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Abstract. Let A1, . . . , AN and B1, . . . , BM be two sequences of events and let
νN (A) and νM (B) be the number of those Ai and Bj , respectively, that occur.
We give a method, based on multivariate Lagrange interpolation, that yields lin-
ear bounds in terms of Sk,t, k + t ≤ m on the distribution of the vector (νN (A),
νM (B)). The construction of the bounds can be carried out in a simple mechanical
way. For the same value of m several inequalities can be generated, however, all of
them are the best bounds for some values of Sk,t. Known bivariate Bonferroni-type
inequalities are reconstructed and new inequalities are generated, too. The possible
extensions are also discussed.
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1 Introduction

Let A1, . . . , AN and B1, . . . , BM be two sequences of events on the same probability space.
Let νN(A) and νM(B) be the number of those Ai and Bj, respectively, that occur. Let us
define the bivariate binomial moments: S0,0 = 1 and for other nonnegative integers k and l,

Sk,t = E

[(
νN(A)

k

)(
νM(B)

t

)]
. (1.1)

It is easy to see (e.g., by the use of indicator variables) that

Sk,t =
∑

1≤i1<···<ik≤N

1≤j1<···<jt≤M

P (Ai1 ∩ · · · ∩ Aik ∩Bj1 ∩ · · · ∩Bjt), (1.2)

where in case k or t equals zero, the empty intersection that follows in (1.2) is replaced by
Ω, the sample space.

Consider the following probabilities:

p(u, v;N,M) = P (νN(A) = u, νM(B) = v) (1.3)

and
q(u, v;N,M) = P (νN(A) ≥ u, νM(B) ≥ v). (1.4)

We are interested in finding bivariate Bonferroni-type inequalities. I.e., inequalities

N∑
k=0

M∑
t=0

ck,tSk,t ≤ r(u, v;N,M) ≤
N∑

k=0

M∑
t=0

dk,tSk,t, (1.5)

where r(u, v;N,M) can either be p(u, v;N,M) or q(u, v;N,M). The coefficients have to
be independent of Ai and Bj, i.e., (1.5) holds for an arbitrary probability space and for the
arbitrary choice of the Ai and Bj. The Bonferroni-type inequalities have several applications.
They can be used, e.g., to estimate system reliability (see Habib and Szántai, 2000) or to
estimate multivariate distributions (see Bukszár and Szántai, 2002). Further applications
can be found in Galambos and Simonelli (1996).

Bivariate Bonferroni inequalities can be obtained in several ways. On one hand, they
can be proved by the method of indicators, see e.g. Galambos and Xu (1993), Lee (1997).
Another way is the method of polynomials, which is capable of not only proving but also
generating new inequalities, see e.g. Galambos and Xu (1995). By the aid of the reduction
formulas of Galambos and Xu (1995) and Simonelli (1999) further inequalities can be found.

In the present paper we introduce the method of multivariate Lagrange interpolation,
which has turned out to be a very effective tool of generating and proving Bonferroni-type
inequalities. On one hand the method yields a wide variety of Bonferroni-bounds, which are
the best in a sense to be defined later. On the other hand the method is entirely mechanical.
It can be implemented on computer, hence Bonferroni-bounds of several terms can also be
constructed easily. In Section 3 inequalities of the literature are reconstructed and new,
improved bounds are generated as well. The last section discusses the possible extensions of
the method.
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2 Method of Multivariate Lagrange Interpolation

In the following, we consider the special case of (1.5), where the binomial moments up to the
total order m are given (assuming that m ≤ min(N,M)). I.e., we look for the coefficients
ck,t and dk,t in the inequalities

m∑
k=0

m−k∑
t=0

ck,tSk,t ≤ r(u, v;N,M) ≤
m∑

k=0

m−k∑
t=0

dk,tSk,t, (2.6)

where r(u, v;N,M) can either be p(u, v;N,M) or q(u, v;N,M). This case is relevant in
practice: usually the probabilities of the intersections of events are given up to a certain
number of the events, hence the multivariate moments up to a certain total order can be
calculated. Let us define the power moment

µk,t = E[νN(A)kνM(B)t]. (2.7)

Theorem 2.1

Sk,t =
k∑

i=0

t∑
j=0

s(k, i)

k!

s(t, j)

t!
µi,j, (2.8)

µk,t =
k∑

i=0

t∑
j=0

S(k, i)i!S(t, j)j!Si,j, (2.9)

where s(i, j) and S(i, j) are the first and second kind Stirling numbers, respectively.

