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Bounding the Probability of the Union of

Events by the Use of Aggregation and

Disaggregation in Linear Programs

Andr�as Pr�ekopa B�ela Vizv�ari G�abor Reg�os Linchun Gao

Abstract� Given a sequence of n arbitrary events in a probability space� we as

sume that the individual probabilities as well as some or all joint probabilities of

up to m events are known� where m � n� Using this information we give lower
and upper bounds for the probability of the union� The bounds are obtained as
optimum values of linear programming problems or objective function values corre


sponding to feasible solutions of the dual problems� If all joint probabilities of the
k
tuples of events are known� for k not exceeding m� then the LP is the large scale

Boolean probability bounding problem� Another type of LP is the binomial moment
problem� where we assume the the knowledge of some of the binomial moments of

the number of events which occur� The two LP�s can be obtained from each other
by aggregation�disaggregation procedures� In this paper we de�ne LP�s which are

obtained by partial aggregation�disaggregation from these two LP�s� This way we
can keep the size of the problem low but can produce very good bounds in many

cases� One of our new results is a generalization of Hunter�s upper bound for the
probability of the union of events� Numerical examples are presented�
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� Introduction

The problem to compute or approximate the probability of the union of events� i�e�� the event
that at least one of them occurs� frequently comes up in applications of probability theory�
statistics� reliability theory� stochastic programming� and other stochastic sciences� Typical
example is the reliability problem of communication networks� where the arcs randomly
work or fail and we want to compute or approximate the node�to�node or the all terminal
reliability of the system� The former one means the probability that there exists at least
one path� connecting two designated nodes such that all arcs in it are working� The latter
one looks for the probability of the existence of at least one spanning tree consisting of all
working arcs� For descriptions of a number of applications the reader is referred to Barlow
and Proschan ��	
��� N�H� Roberts et al� ��	
��� F� Roberts et al� �eds�� �		���

Sometimes we want to compute or approximate the probability of the intersection of
events� In this case the formula P �A� � ��� � An� � � � P � �A� � ��� � �An� can be used
along with a method to compute or approximate the probability of the union� In probability
theory and statistics we are frequently facing with the problem to approximate values of
the joint probability distribution function of some random variables X�� ����Xn� This means
that the probability of the joint occurence of the events Xi � zi� i � �� ���� n has to be
approximated� Similar problem comes up in stochastic programming� where constraints of
the type P �gi�x� � Xi� i � �� ���� n� � p are formulated and the solution methods
require the subsequent evaluation of the constraining function values �see Pr�ekopa ��		����
As multivariate probability distributions are more and more important in many applications�
more and more emphasis is on �nding good approximation methods for the probability of
the union�

A classical formula� that gives the probability of the union of events A�� ���� An in terms
of the intersection probabilities of the same events� is the inclusion�exclusion formula�

P �A� � ��� �An� � S� � S� � ��� � ����n��Sn�

where
Sk �

X
��i������ik�n

P �Ai� � ��� �Aik��

The use of this formula in practice is limited� however� if the number of events is large� In
this case the calculation of S�� S�� ��� breaks down at some point� leaving us with the task to
create lower and upper bounds for P �A� � ��� �An�� based on S�� ���� Sm� for some m � n�

The well�known Bonferroni ��	�
� bounds� stating that

P �A� � ���� An� � S� � S� � ���� ����m��Sm�

if m is even� and

P �A� � ���� An� � S� � S� � ���� ����m��Sm�

if m is odd� are� on the other hand� weak� in general�
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To obtain the best possible� or sharp lower and upper bounds in terms of S�� ���� Sm�
Pr�ekopa ��	

� has formulated linear programming problems with objective function to be
minimized or maximized� respectively� These yield lower and upper bounds of the form

mX
i��

xiSi � P �A� � ���� An� �
mX
i��

yiSi�

where x � �x�� ���� xm�T and y � �y�� ���� ym�T are the optimal dual solutions to the minimiza�
tion and maximization problems� respectively� We also know �see Pr�ekopa ��	

� and Boros
and Pr�ekopa ��	
	�� that the components of x and y have alternating signs� starting with
�� and jx�j � ��� � jxmj� jy�j � ��� � jymj�

The bounds for the probability of the union become better� if we use the available in�
formation in more detailed form� i�e�� we use individually the probabilities in the sums Sk�
k � �� ����m� A classical result in this respect is Hunter�s upper bound �Hunter��	
���
which states that if we create the n�node complete graph and assign the weight P �Ai �Aj�
to the arc fi� jg� then

P �A� � ��� �An� � S� �
X

�i�j��T

P �Ai �Aj��

where T is the heaviest spanning tree in the graph�
Bounding problems� where we use S�� ���Sm� will be called aggregated problems and those�

where we use the individual probabilites in the sums� will be called disaggregated problems�
The purpose of the paper is to improve on existing bounds for the probability of the union
of the events by the use of partial aggregation�disaggregation�

Let A�� ���� An be arbitrary events in some probability space� and introduce the notations

P �Ai� � ��� �Aik� � pi����ik � � � i� � ��� � ik � n�

then we have
Sk �

X
��i������ik�n

pi����ik� k � �� ���� n�

Let S� � �� by de�nition� If � designates the number of those events �among A�� ���� An�
which occur� then we have the relations �see� e�g�� Pr�ekopa ��		����

E

��
�
k

��
� Sk� k � �� ���� n� ���

The equations ��� can be written in the more detailed form

nX
i��

�
i
k

�
vi � Sk� k � �� ���� n�

where vi � P �� � i�� i � �� ���� n�
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The values Sk are called the binomial moments of �� If we know all binomial moments
of �� then the probabilities v�� ���� vn� and also P �A� � ��� � An� � v� � ��� � vn can be
determined� If� however� we only know S�� ���� Sm� where m � n� then we look for bounds
on the probability of the union� To obtain them we formulate two closely related types of
linear programming problems �see Pr�ekopa ��	

� �		�� �		��� �

min�max�
nX
i��

xi

subject to ���
nX
i��

�
i
k

�
xi � Sk� k � �� ����m

xi � �� i � �� ���� n�

and

min�max�
nX
i��

xi

subject to ���
nX
i��

�
i
k

�
xi � Sk� k � �� ����m

xi � �� i � �� ���� n�

Problems ��� can be obtained from problems ��� by removing the constraint corresponding
to k � � and the variable x�� The optimal values of problems ��� will be called the sharp
lower and upper bounds for the probability of the union� The optimal values of problems ���
and ��� are in the following simple relationship� The optimum values of the two minimization
problems coincide� If Vmax is the optimum value of the maximization problem ���� then the
optimum value of the maximization problem ��� is min�Vmax� ���

The reason why we look at problems ��� too� and not only at problems ���� is that it is
easier to generate the bounds by the use of problems ����

In addition to the optimum values of the above problems� any dual feasible basis of any
of the minimization �maximization� problems provides us with a lower �upper� bound for
the optimum value� hence also for the probability of the union� A basis in a linear program
is called dual feasible if the optimality condition� written up with that basis� is satis�ed� For
a brief presentation of the main concepts and algorithms of linear programming the reader
is referred to Pr�ekopa ��		���

Lower and upper bounds for the probability that at least one out of n events occurs�
based on the knowledge of S�� ���� Sm� were found by Bonferroni ��	�
�� These bounds are
not sharp� For the case of m � �� sharp lower bound for this probability was proposed by
Dawson and Sanko� ��	�
�� For the case of m � � other results are due to Galambos ��	

