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Constrained Stochastic Programming

András Prékopa Kunikazu Yoda Munevver Mine Subasi

Abstract. A probabilistic constrained stochastic programming problem is consid-
ered, where the underlying problem has linear constraints with random technology
matrix. The rows of the matrix are assumed to be stochastically independent and
normally distributed. For the convexity of the problem the quasi-concavity of the
constraining function is needed that is ensured if the factors are uniformly quasi-
concave. In the paper a necessary and sufficient condition is given for that property
to hold. It is also shown, through numerical examples, that such a special problem
still has practical application in optimal portfolio construction.
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1 Introduction

The stochastic programming problem, termed programming under probabilistic constraint
can be formulated in the following way:

minimize f(x) (1.1)

subject to h0(x) = P (gi(x, ξ) ≥ 0, i = 1, . . . , r) ≥ p

hi(x) ≥ 0, i = 1, . . . , m,

where x ∈ Rn, ξ ∈ Rq, f(x), gi(x, y), i = 1, . . . , r, hi(x), i = 1, . . . , m are some functions and
p is a fixed large probability, e.g., p = 0.8, 0.9, 0.95, 0.99. In many application the stochastic
constraints have the form ξ − Tx ≥ 0 and the probabilistic constraint specializes as

h0(x) = P(Tx ≤ ξ) ≥ p. (1.2)

For the case of continuously distributed random vector ξ general theorems are available
to ensure the convexity of the set determined by the probabilistic constraint in (1.1). For
example, if gi, i = 1, . . . , r are concave or at least quasi-concave in all variables and ξ has
a logconcave p.d.f., then the function h0(x) is logconcave and the set {x | h0(x) ≥ p} is
convex (see, e.g. [12, 14]). This implies that if ξ has the above-mentioned property, then
the set determined by the constraint (1.2) is convex. Many applications of the model with
probabilistic constraint (1.2) have been carried out, for the cases of some special continu-
ous multivariate distributions such as normal, gamma, and Dirichlet, and problem solving
packages have been developed [14, 3, 6, 15].

The solution of problems where ξ in (1.2) is a discrete random vector is more recent. The
key concept here is that of a p-efficient point, introduced in [11] and further developed and
used in [2, 4, 8, 13].

For the case of a random T in the constraint (1.2), few results are known. The earliest
papers dealing with random matrix T in probabilistic constraint are [7, 9]. In these papers,
however, there is only one stochastic constraint and to establish the concavity of the set
{x | P(Tx ≤ ξ) ≥ p} is relatively easy (see, the proof of Lemma 2.2).

The first paper where convexity theorems are presented for the set of feasible solution
and random matrix T has more than one row, is [10]. If T has more than one row, then even
if they are independent, it is not easy to ensure the convexity of the set {x | P(Tx ≤ d) ≥ p}.
The papers [12] and [5] can be mentioned, where progress in this direction has been made.
The problem is that the products or sums of quasi-concave functions are not quasi-concave,
in general. We briefly recall the main results of the paper [10] (see also [12] pp.312–314).

Theorem 1.1. Let ξ be constant and T a random matrix with independent, normally dis-
tributed rows (or columns) such that their covariance matrices are constant multiples of each
other. Then h(x) = P(Tx ≤ ξ) is a quasi-concave function on the set {x | h(x) ≥ 1/2}.

We introduce a special class of quasi-concave functions.
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Definition 1.1 (Uniformly quasi-concave functions). Let h1(x), . . . , hr(x) be quasi-concave
functions on a convex set E ∈ Rn. We say that they are uniformly quasi-concave functions
if for any x, y ∈ E either

min(hi(x), hi(y)) = hi(x), i = 1, . . . , r

or
min(hi(x), hi(y)) = hi(y), i = 1, . . . , r.

Obviously, the sum of uniformly quasi-concave functions, on the same set, is also quasi-
concave and if the functions are also nonnegative, then the same holds for their product as
well. The latter property is used in the next section, where we prove our main result.

In this paper we look at probabilistic constraints of the type

P(Tx ≤ b) ≥ p, (1.3)

where T is a random matrix that has independent, normally distributed rows and b is a
constant vector. The constraining function in (1.3) is the product of special quasi-concave
functions and we show that the uniform quasi-concavity of the factors implies that the
covariance matrices of the rows are constant multiples of each other. Section 2 and 3 are
devoted to this. In section 4 we show that this very special type of probabilistic constraint is
still applicable to solve portfolio optimization problems. We present some numerical results
in this respect.