Proof.

Sk,t = E

[(
νN(A)

k

)(
νM(B)

t

)]
= E

( k∑
i=0

s(k, i)

k!
νN(A)i

) t∑
j=0

s(t, j)

t!
νM(B)j



= E

 k∑
i=0

t∑
j=0

s(k, i)

k!

s(t, j)

t!
νN(A)iνM(B)j

 =
k∑

i=0

t∑
j=0

s(k, i)

k!

s(t, j)

t!
µi,j,

µk,t = E
[
νN(A)kνM(B)t

]
= E

( k∑
i=0

S(k, i)i!

(
νN(A)

i

)) t∑
j=0

S(t, j)j!

(
νM(B)

j

)
= E

 k∑
i=0

t∑
j=0

S(k, i)i!S(t, j)j!

(
νN(A)

i

)(
νM(B)

j

) =
k∑

i=0

t∑
j=0

S(k, i)i!S(t, j)j!Si,j.

2

Corollary 2.2 Inequalities (2.6) are equivalent to the following inequalities

m∑
k=0

m−k∑
t=0

ak,tµk,t ≤ r(u, v;N,M) ≤
m∑

k=0

m−k∑
t=0

bk,tµk,t, (2.10)
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where

ak,t =
m∑

i=k

m−i∑
j=t

s(i, k)

i!

s(j, t)

j!
ci,j and bk,t =

m∑
i=k

m−i∑
j=t

s(i, k)

i!

s(j, t)

j!
di,j.

If (2.10) is given then the coefficients of the corresponding inequalities (2.6) can be calculated
by

ck,t =
m∑

i=k

m−i∑
j=t

S(i, k)k!S(j, t)t!ai,j and dk,t =
m∑

i=k

m−i∑
j=t

S(i, k)k!S(j, t)t!bi,j. (2.11)

In the following we focus on the construction of inequalities (2.10). This is equivalent to
finding inequalities of (2.6), because if inequalities in the form (2.10) are given then the
coefficients of the corresponding inequalities in the form (2.6) can be calculated by (2.11).

Inequalities (2.10) can be written as

E

[
m∑

k=0

m−k∑
t=0

ak,tνN(A)kνM(B)t

]
≤ E

[
Ir(u,v;N,M) (νN(A), νM(B))

]
≤ E

[
m∑

k=0

m−k∑
t=0

bk,tνN(A)kνM(B)t

]
,

(2.12)
where in case of r(u, v;N,M) = p(u, v;N,M):

Ip(u,v;N,M) (z1, z2) =

{
1 if z1 = u, z2 = v,
0 otherwise,

and in case of r(u, v;N,M) = q(u, v;N,M):

Iq(u,v;N,M) (z1, z2) =

{
1 if z1 ≥ u, z2 ≥ v,
0 otherwise.

Theorem 2.3 The left inequality of (2.12) is valid if and only if

Pa(z1, z2) =
m∑

k=0

m−k∑
t=0

ak,tz
k
1z

t
2 ≤ Ir(u,v;N,M) (z1, z2) , (2.13)

for all
z1 ∈ Z1 = {0, 1, . . . , N} and z2 ∈ Z2 = {0, 1, . . . ,M}. (2.14)

Similarly, the right inequality of (2.12) is valid if and only if

Pb(z1, z2) =
m∑

k=0

m−k∑
t=0

bk,tz
k
1z

t
2 ≥ Ir(u,v;N,M) (z1, z2) , (2.15)

for all (z1, z2) ∈ Z1 × Z2 defined in (2.14).

Proof. Trivial. 2

Theorem 2.3 indicates that we should find polynomials which are smaller (greater) or
equal to the value of the function Ir(u,v;N,M) at the points of Z1 × Z2 but not necessarily at
other (e.g., noninteger) values of (z1, z2). In order to find those polynomials let us consider
the following theorem on bivariate Lagrange interpolation. First we need the following
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Definition 2.1 Let

Z1 = {z10, z11, . . . , z1N} and Z2 = {z20, z21, . . . , z2M} (2.16)

and f(z1, z2), (z1, z2) ∈ Z = Z1 × Z2 be a bivariate discrete function. Take the subset

ZI1I2 = {z1i, i ∈ I1} × {z2i, i ∈ I2} = Z1I1 × Z2I2 , (2.17)

where |Ij| = kj + 1, j = 1, 2. Then we can define the (k1, k2)-order (bivariate) divided
difference of f on the set (2.17) in an iterative way. First we take the k1th divided difference
with respect to the first variable, then the k2th divided difference with respect to the second
variable. Let

[z1i, i ∈ I1; z2i, i ∈ I2; f ] (2.18)

designate the (k1, k2)-order divided difference. The sum k1 + k2 is called the total order of
the divided difference.