��
and Sathe� Pradhan and Shah ��	
��� By the use of linear programming� Kwerel ��	
�a�b�
derived sharp bounds for the case of m � �� For a general m� the linear programs ��� and ���
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have been formulated and analyzed by Pr�ekopa ��	

� �		��� He also presented simple dual
type algorithms to solve the problems� Boros and Pr�ekopa ��	
	� utilized these results and
presented closed form sharp bounds� for the case of m � �� and other closed form bounds�
The closed form bounds for m � � are the following�

Lower bound� using S�� S� �Dawson� Sanko� ��	�
���

P �A� � ��� �An� �
�

h � �
S� �

�

h�h � ��
S�� ���

where

h � � �
�

�S�
S�

�
�

Upper bound� using S�� S� �Kwerel ��	
�a�� Sathe� Pradhan and Shah ��	
����

P �A� � ��� �An� � minfS� �
�

n
S�� �g� ���

Lower bound� using S�� S�� S� �Kwerel ��	
�b�� Boros and Pr�ekopa ��	
	���

P �A� � ��� �An� �
h � �n � �

�h � ��n
S� �

���h � n� ��

h�h � ��n
S� �

�

h�h � ��n
S��

where

h � � �

�
��S� � ��n� ��S�
��S� � �n� ��S�

	
� ���

Upper bound� using S�� S�� S� �Kwerel ��	
�b�� Boros and Pr�ekopa ��	
	���

P �A� � ���� An� � min

�
S� �

���h� ��

h�h � ��
S� �

�

h�h � ��
S�� �

�
� �
�

where

h � � �
�

�S�
S�

�
�

Upper bound� using S�� S�� S�� S� �Boros and Pr�ekopa ��	
	���

P �A� � ���� An� � min

�
S� �

���h � ���h� �� � ��h � ��n�

h�h � ��n
S�

�
���h � n � ��

h�h � ��n
S� �

��

h�h � ��n
S�� �

�
� �
�

where

h � � �

�
�n� ��S� � ��n � ��S� � ��S�

�n � ��S� � �S�

	
�
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A closed form lower bound for the last case also exists� but it is too complicated� therefore
we disregard its presentation�

Problems ��� and ��� use the probabilities pi����ik in aggregated forms� i�e�� S�� ���� Sm are
used rather than the probabilities in these sums� This way we trade information for simplicity
and size reduction of the problems� We call ��� and ��� aggregated problems�

The linear programs which make us possible to use the probabilities pi� ���ik � � � i� � ��� �
ik � n individually� will be called disaggregated� and can be formulated as follows� Let D�

be the n � �n � � matrix� the columns of which are formed by all ����component vectors
which are di�erent from the zero vector�

Let us call the collection of those columns of D�� which have exactly k components equal
to �� the kth block� � � k � n� Assume that the columns in D� are arranged in such a way
that �rst come all vectors in the �rst block� then all those in the second block� etc� Within
each block the vectors are assumed to be arranged in a lexicographic order� where the ��s
precede the ��s� Let d�� ���� dn designate the rows of D�� and de�ne the matrix Dk� � � k � m�
as the collection of all rows of the form� di����dik � where the product of the rows di� � ���� dik is
taken componentwise� Assume that the rows in Dk are arranged in such a way that the row
subscripts �i�� ���� ik� admit a lexicographic ordering� where smaller numbers precede larger
ones� Let

A �



BBBBBB�

D�

�
�
�

Dm

�
CCCCCCA
�

In addition� we de�ne the matrix �A by

�A �



BBBBBBBB�

� �T

� D�

� �
� �
� �
� Dm

�
CCCCCCCCA
�

where � is the �n � ��component vector� all components of which are �� and the zeros in the
�rst column mean zero vectors of the same sizes as the numbers of rows in the corresponding
Di matrices�

Let pT � �pi����ik � � � i� � ��� � ik � n� k � �� ����m�� where the order of the components
follow the order of the rows in A� and �pT � ��� pT �� The disaggregated problems are�

min�max�fTx

subject to �	�

Ax � p

x � ��
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and

min�max� �fT �x

subject to ����
�A�x � �p

�x � ��

where fT � ��� ���� ��� and �fT � ��� fT �� �xT � �x�� xT ��
The duals of the above problems are�

max�min�pTy

subject to ����

ATy � ��� f�

and

max�min��pT �y

subject to ����
�AT �y � ��� �f �

where �yT � �y�� yT �� Since the dual vector y multiplies the vector p in problem ����� it is
appropriate to designate the components of y by yi����ik� � � i� � �� � ik � n� k � �� ����m�

The more detailed form of problems ���� is the following�

max�min�
mX
k��

X
��i������ik�n

pi����ikyi����ik

subject to ����
mX
k��

X
� � i� � ��� � ik � n

yi����ik � ��� ��

and the more detailed form of problems ���� can be written as�

max�min�


�
�y� �

mX
k��

X
��i������ik�n

pi����ikyi����ik

��
�

subject to ����

y� �
mX
k��

X
� � i� � ��� � ik � n

yi����ik � ��� ��

The probability bounding schemes ��������� can be attributed to George Boole ��
����
A detailed account on it was presented by Hailperin ��	���� Kounias and Marin ��	
�� made
use of problem ���� to generate bounds for the case of m � ��
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The optimum values of the minimization problems �	� and ���� are the same� The
optimum values of the maximization problems �	� and ���� are also the same provided
that the optimum value corresponding to �	� is smaller than or equal to �� Otherwise� the
optimum value of problem ���� is ��

Another way to come to problems �	� and ���� is the following� De�ne

aIJ �

�
�� if I � J
�� if I �� J

vJ � P ���j�JAj� � ��j� 	J
�Aj��

pI � P ��j�JAj�

for any I� J � f�� ���� ng� Then we have the equation

X
J�f������ng

aIJvJ � pI � I � f�� ���� ng�

With these notations problems �	� can be written up in the following way

min�max�
X

���J�f������ng

xJ

subject toX
���J�f������ng

aIJxJ � pI � j I j� m

xJ � �� J � f�� ���� ng�

The new form of problems ���� can be obtained from here if we remove the restriction 	 �� J
from the constraints��

In Section � we outline the connection between the aggregated and disaggregated prob�
lems� In Sections �� �� �� � we present two di�erent aggregation�disaggregation methods and
numerical examples� In Sections 
 and 
 graph structures are exploited to obtain bounds�
Finally� in Section 	 and �� we make some examples and present conclusions�

� Connection Between the Aggregated and Disaggre�

gated Problems

Any feasible solution of problems �	� gives rise� in a natural way� to a feasible solution of
problems ���� Similarly� any feasible solution of problems ���� gives rise to a feasible solution
of problems ����

Conversely� any feasible solution of the aggregated problem ��� or ��� gives rise to a
feasible solution of the corresponding disaggregated problem� In fact� we obtain problems
�	� or ���� from problems ��� or ��� in such a way that we split rows and columns� Splitting
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a column in the aggregated problem means its representation as a sum of columns taken
from the corresponding disaggregated problem�

Another question is that which bases in the aggregated problem produce bases� by split�
ting columns� in the disaggregated problem� We can create simple examples in case of the
minimization problem ���� when m � �� The corresponding disaggregated problem we

has n �

�
n
�

�
rows� The ith and jth columns in problem ��� split into

�
n
i

�
and

�
n
j

�

columns� respectively� A necessary condition that these columns form a basis in problem �	�

is that

�
n
i

�
�

�
n
j

�
� n �

�
n
�

�
� where i � j� This condition holds if i � � and j � ��

or i � n� � and j � n � �� On the other hand these are in fact bases in problem �	�� as it
is easy to see�

The structures of the dual feasible bases of problems ��� and ��� have been discovered
by Pr�ekopa ��	

� �		��� We recall the relevant theorem concerning problem ����

Theorem ��� Let a�� ���� an designate the columns of the matrix of problems ��� and I �
f�� ���� ng� j I j� m� Then� fai� i 
 Ig is a dual feasible basis if and only if I has the
structure�

m even m odd
min problem h� h � �� ���� j� j � � h� h � �� ���� j� j � �� n
max problem �� h� h � �� ���� j� j � �� n �� h� h � �� ���� j� j � ��

In view of this theorem� the �rst n �

�
n
�

�
columns of the matrix of problem ����� i�e�

the columns in the �rst two blocks� form a dual feasible basis in the minimization problem

���� Similarly� the n�

�
n
�

�
columns in the second to the last� and third to the last blocks of

problem �	� form a dual feasible basis in the same problem� The corresponding dual vectors
can be computed from the equations produced by the aggregated problems�

�y�� y���a�� a�� � ��� ���

and
�y�� y���an��� an��� � ��� ���

respectively� The detailed forms of these equations are�

y� � �
�y� � y� � �

and

�n� ��y� �

�
n� �

�

�
y� � �

�n� ��y� �

�
n� �

�

�
y� � ��
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respectively� The �rst system of equations gives y� � �� y� � ��� and the second one gives�
y� � ���n � ��� y� � ����n � ���n � ��� If we assign y� � � to all vectors in the �rst
block and y� � �� to all vectors in the second block of problem �	�� then we obtain the dual
vector corresponding to the �rst dual feasible disaggregated basis� Similarly� if we assign
y� � ���n��� to all vectors in block n�� and y� � ����n����n��� to all vectors in block
n�� of problem �	�� then we obtain the dual vector to the other dual feasible disaggregated
basis� The �rst dual vector gives the Bonferroni lower bound�

P �A� � ��� �An� �
nX
i��

pi �
X

��i�j�n

pij � S� � S��

The second dual vector gives the lower bound

P �A� � ���� An� �
�

n� �
S� �

�

�n� ���n � ��
S��

The optimal lower bound� produced by the aggregated problem ���� corresponds to that dual
feasible basis �ah� ah
�� which is also primal feasible� This gives h � � � b�S��S�c� and the
bound is the same as given by ����

If we want to �nd the sharp lower bound for P �A� � ��� � An�� by the use of problem
�	�� for m � �� then we may start from any of the above mentioned two dual feasible bases
and use the dual method of linear programming� to solve the problem� Since we want lower
bound� we have a minimization problem� This suggests that the second dual feasible basis
is a better one to serve as an initial dual feasible basis� The reason is that in blocks n � ��
and n� � the coe�cients of the variables are larger� and since it is a minimization problem�
we may expect that we are closer to the optimal basis than in case of the �rst dual feasible
basis�

Numerical Example� Let n � �� and assume that

p� � ���� p� � ���� p� � ���� p� � ���� p� � ���� p� � ����
p�� � ���� p�� � ���� p�� � ���� p�� � ���� p�� � ����
p�� � ���� p�� � ���� p�� � ���� p�� � ����
p�� � ���� p�� � ���� p�� � ����
p�� � ���� p�� � ����
p�� � ����

We used the dual method to solve the minimization problem �	�� As initial dual feasible
basis we chose the collection of vectors in blocks n�� � � and n�� � �� These vectors have
indices ��� ���� ��� After twenty iterations an optimal basis was found� the indices of which
are�

�� ��� � �� ��� ��� � �� ��
 ��	 ��� ��
 ��	 ��� ��� ��� ��
 � �� ��� ��� � �� ��� ����
The basic components of the primal optimal solution are�
x�� � ����� x�� � ����� x�� � ����� x�� � ����� x�� � ���
� x�� � ����� x�
 � �����

x�� � ����� x�� � ����� x�
 � ����� x�� � ����� x�� � ����� x�� � ����� x�� � ����� x�
 � �����
x�� � ���
� x�� � ����� x�� � ����� x�� � ����� x�� � ����� x�� � �����
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The components of the dual optimal solution are�

y� � ���� y� � ���� y� � ���� y� � ��
� y� � ����� y� � ���� y�� � ����� y�� � �����
y�� � ����� y�� � ���� y�� � ����� y�� � ����� y�� � ����� y�� � ���� y�� � ����� y�� � �����
y�� � ���� y�� � ����� y�� � ���� y�� � ����� y�� � ����

The optimum value equals ��
�� The optimum value corresponding to the aggregated
problem is ��
��

In this example we generated the right�hand side vector p for problem �	� in such a
way that we de�ned x� � �x�j � j � �� ���� ���T � where x�j is di�erent from zero only if
j � �k� k � �� ���� ��� and for these j values we made the assignments x�j � ����� then we set

p � Ax�� In this case
P��

j�� x
�
j � ��
� and x�� � ����� The optimum value of the maximization

problem �	� is ��

� Bounds� using partial aggregation and disaggrega�

tion

Let Xi � �� if Ai occurs and Xi � �� otherwise� i � �� ���� n� Then we have

� � X� � ���� Xn

and �see e�g�� Pr�ekopa ��		����

�
�
k

�
�

X
��i������ik�n

Xi� ���Xik ����

which implies equation ���� A simple consequence of equation ���� is

Theorem ��� For k � � we have

Xi

�
� � �
k � �

�
�

X
� � i� � ��� � ik � n

i 
 fi�� ���� ikg

Xi����Xik ����

and

E

�
Xi

�
� � �
k � �

��
�

X
� � i� � ��� � ik � n

i 
 fi�� ���� ikg

pi����ik � ��
�

Let us introduce the relation

xij � P �X � �� � � j��
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In view of ��
� we have the equations

nX
j��

�
j � �
k � �

�
xij �

X
� � i� � ��� � ik � n

i 
 fi�� ���� ikg

pi����ik� ��
�

If we introduce the new variables yij � xij�j� then ��
� can be rewritten as

nX
j��

�
j
k

�
yij �

�

k

X
� � i� � ��� � ik � n

i 
 fi�� ���� ikg

pi����ik� ��	�

In addition� we have the following simple theorem

Theorem ��� The following equation holds�

nX
i��

nX
j��

yij � P �A� � ��� �An�� ����

We omit the proof�
By the use of ��	� and ���� we formulate linear programming problems for bounding the

probability P �A� � ��� �An��

min�max�
Pn

i��

Pn
j�� yij

subject toPn
j��

�
j
k

�
yij � S

�

ik� k � �� ����mi

yij � �� i� j � �� ���� n�

����

where � � mi � n� i � �� ���� n and

S
�

ik �
�

k

X
� � i� � ��� � ik � n

i 
 fi�� ���� ikg

pi� ���ik� i� k � �� ���� n�

Let L�U� designate the optimum value of the minimization �maximization� problem �����
Also� let Li�Ui� designate the optimum value of the minimization �maximization� problem�

min�max�
Pn

j�� yij
subject toPn

j��

�
j
k

�
yij � S

�

ik� k � �� ����mi

yij � �� j � �� ���� n�

����
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The minimization �maximization� problem ���� splits into the n minimization �maxi�
mization� problems ����� The matrix of the equality constraints in ���� has the matrices
of ���� in its main diagonal and the objective function in ���� is the sum of the objective
functions in ����� This implies that