2 Preliminary Results

First we provide a necessary condition for continuously differentiable and uniformly quasi-
concave functions h1(x), . . . , hr(x) on an open convex set.

Lemma 2.1. If h1(x), . . . , hr(x) are continuously differentiable and uniformly quasi-concave
on an open convex set E, then any nonzero gradients ∇hi(x),∇hj(x) are positive multiples
of each other, i.e., for any i, j ∈ {1, . . . , r}, there exists a positive-valued function αij(x) =
1/αji(x) > 0 defined on Eij = {x ∈ E | ∇hi(x) 6= 0,∇hj(x) 6= 0} = Eji such that for all
x ∈ Eij we have

∇hi(x) = αij(x)∇hj(x) (2.1)

Proof. We show that (2.1) holds for all x ∈ Eij by contradiction. Suppose that for some
x ∈ Eij we cannot find an αij(x) > 0 satisfying (2.1). Without loss of generality we assume
that i = 1, j = 2.

From Farkas Lemma, either one of the following two systems has a solution

(i) ∇h2(x)T d ≤ 0, ∇h1(x)T d > 0

(ii) ∇h1(x) = λ∇h2(x), λ ≥ 0
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First, note that since ∇h1(x) 6= 0 and ∇h2(x) 6= 0, λ = 0 cannot be a solution of (ii).
Also, λ > 0 cannot be a solution of (ii), otherwise we can define α12(x) = λ > 0. Hence,
(i) has a solution d1. Similarly, since ∇h2(x) = α21(x)∇h1(x) does not hold for any defined
value of α21(x) = 1/α12(x) > 0 by the assumption, (i) with 1 and 2 interchanged has a
solution d2. So we have

∇h2(x)T d1 ≤ 0, ∇h1(x)T d1 > 0,

∇h1(x)T d2 ≤ 0, ∇h2(x)T d2 > 0.

Let d := d1 − d2. Then it follows that

∇h1(x)T d > 0, ∇h2(x)T d < 0. (2.2)

Note that d 6= 0. By the use of finite Taylor series expansions we can write:

h1(x + εd) = h1(x) + (∇h1(x)T d)ε + o(ε), (2.3)

h2(x + εd) = h2(x) + (∇h2(x)T d)ε + o(ε). (2.4)

Since E12 is an open set, we can select ε > 0 small enough so that

∃y := x + εd ∈ E12, y 6= x, h1(y) > h1(x), h2(y) < h2(x)

Hence h1(x), . . . , hr(x) are not uniformly quasi-concave, which is a contradiction.

For r = 1, let us consider the function

h(x) = P(Tx ≤ b), (2.5)

where T is a random row vector and b is a constant. The following lemma was first proved
by Kataoka [7] and van de Panne and Popp [9]. See also Prékopa [12].

Lemma 2.2 ([7, 9]). If T has normal distribution, then the function h(x) is quasi-concave
on the set

{
x | P(Tx ≤ b) ≥ 1

2

}
.

Proof (from [14], pp 284-285). We prove the equivalent statement: for any p ≥ 1/2 the set

{x | P(Tx ≤ b) ≥ p} (2.6)

is convex.
Let Φ(t) denote the c.d.f. of the one-dimensional standard normal distribution and let

µ = E(T T ) and C = E((T T − µ)(T T − µ)T ) denote the mean vector and the covariance
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matrix of T , respectively. For any x such that xT Cx > 0,

h(x) = P(Tx ≤ b)

= P
(

(T − µT )x√
xT Cx

≤ b− µT x√
xT Cx

)

= Φ

(
b− µT x√

xT Cx

)
≥ p

is equivalent to

µT x + Φ−1(p)
√

xT Cx ≤ b. (2.7)

Since Φ−1(p) ≥ 0 and
√

xT Cx is a convex function of x on Rn, it follows that inequality (2.7)
determines a convex set.

For any x such that xT Cx = 0, Tx = µT x with probability 1. Since p > 0 it follows that

h(x) = P(Tx ≤ b) = P(µT x ≤ b) ≥ p

is equivalent to

µT x ≤ b. (2.8)

The set of x determined by (2.8) is convex.