In order to make the definition easier to understand we present the following

Example 2.1

[z10, z11; z20, z21; f ] = [z20, z21;
f(z11, z2)− f(z10, z2)

z11 − z10

]

=

f(z11,z21)−f(z10,z21)
z11−z10

− f(z11,z20)−f(z10,z20)
z11−z10

z21 − z20

.

Theorem 2.4 Let Z1 and Z2 be defined as in (2.16) and

I = {(i1, i2)|i1 ≥ 0, i2 ≥ 0 integer, i1 + i2 ≤ m}. (2.19)

Then the Lagrange polynomial LI(z1, z2) corresponding to the points ZI = {(z1i1 , z2i2)|(i1, i2) ∈
I} is the following

LI(z1, z2) =
∑

i1+i2≤m
0≤i1,i2

[z10, . . . z1i1 ; z20, . . . z2i2 ; f ]
2∏

j=1

ij−1∏
h=0

(zj − zjh), (2.20)

where
∏ij−1

h=0 (zj − zjh) = 1 for ij = 0, by definition. The corresponding Lagrange residual can
be written in the form

RI(z1, z1) = f(z1, z2)− LI(z1, z2) =

=
∑

i1+i2=m
0≤i1,i2

[z10, . . . , z1i1 , z1; z20, . . . , z2i2 ; f ]
i1∏

l=0

(z1 − z1l)
i2−1∏
h=0

(z2 − z2h)

+[z1; z20, . . . , z2m, z2; f ]
m∏

h=0

(z2 − z2h).

(2.21)
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Proof. The Lagrange polynomial of (2.20) is the classical result of the triangular case
of the subscripts (i1, i2) of the interpolation points. The formula first was considered by
Biermann (1903). However, the residual (2.21), in this form, was first given in the proof of
Theorem 4.1 in Prékopa (1998). 2

Despite the subscript set I is triangular, the geometric distribution of the interpolation
points is not necessarily triangular, because in Theorem 2.4 there was no assumption on the
orders of the elements z10, z11, . . . , z1N and z20, z21, . . . , z2M .

Let us turn back to our case where

Z1 = {0, 1, . . . , N} = {z10, z11, . . . , z1N},
Z2 = {0, 1, . . . ,M} = {z20, z21, . . . , z2M}.

(2.22)

The curly brackets define disordered sets, hence z10 does not have to equal 0, etc. In the
following we define the orders of the elements in Z1 and Z2 in such a way that the Lagrange
polynomial (2.20) of the bivariate function Ir(u,v;N,M) (z1, z2) fulfills the equation (2.13) or
(2.15).

We consider the following two cases:

r(u, v;N,M) = p(0, 0;N,M), (2.23)

r(u, v;N,M) = q(1, 1;N,M). (2.24)

We need the following

Theorem 2.5 The divided differences of total order m+ 1 of the function Ip(0,0;N,M)(z1, z2)
on Z1 × Z2 are nonnegative (nonpositive) if m is odd (even), where Z1, Z2 are defined in
(2.22).

The same is true for the function Iq(1,1;N,M)(z1, z2) on Z1 × Z2, where Z1, Z2 are defined
in (2.22).

Proof. Let

f(z) =

{
1, if z = 0,
0, if z ≥ 1.

(2.25)

Assume that zk > 0, k = 0, . . . , i. It is easy to see that

[0, z1, . . . , zi; f ] =
(−1)i∏i

1 zk

and
[z0, z1, . . . , zi; f ] = 0.

I.e., the even (odd) order divided differences of the function (2.25) are nonnegative (nonpos-
itive). Considering that

Ip(0,0;N,M)(z1, z2) = f(z1)f(z2)

and
Iq(1,1;N,M)(z1, z2) = (1− f(z1))(1− f(z2))
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the rest of the proof is straightforward. 2

The following algorithm defines the values of z10, . . . , z1m and z20, . . . , z2m.

Algorithm

Step 0. Initialize t = 0, −1 ≤ q ≤ m, L = (0, 1, . . . ,m− 1− q) (In case of q = m the set
L is empty.), U = (N,N − 1, . . . , N − q). (In case of q = −1 the set U is empty.)