L � L� � ��� � Ln

U � U� � ��� � Un

����

L � P �A� � ���� An� � U� ����

In addition� if Li �Ui� is de�ned as the objective function value corresponding to any dual
feasible basis in the minimization �maximization� problem ����� � � i � n� then with the
L and U � de�ned by ����� the relations ���� hold true as well �but may not be as good as
those� corresponding to the optimum values��

Problems ���� can be obtained from problems �	� by aggregation �of variables and con�
straints� and each problem ���� can be obtained from problem ��� by disaggregation� This
implies that both bounds in ���� are at least as good as the corresponding binomial moment
bounds�

The following examples are based on known binomial moment bounds �see Pr�ekopa
��		��� Sections �������������

Example �� We mentioned in Section � the binomial moment lower bound for the case
of m � � �Dawson�Sanko� bound�� Using this and ���� we obtain

P �A� � ���� An� �
nX
i��

�
�

hi � �
S

�

i� �
�

hi�hi � ��
S

�

i�

�
� ����

where

hi � � �

�
�S

�

i�

S
�

i�

	
� i � �� ���� n�

This is the lower bound obtained by Kuai� Alajaji and Takahara ������ which generalizes
De Caen�s ��			� lower bound�

Example �� If m � �� then the optimum value of the maximization problem ��� equals

minfS� �
�

n
S�� �g�

This implies that

P �A� � ��� �An� � min

�
nX
i��

�S
�

i� �
�

n
S

�

i��� �

�
� ����

Example �� If m � �� then the optimum value of the minimization problem ��� equals

h � �n � �

�h � ��n
S� �

���h � n� ��

h�h � ��n
S� �

�

h�h � ��n
S��
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where

h � � �

�
��S� � ��n� ��S�
��S� � �n� ��S�

	
� ��
�

Thus we have the lower bound

P �A� � ��� �An� �
nX
i��

�
hi � �n � �

�hi � ��n
S

�

i�

�
���hi � n� ��

hi�hi � ��n
S

�

i� �
�

hi�hi � ��n
S

�

i�

�
� ��
�

where

hi � � �

�
��S

�

i� � ��n� ��S
�

i�

��S
�

i� � �n� ��S
�

i�

	
� i � �� ���� n�

Example �� By the use of the optimum value of the maximization problem ���� for
the case of m � �� we obtain the new bound�

P �A� � ���� An� �

min

�
nX
i��

�
S

�

i� �
���hi � ��

hi�hi � ��
S

�

i� �
�

hi�hi � ��
S

�

i�

�
� �

�
� ��	�

where

hi � � �

�
�S

�

i�

S
�

i�

	
� i � �� ���� n�

Example �� If we use the optimum value of the maximization problem ��� for the case
of m � �� then the new bound is obtained as

P �A� � ��� �An� � min

�
nX
i��

�
S

�

i� � �
�hi � ���hi � �� � ��hi � ��n

hi�hi � ��n
S

�

i�

� �
�hi � n� �

hi�hi � ��n
S

�

i� �
��

hi�hi � ��n
S

�

i�

�
� �

�
� ����

where

hi � � �

�
���S

�

i� � ��n� ��S
�

i� � �n� ��S
�

i�

�n� ��S
�

i� � �S
�

i�

	
� i � �� ���� n�

� Numerical Examples for Section �

In this section we present two examples to show how the new method improves on the
bounds� In both examples we subdivide the collection of events A�� ���� An into two groups�
For those events Ai which belong to the �rst group we create lower and upper bounds based
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on S
�

i�� S
�

i�� S
�

i� and the linear programs ����� For those events Aj which are in the second
group we use S

�

j�� S
�

j� and the linear programs ���� to create the bounds� The values ���� and
���� provide us with the overall bounds� If we apply suitable subdivision of the collection
of events� we may be able to save a lot of computing time� Below we discuss and present
numerical results in connection with three subdividing strategies that we call order� greedy
and passive� The order method means that we enlist each event that belongs to the �rst half
of the sequence� written up in the original order� into the �rst group and all other events
go to the second group� To describe the other two methods �rst we arrange the events in
such a way that their probabilities form a decreasing sequence� The greedy method means
that the �rst �second� half of the events belongs to the �rst �second� group� The passive
method does just the opposite� The �rst �second� half of the events belongs to the second
��rst� group�

Example�� First we look at one of the examples presented in Kuai� Alajaji and
Takahara ������ p��
�� There are � events in the example� A�� ���� A�� The sample space has
�� elements �� �� ���� �� with probability x�� x�� ���� x�� respectively� The events are de�ned by
the matrix R � �rij� in ����� where rij � �� if i 
 Aj� otherwise rij � �� We have
x� � ������ x� � ������ x� � ������ x� � ������ x� � ������ x� � ������ x� � ������ x
 �
������ x� � ������ x�� � ������ x�� � ����
� x�� � ���

� x�� � ���

� x�� � ���

� x�� �
���
	�

The lower and upper bounds for the system are presented in Table ��

Column � in Table � contains the bounds obtained by ��� and ���� Column � contains
the bounds presented in ���� and ����� Column �� �� � contain the bounds obtained by the
passive� order and greedy subdivisions of the events into two groups� The word �Mixture�
refers to the fact that in each of these bounds two and three binomial moments are used
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Table �� Results for Example �
Bound S�� S� S

�

i�
� S

�

i�
Mixture �passive� Mixture �order� Mixture �greedy� S

�

i�
� S

�

i�
� S

�

i�

Lower ��������� ���		
��� ���		
��� ����
���� ����
���� ����
����
Upper 
�������� 
�������� 
�������� ��
��
��� ��
��
��� ��
��
���

R� �
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� � � � � � � � � � � � � � � � � � � �
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in a mixed manner� computed by ����� ����� ��
� and ��	�� Column � contains the bounds
where in case of each Ai three binomial moments are used� We use the same notations in
other tables in this section�

Table � shows that the passive method does not prove to be a good strategy� More
information is used to compute the bounds in Column �� but there is no increase in them as
compared to those in column �� On the other hand both the order and the greedy method
produce the same bounds as what are contained in the last column�

Example�� This is an extension of example �� We de�ne three event sequences
Akj � j � �� ���� �� � k � �� �� �� The elementary events are again �� ���� �� and x�� ���� x�� are
the corresponding probabilities respectively� De�ne the matrices Rk � �rk�ij� where rk�ij � �
if i 
 Akj and rk�ij � � if i �
 Akj� k � �� �� ��

System �� x� � ��������

� x� � ���������
� x� � ������
���� x� � �����	
�
��
x� � �����
���
� x� � ������
���� x� � �����	���	� x
 � ������
���� x� � ����������
x�� � ��������
�� x�� � ����
�
���� x�� � ���

�
���� x�� � ���

��
��� x�� � ���




���
x�� � ���	������

System �� x� � ����
	������ x� � �����	���
� x� � ������	
��� x� � ����

	����
x� � ���������� x� � �����
����� x� � ���

������ x
 � �������		�� x� � ����	���
��
x�� � ��������
�� x�� � ���
����
	� x�� � ���

��
��� x�� � ������
��� x�� � ���	����	��
x�� � ����
�����
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� � � � � � � � � � � � � � � � � � � �
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System �� x� � �����
�

� x� � �����		�� x� � ����������� x� � �����
�
��� x� �
�����
����� x� � �������
�� x� � ���
����	�� x
 � ����
��	��� x� � �����
��	
� x�� �
����
������ x�� � ����
���	�� x�� � ���
���
��� x�� � ��������	�� x�� � �����


�	�
x�� � ����
�����

The upper bounds in all cases are equal to �� while the lower bounds for the di�erent
systems are presented in Table ��

In Table �� we can see that the bounds obtained by the use of S
�

i�� S
�

i� are much better
than those obtained by the use of S�� S�� We also observe that the bounds obtained by
the greedy method are much better than those obtained by the use of S

�

i�� S
�

i�� The greedy
method outperforms the other two mixture methods� Furthermore� if we compare the bounds
in column � and �� we see that the bounds obtained by the use of S

�

i�� S
�

i�� S
�

i� are only a little
better than those obtained by the greedy method�

Finally� let�s compare the results obtained by S�� S�� S� and the mixture methods� The
results are presented in Table ��

We notice in Table � that we have obtained better bounds �at least in most cases� by
any of the order and greedy mixture methods than what we have obtained by the use of the
binomial moments S�� S�� S��

� Another Method of Partial Disaggregation to Gen�

erate Bounds

In this section we split the sequence of events A�� ���� An into subsequences and apply to the
latter the bounding technique based on the multivariate binomial moment problem� The
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Table �� Results for Example �
System S�� S� S

�

i�
� S

�

i�
Mixture�passive� Mixture�order� Mixture�greedy� S

�

i�
� S

�

i�
� S

�

i�


 ��
	��	�� ��
�
�
�� ��
�
	� ��
��

�� ��

�	��� ��

����
	 ��
��


	 ���
����� ���


��� ���	����� ��������	 ������

� ��
�
���
 ������

	 ������
�
 ������

� ��������
 ����
���


Table �� Comparison of the results obtained by S�� S�� S� and mixture methods
System Bound S�� S�� S� Mixture �passive� Mixture �order� Mixture�greedy�

Example
 Lower ����	���� ���		
��� ����
�� ����
��
Example
 Upper ��

����� 
�������� ��
��
��� ��
��
���
Example	�
� Lower ��
���
�� ��
�
	��� ��
��

�� ��

�	���
Example	�	� Lower ��
����
� ���


��� ���	����� ��������	
Example	��� Lower �������� ������
�� ������

� ��������
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e�cient bounds are algorithmic rather than given by closed form formulas�
Let E�� ���� Es be pairwise disjoint nonempty subsets of the set f�� ���� ng exhausting the

set f�� ���� ng� and introduce the notation nj �j Ej j� j � �� ���� s�
Out of the events A�� ���� An we create s event sequences� where the ith one is fAi� i 


Ej� � � j � sg� Any of the events A�� ���� An is contained in one and only one event sequence�
For the events in these sequences we will use the alternative notations�

A��� ���� A�n�

��� ����

As�� ���� Asns�

Let Xij designate the number of those events which occur in the jth sequence� and

S������s � E

��
Xi�
��

�
���

�
Xis
�s

��

����

� � �j � nj� j � �� ���� s�

We formulate the multivariate binomial moment problem �see Pr�ekopa ��		�� �		
���

min�max�
n�X
i���

���
nsX
is��

fi����isxi����is

subject to ��
�
n�X
i���

���
nsX
is��

�
i�
��

�
���

�
is
�s

�
xi����is � S������s

�j � �� j � �� ���� s� �� � ���� �s � m

�i�� ���� is � xi����is � ��

The S������s ��� � ��� � �s � m� multivariate binomial moments can be computed from the
probabilities pi����ik �� � i� � ��� � ik � m�� In order to simplify the rule how to do this�
assume that E� � f�� ���� n�g� ���� Es � fn� � ��� � ns�� � �� ���� n� � ��� � nsg� Then� we have
the equality

S������s �
X

pi�����i��� ���is����is�s �

where the summation is extended over those indices which satisfy the relations

� � i�� � ��� � i��� � n�

���

n� � ���� ns�� � � � is� � ��� � is�s � n� � ���� ns�
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For example� if n � � and E� � f�� �� �g� E� � f�� �� �g� then

S�� � p� � p� � p�� S�� � p� � p� � p��
S�� � p�� � p�� � p��� S�� � p�� � p�� � p���

S�� � p�� � p�� � p�� � p�� � p�� � p�� � p�� � p�� � p���
S�� � p��� � p��� � p��� � p��� � p��� � p��� � p��� � p��� � p����

S�� � p���� � p���� � p���� � p���� � p���� � p���� � p���� � p���� � p����

etc�

We have yet to formulate suitable objective functions for problems ��
�� Since we want
to create bounds for the union of all events in ��
�� our choice is�

fi������is �


��
��

� if �i�� ���� is� � ��� ���� ��

� otherwise�
��
�

Problems ��
� reduce to problems ���� if s � �� and to problems ����� if s � n� Problems
��
� are disaggregated counterparts of problems ���� and aggregated counterparts of problems
����� Further notations are presented below�

Let P designate the probability that at least one out of A�� ���� An occurs� Let L �U�
designate the optimum value of the minimization �maximization� problem ���� and l �u�
designate the optimum value of the minimization �maximization� problem ��
��

By construction� we have the following inequality�

l � L � P � U � u� ��	�

In fact� the problems with optimum values l and u are aggregations of problems with optimum
values L and U � respectively�

The duals of problems ��
� are the following�

max�min�
X

�j � �� j � 
� ���� s


 � �� � ���� �s � m

y������sS������s

subject to ����X
�j � �� j � �� ���� s

� � �� � ���� �s � m

y������s

�
i�
��

�
���

�
is
�s

�
� ��� fi����is

� � ij � nj� j � �� ���� s

i� � ���� is � ��

In the left�hand sides of the constraints of problems ���� there are values of a poly�
nomial of the variables i�� ���� is� de�ned on the lattice points of the set �s

j����� nj�� Replacing



Page �� RRR ������

zj for ij� the m�degree polynomial takes the form

P �z�� ���� zs� �
X

�j � �� j � �� ���� s
�� � ���� �s � m

y������s

�
z�
��

�
���

�
zs
�s

�
� ����

Problems ��
� may serve to construct polynomials P �z�� ���� zs� of the type ���� for
one sided approximation of the function fz����zs which we will also designate by f�z�� ���� zs��
Our method consists of construction of dual feasible bases to problem ��
�� Each dual feasible
basis of problem ��
� determines a dual vector satisfying the inequalities ����� hence it also
determines a polynomial ����� which approximates the function f in a one�sided manner� If
the basis is dual feasible in the minimization �maximization� problem� then the polynomial is
entirely below �above� the function� given the polynomial� we replace Xi for zi� i � �� ���� n�
take expectation and obtain the lower �upper� bound�

Incidentally we make two remarks� Suppose that the matrix A of the linear pro�
gramming problem� min cTx� subject to Ax � b� x � �� has rank equal to its number of rows
m� Let T be an m�m non�singular matrix and formulate the problem� min cTx� subject to
�TA�x � Tb� x � �� Then a basis is primal �dual� feasible in one of these two problems if
and only if it is primal �dual� feasible in the other one� In fact� if A � �a�� ���� an�� then we
have the relations

�TB���Tb � B��b

ck � cTB�TB���Tak � ck � cTBB
��ak�

which imply the assertion�
Let us associate with problem ��
� a multivariate power moment problem in such a

way that we replace i��� � ���� i�s
s for

�
i�
��

�
���

�
is
�s

�
and the power moment �������s for the

binomial moment S������s on the right�hand side� A single linear transformation takes the
column vector in ��
��

��
i�
��

�
���

�
is
�s

�
� �j � �� j � �� ���� s� �� � ���� �s � m

�

into the vector

�i��� ���i�s

s � �j � �� j � �� ���� s� �� � ���� �s � m� �

The same transformation applies to the right�hand sides� The matrix of this transformation
is non�singular �it is also triangular�� Thus� the above remark applies� and therefore a basis
in the multivariate binomial moment problem is primal �dual� feasible if and only if the
corresponding basis in the multivariate power moment problem is primal �dual� feasible�
Thus� we can apply� without any change� the dual feasibility theorems proved in Pr�ekopa
��		
� Theorems ��� and ���� for our multivariate binomial moment problems�
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Let us associate the lattice point �i�� ���� is� 
 Rs with the vector

� �
i�
��

�
���

�
is
�s

�
� �j � �� j � �� ���� s� �� � ���� �s � m

�

of the matrix of the equality constraints of problems ��
�� Let B� and B� designate the
sets of vectors corresponding to the sets of lattice points

f�i�� ���� is� j ij � �� j � �� ���� s� i� � ���� is � mg� ����

and

f�n� � i�� ���� ns � is� j ij � �� j � �� ���� s� i� � ���� is � mg� ����

respectively� Then both B� and B� are bases in problem ��
�� It is easy to check that all
divided di�erences of the function ��
� are nonnegative �nonpositive� if m� � is odd �even��
Combining this with the above mentioned results� we can state

Theorem ��� The bases B� and B� are dual feasible bases in the following types of prob�
lems �	
�� where the objective function is given by �	���

m � � even m � � odd
B� max min
B� max max�

If a bound of this type is not satisfactory �e�g� a lower bound is negative� an upper
bound is greater than �� or it is not enough close to the other bound�� then we regard the
basis as an initial dual feasible basis� and carry out the solution of problem ��
� by the dual
method of linear programming� This way we obtain the best possible bound� at least for a
given subdivision E�� ���� Es of the set f�� ���� ng�

Note that problem ���� has � �n�

�
n
�

�
� ����

�
n
m

�
equality constraints and �n

variables� whereas problem ��
� has

�
s � m
m

�
constraints and �n� � ������ns � �� variables�

Thus� problem ��
� has a much smaller size than problem ����� in general� For example�
if n � ��� s � �� n� � n� � ��� m � �� then problem ���� has sizes ���� and ����
��
��
whereas problem ��
� has sizes �� and ����

To obtain the best possible bound which can be given by our method� one has to
maximize �minimize� the lower �upper� bound with respect to all subdivisions E�� ���� Es of
the set f�� ���� ng� In practice we use only a few trial subdivisions� and choose that one which
provides us with the best bound�

Another possibility to create lower �upper� bound for P �A� � ��� � An� is that we
create upper �lower� bound for P � �A� � ��� � �An� and then subtract from � the obtained
values� In this case we have to write up problems ��
� with new right�hand side values and
new objective function� The new right�hand side values are �S������s� de�ned in the same
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way as we have de�ned S������s but in this case we use the complementary events� The new
objective function is

fi������is �


��
��

� if �i�� ���� is� � �n�� ���� ns�

� otherwise�
����

It is easy to check that all divided di�erences of any order of the function ���� are
nonnegative� Combining this with Theorem ��� in Pr�ekopa ��		
� we obtain

Theorem ��� The bases B� and B� are dual feasible bases in the following types of prob�
lems �	
�� where the objective function is given by �����

m � � even m � � odd
B� min min
B� min max�

The polynomials determined by the bases B� and B� can be taken from Pr�ekopa
��		
�� They are multivariate Lagrange interpolation polynomials with base points ���� and
����� respectively� We designate them by L��z�� ���� zs�� and L��z�� ���� zs�� respectively� and
present them �rst in Newton�s form�

L��z�� ���� zs� �

����

X
i� � ���� is � m

� � ij � nj� j � �� ���� s

��� ���� i�� ���� �� ���� is� f �
sY

j��

ij��Y
h��

�zj � h�

and

L��z�� ���� zs� �

����

X
i� � ���� is � m

� � ij � nj � j � �� ���� s

�n� � i�� ���� n�� ����ns� is� ���� ns� f �
sY

j��

nj��Y
h�nj�ij
�

�zj � h��

Since we are given the multivariate binomial moments rather than the power moments� we
rewrite these polynomials in other forms� In case of the function ��
� we have L��z�� ���� zs� �
�� and

L��z�� ���� zs� �
X

��i�
���
is�m

����i�
���
is��
�
z�
i�

�
���

�
zs
is

�
� ��
�
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In case of the function ���� we have L��z�� ���� zs� � �� and

L��z�� ���� zs� �

� �
X

� � i� � ���� is � m
� � ij � nj� j � �� ���� s

����i�
���
is
�
n� � z�

i�

�
���

�
ns � zs
is

�
� ��
�

Theorem ��� and ��� tell us the following� If f is the function ��
� and L��z�� ���� zs�
is the polynomial ��
�� then

L��z�� ���� zs� � ��� f�z�� ���� zs�� ��	�

if m� � is even �odd�� if L��z�� ���� zs� is the polynomial ��
�� then

L��z�� ���� zs� � f�z�� ���� zs�� ����

no matter if m � � is even� or odd� If f is the function ����� then we have the inequalities

L��z�� ���� zs� � f�z�� ���� zs�� ����

no matter if m � � is even� or odd� and

L��z�� ���� zs� � ��� f�z�� ���� zs�� ����

if m� � is even �odd��

� Numerical Examples for Section �

We present two examples� Both are based on the knowledge of some of binomial moments
Sij� the numerical values of which are presented� However� we disregard the presentation of
the events themselves�

Example �� Let n � ��� n� � n� � ��� m � �� and assume that we have obtained
the following numbers�

S�� � S�� � ���� S�� � S�� � ��� S�� � ������ S�� � S�� � ��� S�� � S�� � ���

The polynomial ��
� takes the form

L��z�� z�� � z� �

�
z�
�

�
�

�
z�
�

�
� z� � z�z� ����

�

�
z�
�

�
z� �

�
z�
�

�
� z�

�
z�
�

�
�

�
z�
�

�
�
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The dual vector corresponding to the basis B� equals�

y � �� � � � � � � � � � � � ��T � ����

The polynomial ��
� takes the form

L��z�� z�� � �� ����

The dual vector corresponding to the basis B� equals�

y � �� � � � � � � � � ��T � ����

Note that B�� and B� correspond to the lattice points f��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��g� and f���� 
�� ���� 
�� ���� 	�� ���� ���� �	� 
�� �	� 	�� �	� ����
�
� 	�� �
� ���� �
� ���g� respectively�

By ���� we have that L��z�� z�� � f�z�� z��� which is a trivial inequality in view of
����� Since m � � � � is even� by ��	� we have that L��z�� z�� � f�z�� z�� for all �z�� z���
Thus� both B�� and B� are dual feasible bases in the maximization problem ��
��

The dual vector ���� produces the trivial upper bound yTS � ����
�� where

S � �S��� S��� S��� S��� S��� S��� S��� S��� S��� S���
T �

The dual vector ���� produces the upper bound yTS � �� which is at the same time the
optimum value of the maximization problem ��
�� and the sharp upper bound for P ����

i��Ai��
The sharp lower bound is obtained by the solution of the minimization problem

��
�� We have used the dual method with initial dual feasible basis B� and obtained the
following optimal solution� x�� � ����� x�� � ��������� x�� � �����
��� x�� � �� x�� �
�����x�� � ����
���� x�
 � �� x�� � ���
��	
� x���� � �� x����� � ����� This provides us
with the lower bound�

P ����
i��Ai� � �� x�� � ��
	�

The dual vector corresponding to the optimal basis is�

y � ��� ���
������

� ������� ���������� ��������������� ������� ���

This determines the polynomial

L��z�� z�� � ���
z� � ����



�
z�
�

�
� ������

�
z�
�

�
� ���z� � ����z�z� �

������

�
z�
�

�
z� � ������

�
z�
�

�
� ������z�

�
z�
�

�
�

which satis�es L�z�� z�� � f�z�� z�� for all �z�� z���
Example �� In this example we consider �� events for which all binomial moments

of order up to �� have been computed� The �� events have been subdivided into two
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Table �� Univariate binomial moments� �� events

S� �����
S� 
����
S� ������
S� �	���
�
S� ��������
S� 
������	
S� ��

�����
S� ��
��
�



S
 ��

������
S� ���	��
����
S�� �	��
����	�
S�� �
	������
��

���element groups and all bivariate binomial moments of total order at most � have been
computed�

Lower and upper bounds for the probability that at least one out of the �� events
occurs have been computed based on the two sets of data� The bounds are displayed for all
lower order binomial moments� too� Thus� we have two sequences of bounds� The bounds in
the �rst sequence are optimum values of problems ���� The bounds in the second sequence
are optimum values of problems ��
� with objective function ��
�� The latter problems are
partially disaggregated problems� as compared to problems ����

The results show that much better bounds can be obtained in the latter case� The
bounds obtained from the partially disaggregated problem for m � � are better than those
obtained from the aggregated problem for m � ��� The data and the bounds are presented
in the tables ��
�
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Table �� Bivariate binomial moments when the �� events are subdivided into two

��	element groups

�rst second group
group � � � � � � �

� ���� ��	� ��
� ����	 ����� ��
��
 ��
�
�
� ���� ���
 ����� �
��
	 
	���� �������
� ����� ����� �	��	� �

���� 
�����	
� �����	 �
��
	 �

���� ��������
� 
����� 
	���� 
�����	
� �
�
��� �������
� �
�	�
	

The results show that by the use of the bivariate binomial moments of order up to
� we can obtain better bounds than by the use of univariate binomial moments of order up
to ��� The bivariate moments of order up to � produce better bounds than the univariate
binomial moments of order up to ���
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Table �� Bounds based on univariate binomial moments

m lower bound upper bound
� ������� �������
� ���
��� �������
� ������� �������
� ���
��� �������
� ��



� �������
� ��

��	 ��	
��


 ��
		�� ��	��



 ��
���� ��
���

	 ��
���� ��
��
�

�� ��
��	� ��
��
�
�� ��
��		 ��
���


Table 
� Bounds based on bivariate binomial moments

m lower bound upper bound
� ������
 �������
� ������� �������
� ��
	��� ��	��
�
� ��
���� ��
��
�
� ��
��
� ��
��
�
� ��
���� ��
����



Page �� RRR ������

	 Upper Bounds Based on Graph Structures

The bounds given in Section � can be interpreted as bounds based on special hypergraphs�
Let X

i� � ���� is � m

� � ij � nj � j � 
� ���� s

ai����is

�
z�
i�

�
���

�
zs
is

�

be any polynomial� Let N � f�� ���� ng� and Nj � N� j � �� ����m with N � �m
j��Nj�

j Nj j� nj � and �j� �� j� � Nj� �Nj� � 	� Let Ei����is be the set of all subsets of N containing
exactly ij elements from Nj� j � �� ���� s� Then we de�ne the hypergraph as follows�

H � �N� E��

where

E �
�

i� � ���� is � m
� � ij � nj� j � �� ���� s

Ei����is�

All hyperedges lying in Ei����is are weighted by ai����is� These weights form a dual feasible
vector of problem �	�� The scalar product of that and the right�hand side vector of problem
���� provides us with the lower or upper bounds� If m � �� then only nodes and pairs of
nodes have weights� To each node we assign the weight ��

In Section 
� 
 and 	� the components of an

�
n

�

�
�vector are indexed by

��� ��� � � � � �n � ��n or �� � � � �

�
n
�

�
depending on which notation is more convenient� The

following lemma is very simple� the proof is omitted�

Lemma 
�� The

�
n

�

�
�component vector ��� �� ���� ���w��� �����wn���n� is feasible in the

minimization problem �

� if and only if for all S � N containing at least two elements the
inequality

P
i�j�S� i�j wij �j S j �� holds�

Remark� It is easy to see� that any feasible solution to the problem ���� has
w�� ���� wn � �� Lemma 
�� implies that if w� � ��� � wn � �� then �� � i� j � n� i �� j� we
have wij � ��

The above lemma can be applied in the following way� Let G��N�E�� and G��N�E��
be two graphs on the vertex set N � Assume that to each fi� jg� i� j 
 N� i �� j a real number
wij is assigned and the following conditions are satis�ed�
�i� E� � E� � 	�
�ii� if fi� jg 
 E� then wij � ��
�iii� if fi� jg 
 E� then wij � ��
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�iv� if fi� jg �
 E� � E� then wij � ��
�v� if S � N� j S j� �� then

P
i�j�S� i�j wij �j S j ���

The �rst bound which can be discussed in the framework of the above lemma is
Hunter�s bound �see Hunter ��	
���� Let G� � T �N�E� be any tree� and G� � �N� 	�� Let

wij �

�
� if fi� jg 
 E
� otherwise�

Let S � N� j S j� � As any induced subgraph of a tree is a forest� it follows thatP
i�j�S�i�j wij �j S j ��� Thus� the conditions of the lemma are satis�ed� This means

that any tree determines an upper bound� and Hunter�s bound is the best among them�
Thus� Lemma 
�� generalizes that bound�

Lemma 
�� If n � � then

P �A� � ���� An� � S� � max
��k�l�n

X
i��k�l

�pik � pli� � �n� ��pkl� ��
�

Proof For a �xed k and l let G� be the complete bipartite graph connecting k and l with all
other vertices� G� the edge fk� lg� and wkl � �� n� Thus� G� has �n � � edges� Let S � N
be any subset containing at least two elements� If k� l �
 S� then the subgraph of G� induced
by S has no edge� thus� X

i�j�S�i�j

wij � ��

If S contains only one of k and l� then

X
i�j�S�i�j

wij � j S j ���

Finally� if S contains both k and l� then

X
i�j�S�i�j

wij � � j S j � � � � n � j S j � ��

Thus� the conditions of Lemma 
�� are satis�ed in all cases� �

As the structure of the graph obeys the above mentioned hypergraph scheme� the
polynomial

g�z�� z�� � z� � z� � z�z� � �n� ��

�
z�
�

�

satis�es the condition�

�z�� z� 
 Z
 � �z�� z�� �� ��� ��� z� � n� �� z� � � implies g�z�� z�� � ��

Pr�ekopa ��			� has shown that Hunter�s bound can be represented as the objective
function value corresponding to a dual feasible basis of problem �	��
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Lemma 
�� Assume n � �� Let G��N�E� be any 
�tree and

C � ffu�� u�g� fu�� u�g� ���� fuk��� ukg� fuk� u�gg

be the unique simple circuit contained in G�� Assume that k � �� Let s� t be positive integers
with � � s � t � k� and t � s �� 
��mod k�� Let G� be a graph containing a single edge
such that E � ffus� utgg� Finally� let

wij �


��
��

� if i � j and fi� jg 
 E�

�� if i � j and fi� jg 
 E�

� otherwise�

Then we have the inequality�

P �A� � ��� �An� � S� �
X

fi�jg�E��i�j

pij � pusut � ��
�

Proof Any subgraph of G� induced by a set S � N contains at most j S j �� edges� except
C� which contains as many edges as vertices� But even in this case the necessary inequality�
given in Lemma 
��� holds because of the presence of the �����valued edge fus� utg� and
thus� the conditions of Lemma 
�� are satis�ed� �

The following method is an approximation algorithm for determining the best bound
of this type� The algorithm works on the complete graph Kn�N�E�� The edge fi� jg of Kn

is weighted by pij �
STEP �� Find a maximum weight spanning tree of Kn� designate it by T �N�ET ��
STEP �� For any edge fi� jg 
 E n ET let Cij � ffuij� � uij� g� ��� � fuijlij��� u

ij
lij
g�

fuijlij � u
ij
� gg be the unique simple circuit of the graph Tij�N�ET � fi� jg�� where lij is the

length of Cij� Then� let

�i�� j�� s�� t�� �

argmax fpij � p
u
ij
s u

ij
t

� lij � �� � � s � t � lij� t� s �� 
� mod lijg� ��	�

If pi�j� � p
u
ij

s�
u
ij

t�
	 �� then the resulting bound based on the graphs G � Ti�j� and

G��N� fs�� t�g� is an improvement on Hunters�s bound� The order of the algorithm is O�n���
In ��	� the number of pairs fi� jg to be considered is O�n��� The determination of Cij is
equivalent with �nding the unique simple path going from i to j in T which can be done in
O�n� steps as the sum of the degrees of the vertices in T is �n � �� Then� the selection of
the best possible pair fs� tg takes O�n�� operations�

A special case of this type of upper bound is obtained by restricting G� to be a
Hamiltonian circuit� Let H be the set of all Hamiltonian circuits� In this way the following
upper bound can be obtained�

P �A� � ��� �An� � S� � max
H�H

X
fi�jg�H�i�j

pij � min
fs�tg��H

pst� ����

The second term of the right�hand side is equivalent to a travelling salesman problem which
is known to be NP�hard� But plenty of good and fast heuristics are available to generate
approximate solutions�
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 Comparision with the Aggregated Upper Bound

The optimal value of the maximization problem ��� with m � � is

S� �
�

n
S�

as it is shown by Kwerel ��	
�a�� Sathe� Pradhan and Shah ��	
��� and Boros�Pr�ekopa
��	
	�� In this section a general lemma is proved� which makes it easy to prove for a wide
class of upper bounds� that they are at least as good as the corresponding aggregated ones�

Lemma ��� Let N� � ffi� jg j � � i� j � n� i �� jg� N� � f�� �� ���� rg� where r �

�
n
�

�
�

and assume that the function 
 � N� � N� de�nes a one�to�one correspondence between the
two sets� Let w�� ���� wr be any real numbers satisfying the equation

rX
j��

wj � n� ��

Finally� let � be any permutation of the set f �� ���� n g� Then we have the inequality�

max
��

n��X
i��

nX
j�i
�

w��i�j�p����i����j�� �
�

n
S�� ����

Proof The left�hand side of the inequality is the maximum of some numbers� The average
of the same numbers is

�

n 

X
��

n��X
i��

nX
j�i
�

w��i�j�p����i����j���

The symmetricity of the expression implies that all p�s must have the same coe�cient in the
sum� which is Pn��

i��

Pn
j�i
� w��i�j��
n
�

� �
�

n
�

as there are n permutations� the number of w�s is

�
n

�

�
� and their sum is n� �� Thus� the

above average is equal to the right�hand side of the inequality� Hence the statement follows
immediately�

Remark The proof does not use any property of the p�s� hence the statement holds

for any vector p 
 R
n�n���

� � and S� �
Pn��

i��

Pn
j�i
� pij �

In the statement the w�s represent a �xed structure and the permutation of the p�s
ensures that the best sample is chosen which is isomorphic with the �xed structure� For
example� the statement that Hunter�s bound is at least as good as the aggregated bound�
follows from the lemma in two steps� First� the vector w is �xed in such a way that it
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represents a certain tree structure� The best tree is selected which is isomorphic with this
structure� Then� we look at all tree structures and the best of bests gives Hunter�s bound�
But it follows from the lemma that the best of any tree structure is at least as good as the
aggregated bound�

Assume that if the vector ��� �� ���� ���w�� �����wT
r � 
 Rr
n represents a dual feasible

solution to problem ����� Then Lemma 
�� is applicable and

S� �max
��

n��X
i��

nX
j�i
�

w��i�j�p����i����j�� � S� �
�

n
S��

� Some Special Problem Classes

In this section we show that any upper bound mentioned in Section 
 corresponds to at least
one problem class containing �for every n� a problem such that the upper bound coincides
with the actual value of P �A� � ��� �An��

Lemma ��� If the vector ��� ���� ���w��� �����wn���n�T 
 R
n�n���

� is a feasible solution of the
dual of the maximization problem� and for every ij the inequality wij 	 � implies that wij � ��
then there is a problem instance such that the upper bound is equal to P �A� � ��� �An��

Proof The upper bound is

S� �
nX
i��

nX
j�i
�

wijpij �

If A�� ���� An are events such that pi � ��n �� � i � n� and if i �� j then

pij �

�
�
n�

if wij � �
� if wij � ��

����

then the following equations hold

P �A� � ��� �An� � ��

P
�i�j��i�j�wij�� �

n�
� S� �

n��X
i��

nX
j�i
�

wijpij �

i�e�� the statement of the lemma is true� These events A�� ���� An can be constructed in the
following way� Let ��� ���� �n� be n� mutually exclusive events� Let the probability of each
�i be ��n�� Let A� � �� � ��� � �n� If w�� � �� then we de�ne A� � �n
� � ��� � ��n�
otherwise let A� � �� � �n
� � ��� � ��n��� Assume that A�� ���� Ai�� are determined and
Aj � �kj� � ��� � �kjn if � � j � i � �� i�e� the set of the indices of �l�s contained in the
composite event Aj is f kj�� ���� kjn g� Let f l�� ���� lt g � f j � � � j � i� �� wji � � g� Then�
let Ai � �kl�i � �����klti ��ki���n
�� �����ki���n
n�t� Thus� Ai and Aj are mutually exclusive

if wij � �� otherwise pij � ��n�� �



RRR ������ Page ��

�� Conclusions

In order to create lower and upper bounds for the probability of the union of events� ar�
ranged in a �nite sequence� a simple and frequently e�cient method is the one provided by
the discrete binomial moment problems� These are LP�s� where the right�hand side numbers
are some of the binomial moments S�� S�� ��� � Since Sk is the sum of joint probabilities of
k�tuples of events� these LP�s are called aggregated problems� Better bounds can be ob�
tained if we use the individual probabilities in the sums of all Sk binomial moments that
turn up in the aggregated problem� However� the LP�s based on these� called the disaggre�
gated problems� may have huge sizes� in general� and we may not be able to solve them or
they are computationally intensive� In the present paper we have shown that third types of
problems� which can be placed in between the aggregated and disaggregated problems� can
combine solvability and very good bounding performance� at least in many cases� Two gen�
eral aggregation�disaggregation methods are presented� The �rst one creates subproblems
corresponding to the individual events� The second one subdivides the event sequence into
subsequences and then applies existing multivariate binomial moment bounding technique
to improve on the univariate bounds� We have also presented an improvement on Hunter�s
upper bound� where we have used S� and the probabilities in the sum designated by S��
Both Hunter�s bound and its improvement can be associated with the Boolean probability
bounding scheme� and some aggregation procedures�
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