Let r be an arbitrary positive integer and introduce the function:

hi(x) = P(Tix ≤ bi), i = 1, . . . , r, (2.9)

where each row vector Ti, i = 1, . . . , r has normal distribution with mean vector µi = E(T T
i )

and covariance matrix Ci = E((T T
i − µi)(T

T
i − µi)

T ), and b = (b1, . . . , br)
T is constant.

Suppose bi > 0, i = 1, . . . , r. Let us define set E as follows:

E is convex.

E ⊃ B ⊃ {0} for some open set B. (2.10)

Each hi(x), i = 1, . . . , r is quasi-concave on E.

One example of such E is

E =
r⋂

i=1

{
x | hi(x) ≥ 1

2

}
. (2.11)

Note that by lemma 2.2, hi(x) is quasi-concave on the convex set Ei = {x | hi(x) ≥ 1/2} and
that for sufficiently small open ball Bε(0) = {x | ‖x‖ < ε} of the origin, hi(x) ≥ 1/2, ∀x ∈
Bε(0), thus Ei ⊃ Bε(0). Also note that the intersection of convex sets is a convex set. If
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rows T1, . . . , Tr of T are independent and h1(x), . . . , hr(x) are uniformly quasi-concave, then
h(x) = P(Tix ≤ bi, i = 1, . . . , r) =

∏r
i=1 P(Ti ≤ bi) = h1(x) · · ·hr(x) is quasi-concave on E.

Suppose bi > 0 and Ci is positive definite for all i ∈ {1, . . . , r}.

hi(x) =





Φ

(
bi − µT

i x√
xT Cix

)
for x 6= 0,

P(0 ≤ bi) = 1 for x = 0.

(2.12)

Since

lim
x→0

hi(x) = lim
t→∞

Φ(t) = 1 = hi(0),

hi(x) is continuous at x = 0. Let us calculate the gradient of hi(x) for x ∈ int (E) \ {0}.

∇hi(x) = ∇Φ

(
bi − µT

i x√
xT Cix

)

= φ

(
bi − µT

i x√
xT Cix

)
∇bi − µT

i x√
xT Cix

= φ

(
bi − µT

i x√
xT Cix

) −√xT Cixµi − (bi − µT
i x)Cix/

√
xT Cix

xT Cix

= −φ

(
bi − µT

i x√
xT Cix

)
(xT Cix)µi + (bi − µT

i x)Cix

(xT Cix)3/2
, (2.13)

where φ(t) is the p.d.f. of the one-dimensional standard normal distribution.

φ(t) =
1√
2π

exp

(
−1

2
t2

)
.

For any fixed x 6= 0, we have

lim
ε↓0
∇hi(εx) = − lim

ε↓0
φ

(
bi

ε
√

xT Cix
− µT

i x√
xT Cix

) {
(xT Cix)µi − (µT

i x)Cix

ε
√

xT Cix
+

biCix

ε2(xT Cix)3/2

}

= 0.

Hence limx→0∇hi(x) = 0 and ∇hi(x) is continuous at x = 0. Therefore h1(x), . . . , hr(x) are
continuously differentiable on the open convex set int (E).

3 The Main Result

In what follows we make use of the following theorem [1] from linear algebra:

Theorem 3.1 (Simultaneous Diagonalization of Two Matrices). Given two real symmetric
matrices, A and B, with A positive-valued definite, there exists a nonsingular matrix U such
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that

UT AU = I, UT BU = diag(λ1, λ2, . . . , λn) =




λ1 O
λ2

. . .

O λn


 (3.1)

In the next theorem we present our main result.

Theorem 3.2. Suppose bi > 0 and Ci is positive definite for i ∈ {1, . . . , r}. The functions
h1(x), . . . , hr(x) defined by (2.9) (in this case, (2.12)) are uniformly quasi-concave on a
convex set E satisfying (2.10) if and only if each Ci is a constant multiple of a covariance
matrix C, and

µ1

b1

= · · · = µr

br

.

Proof. Sufficiency (⇐) is obvious, so we only show necessity (⇒). It is enough to show
that C1, C2 are constant multiples of each other and that µ1/b1 = µ2/b2 for r ≥ 2. hi(x) is
continuously differentiable on the open convex set int (E). From (2.13) we have for x 6= 0

xT∇hi(x) = −φ

(
bi − µT

i x√
xT Cix

)
bi√

xT Cix
< 0.