Step 1. Let (z10, . . . , z1m) = (arbitrary merger of the sets L,U). Let l0 = 0, u0 = M .
Step 2. If z1(m−t) ∈ L, then let z2t = lt, lt+1 = lt + 1, ut+1 = ut, and if z1(m−t) ∈ U ,

then let z2t = ut, ut+1 = ut−1, lt+1 = lt. If t = m then stop. Else t← t+1 and repeat Step 2.

Theorem 2.6 Let the elements of the sequence (zj0, . . . , zjm), j = 1, 2 be defined by the
Algorithm above. Furthermore let (z1(m+1), . . . , z1N) = (m − q,m − q + 1, . . . , N − (q + 1))
and (z2(m+1), . . . , z2M) = (m− q,m− q + 1, . . . ,M − (q + 1)).

Let f(z1, z2) be a function on Z1 × Z2, defined by (2.22). If the divided differences of
total order m+ 1 of the function f are nonnegative and q + 1 is even (odd) then LI(z1, z2),
defined by (2.20), approximates the function below (above). I.e.,

f(z1, z2) ≥ (≤)LI(z1, z2), (z1, z2) ∈ Z1 × Z2. (2.26)

If the divided differences of total order m+1 of the function f are nonpositive then (2.26)
holds with a reversed inequality sign.

Proof. It is enough to prove that RI(z1, z2) in (2.21) is nonnegative (nonpositive) for all
(z1, z2) ∈ Z1 × Z2. The divided differences in (2.21) are of total order m+ 1 hence they are
nonnegative. Regarding the terms

i1∏
l=0

(z1 − z1l)
i2−1∏
h=0

(z2 − z2h) (i1 + i2 = m, i1, i2 ≥ 0) (2.27)

and
m∏

h=0

(z2 − z2h), (2.28)

they are zeros or they have exactly q+ 1 negative factors in case of (z1, z2) ∈ Z1×Z2. Hence
(2.27) and (2.28) are nonnegative (nonpositive) if q+ 1 is even (odd). From this follows that
the same is true for RI(z1, z2). If the divided differences of total order m+ 1 are nonpositive
then the divided differences in (2.21) are nonpositive. The terms (2.27) and (2.28) remain
nonnegative (nonpositive) hence RI(z1, z2) is nonpositive (nonnegative). 2

The theorems above give us the following method of generating Bonferroni-bounds. Let
r(u, v;N,M) = p(0, 0;N,M) or r(u, v;N,M) = q(1, 1;N,M). In both cases Ir(u,v;N,M)(z1, z2)
has nonnegative (nonpositive) divided differences of order m+1 if m is odd (even). Hence the
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algorithm of Theorem 2.6 gives Lagrange polynomials RI(z1, z2) approximating the function
Ir(u,v;N,M)(z1, z2) below and above. RI(z1, z2) fulfills the inequality (2.13) as the polynomial
Pa(z1, z2) or the inequality (2.15) as the polynomial Pb(z1, z2), respectively. Taking the
expected value of Pa(z1, z2) or Pb(z1, z2) and using the corresponding conversion formula of
(2.11) the Bonferroni bound is given. The method is illustrated by a detailed example in the
following section.

About the quality of the bounds of the method we have the following

Theorem 2.7 Assume that there exists a random vector with the support ZI (where ZI is
defined by the Algorithm), which has the binomial moments with the given values of Sk,t,
k + t ≤ m. Then the Bonferroni-bound yielded by the Lagrange polynomial LI(z1, z2) (i.e.,
by the method above) is the best linear bounding formula of the terms Sk,t, k + t ≤ m.

Proof. Let us consider a lower bound. (The case of the upper bound can be proved in the
same way.) ZI is the set of the interpolation points, hence in (2.13)

Pa(z1, z2) = LI(z1, z2) =
m∑

k=0

m−k∑
t=0

ak,tz
k
1z

t
2 = Ir(u,v;N,M) (z1, z2) for (z1, z2) ∈ ZI .

If there exists a random vector (νN(A), νM(B)) that has values outside of ZI with zero
probability, then for this vector:

E

[
m∑

k=0

m−k∑
t=0

ak,tνN(A)kνM(B)t

]
= E

[
Ir(u,v;N,M) (νN(A), νM(B))

]
.

From this:

m∑
k=0

m−k∑
t=0

ak,tµk,t = r(u, v;N,M) =⇒
m∑

k=0

m−k∑
t=0

ck,tSk,t = r(u, v;N,M).

