problem instance such that the upper bound is equal to P(A1 U ...U A,).

Proof The upper bound is

Sl — Z Z Wi;Dij-

=1 j=1+1

If Aq,..., A, are events such that p;, = 1/n (1 <¢ < n) and if ¢ # j then

% if Wi; = 1
pij o { 0 lf wij S 0, (62)

then the following equations hold

n-1 n
P(AjU...UA,)=1- E(l’])n:z’w”:l ! =5 — Z Z Wi Pij s
i=1 j=i+1
i.e., the statement of the lemma is true. These events Ay, ..., A, can be constructed in the
following way. Let wi,...,w,2 be n? mutually exclusive events. Let the probability of each
w; be 1/n?. Let A = wy U ... Uw,. Ifw;s < 0, then we define 4y = w1 U ... U wa,,
otherwise let As = w; Uwpi1 U ... Uwsy,_1. Assume that A;, ..., A;_; are determined and

Aj = wp, U Uy, if 1 <7 <4 —1,1ie. the set of the indices of w;’s contained in the
composite event A; is { kj1, ...,k }. Let {l,.... L} ={7: 1<j<i—1, w;; =1}. Then,
let A; = Wiy ; U Uwgg  Uwg 1 U Vg et Thus, A; and A; are mutually exclusive
if w;; <0, otherwise p;; = 1/n®. O
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10 Conclusions

In order to create lower and upper bounds for the probability of the union of events, ar-
ranged in a finite sequence, a simple and frequently efficient method is the one provided by
the discrete binomial moment problems. These are LP’s, where the right-hand side numbers
are some of the binomial moments 57, Ss,... . Since Si 1s the sum of joint probabilities of
k-tuples of events, these LP’s are called aggregated problems. Better bounds can be ob-
tained if we use the individual probabilities in the sums of all S} binomial moments that
turn up in the aggregated problem. However, the LP’s based on these, called the disaggre-
gated problems, may have huge sizes, in general, and we may not be able to solve them or
they are computationally intensive. In the present paper we have shown that third types of
problems, which can be placed in between the aggregated and disaggregated problems, can
combine solvability and very good bounding performance, at least in many cases. Two gen-
eral aggregation/disaggregation methods are presented. The first one creates subproblems
corresponding to the individual events. The second one subdivides the event sequence into
subsequences and then applies existing multivariate binomial moment bounding technique
to improve on the univariate bounds. We have also presented an improvement on Hunter’s
upper bound, where we have used S; and the probabilities in the sum designated by Ss.
Both Hunter’s bound and its improvement can be associated with the Boolean probability
bounding scheme, and some aggregation procedures.
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