Thus ∇hi(x) 6= 0 for x 6= 0. We know limx→0∇hi(x) = 0. Let E ′ := int (E) \ {0}. Then
E ′ = {x ∈ int (E) | ∇hi(x) 6= 0, i ∈ {1, . . . , r}}. From Lemma 2.1 and (2.13), there is a
positive function α12(x) > 0 such that for all x ∈ E ′ we have

(xT C1x)µ1 + (b1 − µT
1 x)C1x = α12(x)

{
(xT C2x)µ2 + (b2 − µT

2 x)C2x
}

(3.2)

For small ε > 0 and x ∈ E ′, let us replace x with εx ∈ E ′ in (3.2) and divide by ε for both
sides of the equation.

ε(xT C1x)µ1 + (b1 − εµT
1 x)C1x = α12(εx)

{
ε(xT C2x)µ2 + (b2 − εµT

2 x)C2x
}

(3.3)

Taking the limit of the both sides of (3.3) as ε → 0 we obtain

b1C1x = (lim
ε→0

α12(εx))b2C2x. (3.4)

Since 0 < xT C1x < ∞, 0 < xT C2x < ∞ for x ∈ E ′, the limit

lim
ε→0

α12(εx) =
b1x

T C1x

b2xT C2x
=: α′12(x) (3.5)

exists and 0 < α′12(x) < ∞. Thus we have

b1C1x = α′12(x)b2C2x for x ∈ E ′. (3.6)
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Since C1 and C2 are symmetric and C2 is positive definite, from Theorem 3.1 there is a
nonsingular matrix U such that

UT C1U = D, UT C2U = I,

where D = diag(λ1, . . . , λr) is a diagonal matrix. Let y := U−1x and F := {U−1x | x ∈ E ′}.
Since U is nonsingular, F is a neighborhood of the origin 0, and 0 /∈ F .

For all y ∈ F we have by multiplying UT from left to (3.6)

b1Dy = α′12(Uy)b2y

⇒ b1




λ1y1
...

λryr


 = α′12(Uy)b2




y1
...
yr




which implies that

0 < α′12(x) = α′12(Uy) =
b1λ1

b2

= · · · = b1λr

b2

=: α′12

is constant. Therefore we have from (3.6)

C1 = α′12

b2

b1

C2. (3.7)

Let us plug (3.7) into (3.2).

xT C2x (α′12b2µ1 − α12(x)b1µ2)

+
{

(α′12 − α12(x))b1b2 − (α′12b2µ1 − α12(x)b1µ2)
T

x
}

C2x = 0. (3.8)

Multiplying (3.8) by xT from left we obtain

{α′12 − α12(x)} b1b2x
T C2x = 0 ⇒ α12(x) = α′12. (3.9)

If we substitute (3.9) into (3.8), we get

xT C2x(b2µ1 − b1µ2) = xT (b2µ1 − b1µ2)C2x. (3.10)

Let us introduce w := UT (b2µ1 − b1µ2). Since x = Uy we have

(yT y)w = (yT w)y

⇒




w1
...

wr


 =

y1w1 + · · ·+ yrwr

y2
1 + · · ·+ y2

r




y1
...
yr


 (3.11)

Since (3.11) holds for y = ε[0, 1, . . . , 1]T , . . . , y = ε[1, . . . , 1, 0]T ∈ F for some small ε > 0, it
follows that

w1 = 0, . . . , wr = 0 ⇒ w = 0 ⇒ µ1

b1

=
µ2

b2

. (3.12)
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4 Application in Portfolio Optimization

In this section we look at a probabilistic constrained stochastic programming problem, where
the probabilistic constraint is of type (1.2). We assume that T has independent, normally dis-
tributed rows and the factors in the product

∏K
k=1 P(Tkx ≤ bk) are uniformly quasi concave.

The problem is special, but still can be applied, e.g., in portfolio optimization.
Consider n assets and K consecutive periods. Let us introduce the following notations:

for k = 1, ..., K

Tk : random loss of the assets during the k-th period

µk = E[T T
k ] : expected loss

Ck = E[(T T
k − µk)(T

T
k − µk)

T ] : covariance matrix of Tk .