I.e., there exists a distribution with the given binomial moments where the Bonferroni-
inequality holds with equality, hence it cannot be improved. 2

3 Bonferroni-type inequalities

Example 3.1 Let us construct an upper bound for p(0, 0;N,M) where the maximum of the
total order of the bivariate moments is m = 2. The m+1st divided differences of the function
f(z1, z2) = Ip(0,0;N,M)(z1, z2) are nonpositive, hence in the Algorithm q + 1 has to be even.
One possible choice of Step 1 can be:

(z10, z11, z12) = (N, 0, N − 1).

Step 2 gives the following values for the second components:

(z20, z21, z22) = (M, 0,M − 1).
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Considering the coefficients of LI(z1, z2) in (2.20):

[z10; z20; f ] = [N ;M ; Ip(0,0;N,M)] = Ip(0,0;N,M)(N,M) = 0

[z10; z20, z21; f ] = [N ;M, 0; Ip(0,0;N,M)] = 0× (−1)

M
= 0

[z10; z20, z21, z22; f ] = [N ;M, 0,M − 1; Ip(0,0;N,M)] = 0× (−1)2

M(M − 1)
= 0

[z10, z11; z20; f ] = [N, 0;M ; Ip(0,0;N,M)] =
(−1)

N
× 0 = 0

[z10, z11; z20, z21; f ] = [N, 0;M, 0; Ip(0,0;N,M)] =
(−1)

N
× (−1)

M
=

1

NM

[z10, z11, z12; z20; f ] = [N, 0, N − 1;M ; Ip(0,0;N,M)] =
(−1)2

N(N1)
× 0 = 0.

Hence

Ip(0,0;N,M)(z1, z2) ≤ Pb(z1, z2) = LI(z1, z2) =
1

NM
(z1−N)(z2−M) = 1− 1

N
z1−

1

M
z2+

1

NM
z1z2.

(3.1)
Taking the expected values of Ip(0,0;N,M) (νN(A), νM(B)) and Pb (νN(A), νM(B)), we have:

p(0, 0;N,M) ≤ 1− 1

N
µ1,0 −

1

M
µ0,1 +

1

NM
µ1,1. (3.2)

Since in this case µ1,0 = S1,0, µ0,1 = S0,1 and µ1,1 = S1,1, i.e., dk,t = bk,t in (2.11), we get:

p(0, 0;N,M) ≤ 1− 1

N
S1,0 −

1

M
S0,1 +

1

NM
S1,1. (3.3)

Inequality (3.3) is the same as Inequality (I) in Galambos and Xu (1995).

If we would like to get a lower bound we can choose, e.g., the case

(z10, z11, z12) = (0, N, 1)

then Step 2 gives

(z20, z21, z22) = (0,M, 1).

Following the same way as before we have the inequality

p(0, 0;N,M) ≥ 1− N + 1

N
µ1,0 −

M + 1

M
µ0,1 +

1

N
µ2,0 +

1

M
µ0,2 +

1

NM
µ1,1. (3.4)



Page 10 RRR 10-2009

In order to get the bound in the terms of binomial moments we have to apply (2.11).

c0,0 = 1 · 1 · a0,0 + 0 = 1 · 1 · 1 = 1

c0,1 = 1 · 1 · a0,1 + 1 · 1 · a0,2 =
(
−M + 1

M

)
+
(

1

M

)
= −1

c0,2 = 1 · 2 · a0,2 =
2

N

c1,0 = 1 · 1 · a1,0 + 1 · 1 · a2,0 =
(
−N + 1

N

)
+
(

1

N

)
= −1

c1,1 = 1 · 1 · a1,1 =
1

NM

c2,0 = 2 · 1 · a2,0 =
2

M
.

(3.5)

Hence we have:

p(0, 0;N,M) ≥ 1− S1,0 − S0,1 +
2

N
S2,0 +

2

M
S0,2 +

1

NM
S1,1. (3.6)

Example 3.2 Consider bounds for q(1, 1;N,M) in case of m = 3. The m + 1st divided
differences of Iq(1, 1;N,M)(z1, z2) are nonnegative, hence if q+ 1 is odd (even) then the Al-
gorithm gives an upper (lower) bound. Regarding the upper bounds we consider the following
two cases:

(a) (z10, z11, z12, z13) = (0, N, 1, 2) =⇒ (z20, z21, z22, z23) = (0, 1,M, 2)

(b) (z10, z11, z12, z13) = (0, 1, N, 2) =⇒ (z20, z21, z22, z23) = (0,M, 1, 2)

The corresponding upper bounds are:

(a)

q(1, 1;N,M) ≤ S11 −
2

N
S21 −

2

NM
S12,

(b)

q(1, 1;N,M) ≤ S11 −
2

M
S12 −

2

NM
S21.