We assume that Tk, k = 1, .., K, are independent and normally distributed random vectors
and µk ≤ 0, k = 1, ..., K. We also assume that the time window of the K periods is relatively
short and a linear trend for the expectations prevails. Formally, our assumptions are:

µ1 = µ and µk+1 = αµk, k = 1, . . . , K − 1 (4.1)

C1 = C and Ck+1 = α2Ck, k = 1, . . . , K − 1. (4.2)

For the first period, we consider the portfolio optimization problem formulated by Kataoka
[7]:

(Problem 1): minimize b

subject to Φ

(
b− µT x√

xT Cx

)
≥ p

n∑
j=1

xj = 1

xj ≥ 0 for j = 1, . . . , n.

For the k-th period (k ∈ {2, . . . , K}), we consider the following problem.

(Problem k): minimize b1

subject to
k∏

i=1

Φ

(
bi − µT

i x√
xT Cix

)
≥ p

n∑
j=1

xj = 1

bi+1 = α bi for i = 1, . . . , k − 1

xj ≥ 0 for j = 1, . . . , n

b1 ≥ 0 .
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A related model is presented in [17], where individual probabilistic constraints are taken
for more than one part of the distribution.

By Theorem 3.2 the functions h1(x), . . . , hK(x) defined by (2.12) are uniformly quasi-
concave on the convex set E := ∩K

k=1{x | hk(x) ≥ 1/2} = ∩K
k=1{x | bk ≥ µT

k x} = {x | bK ≥
µT

Kx}, and hence h(x) =
∏K

k=1 hk(x) is quasi-concave on E. Since set {x | h(x) ≥ p, x ∈ E}
is convex, the set of feasible solutions of (Problem k) is convex.

Below we present a numerical example for the application of the above model. We take
the initial expectations and covariance matrix from past history data but then proceed to
obtain those values in accordance with the assumption formulated in the model.

Numerical Example.

Assets “Dow, S&P500, Nasdaq, NYSECI, 10YrBond” are obtained from Yahoo! Finance
(http://finance.yahoo.com) and assets “Oil, Gold, Silver, EUR/USD” are obtained from
Dukascopy (http://www.dukascopy.com).

We consider the expected values and the covariance matrix of the daily losses of the nine
assets in May 2009. The data is shown in Table 1 and Table 2.

Gold Silver Nasdaq S&P500 Oil EUR/USD 10YrBond Dow NYSECI
-1.253 -3.008 -0.149 -0.711 -1.379 -0.82 -1.052 -0.546 -1.069

Table 1: Expected losses in May 2009

Gold Silver Nasdaq S&P500 Oil EUR/USD 10YrBond Dow NYSECI
Gold 5.159 7.228 -1.437 1.492 3.989 2.764 -5.25 1.198 2.231
Silver 7.228 19.441 -0.785 6.454 10.143 4.94 -5.198 5.343 9.061

Nasdaq -1.437 -0.785 15.084 11.202 1.562 0.974 -0.767 9.754 12.424
S&P500 1.492 6.454 11.202 16.238 10.709 4.223 -4.735 14.794 20.058

Oil 3.989 10.143 1.562 10.709 21.249 4.087 -5.719 10.043 15.451
EUR/USD 2.764 4.94 0.974 4.223 4.087 4.375 -3.255 3.764 5.996
10YrBond -5.25 -5.198 -0.767 -4.735 -5.719 -3.255 38.003 -4.564 -4.928

Dow 1.198 5.343 9.754 14.794 10.043 3.764 -4.564 13.981 18.446
NYSECI 2.231 9.061 12.424 20.058 15.451 5.996 -4.928 18.446 25.706

Table 2: Covariance Matrix in May 2009

We assume that in the consecutive periods the expected returns are increased by α = 1.01
(1%) and the covariance matrix is increased by α2 = (1.01)2. The values of the nine assets
obtained by the use of (Problem k), k = 1, ..., 5 are given in Table 3.
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Gold Silver Nasdaq S&P500 Oil EUR/USD 10YrBond Dow NYSECI
(Problem 1) 0.5246 0.0422 0.1267 0 0.0102 0.1433 0.1531 0 0
(Problem 2) 0.5350 0 0.1342 0 0.0103 0.1718 0.1487 0 0
(Problem 3) 0.5266 0 0.1379 0 0.0076 0.1804 0.1475 0 0
(Problem 4) 0.5218 0 0.1399 0 0.0063 0.1849 0.1471 0 0
(Problem 5) 0.5188 0 0.1414 0 0.0053 0.1878 0.1467 0 0

Table 3: Values of nine assets, May 2009
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