This gives the result of Theorem 2 of Lee (1997):

q(1, 1;N,M) ≤ min
(
S11 −

2

N
S21 −

2

NM
S12, S11 −

2

M
S12 −

2

NM
S21

)
(3.7)

Lower bounds can be given by the application of the Algorithm for the following cases:

(a) (z10, z11, z12, z13) = (0, 1, 2, 3) =⇒ (z20, z21, z22, z23) = (0, 1, 2, 3)
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(b) (z10, z11, z12, z13) = (0, N,N − 1, 1) =⇒ (z20, z21, z22, z23) = (0,M,M − 1, 1)

The corresponding bounds are:

(a)

q(1, 1;N,M) ≥ S11 − S12 − S21,

(b)

q(1, 1;N,M) ≥ 3

NM
S11 −

2

NM(M − 1)
S12 −

2

NM(N − 1)
S21.

This gives the result:

q(1, 1;N,M) ≥ max

(
S11 − S12 − S21,

3

NM
S11 −

2

NM(M − 1)
S12 −

2

NM(N − 1)
S21

)
(3.8)

Example 3.3 If m = 4 then all m + 1st divided differences of Iq(1, 1;N,M)(z1, z2) are
nonpositive.

(a) Applying the Algorithm for the case:
(z10, z11, z12, z13, z14) = (0, 1, N, 2, 3) =⇒ (z20, z21, z22, z23, z24) = (0, 1,M, 2, 3),

(b) and applying the Algorithm for the case:
(z10, z11, z12, z13, , z14) = (0, N, 1, N − 1, 2) =⇒ (z20, z21, z22, z23, , z24) = (0,M, 1,M −
1, 2),

we get the following lower and upper bounds, respectively:

(a)

q(1, 1;N,M) ≥ S11 − S12 − S21 +
3

M
S13 +

3

N
S31 +

4

NM
S22, (3.9)

(b)

q(1, 1;N,M) ≤ S11 −
2(NM −N +M − 2)

NM(M − 1)
S12 −

2(NM −M +N − 2)

NM(N − 1)
S21

+
6

NM(M − 1)
S13 +

6

NM(N − 1)
S31 +

4

NM
S22.

(3.10)

Considering (3.9) it improves the classical lower bound S11 − S12 − S21, i.e.

q(1, 1;N,M) ≥ S11 − S12 − S21 +
3

M
S13 +

3

N
S31 +

4

NM
S22 ≥ S11 − S12 − S21.
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It is also easy to see that (3.10) improves the upper bound of Galambos and Xu (1993):

S11 −
2(NM −N +M − 2)

NM(M − 1)
S12 −

2(NM −M +N − 2)

NM(N − 1)
S21

+
6

NM(M − 1)
S13 +

6

NM(N − 1)
S31 +

4

NM
S22

=
(
S11 −

2

M
S12 −

2

N
S21 +

4

NM
S22

)
− 6

NM(M − 1)

[(
M − 2

3
S12 − S13

)
+
(
N − 2

3
S21 − S31

)]
≤ S11 −

2

M
S12 −

2

N
S21 +

4

NM
S22.

4 Extensions of the method

If in the inequalities (1.5), beside the at most m-order bivariate binomial moments, some
univariate moments of higher order are also allowed, then the Min and Max Algorithms
of Mádi-Nagy and Prékopa (2004) can be applied. The connection between multivariate
discrete moment problems and multivariate Bonferroni-type bounds is also clarified there. If
more than two event sequences are considered, then the Min Algorithm of Mádi-Nagy (2009)
can be used.

Another way of constructing more Bonferroni-bounds is the application of the reduction
formula of Corollary 2.1 in Galambos and Xu (1995) for the inequalities given by our Al-
gorithm. Lemma 1 in Simonelli (1996) can also be applied for our bounds to get further
inequalities. In those generalizations the order of the moments can be higher, however the
obtained formula remains simple enough to use in practice.
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[9] Mádi-Nagy, G. and A. Prékopa (2004). On Multivariate Discrete Moment Problems
and Their Applications to Bounding Expectations and Probabilities, Mathematics of
Operations Research 29(2) 229-258.
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