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Abstract. A dual type linear programming algorithm is presented for locating the
maximum of a strongly unimodal multivariate discrete distribution.
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1 Introduction

A probability measure P , defined on Rn, is said to be logconcave if for every pair of nonempty
convex sets A, B ⊂ Rn (any convex set is Borel measurable) and we have the inequality

P (λA + (1− λ)B) ≥ [P (A)]λ[P (B)](1−λ),

where the + sign refers to Minkowski addition of sets, i.e.,

λA + (1− λ)B = {λx + (1− λ)y|x ∈ A,y ∈ B}.

The above notion generalizes in a natural way to nonnegative valued measures. In this
case we require the logconcavity inequality to hold for finite P (A), P (B). The notion of a
logconcave probability measure was introduced in [8, 9].

In 1912 Fekete [4] introduced the notion of an r-times positive sequence. The sequence
of nonnegative elements . . . , a−2, a−1, a0, . . . is said to be r-times positive if the matrix

A =




. . . . . . . . .

. . . a0 a1 a2

. . . a−1 a0 a1
. . .

a−2 a−1 a0
. . .

. . . . . . . . .




has no negative minor of order smaller than or equal to r.
Twice-positive sequences are those for which we have

∣∣∣∣
ai aj

ai−t aj−t

∣∣∣∣ = aiaj−t − ajai−t ≥ 0. (1.1)

for every i < j and t ≥ 1. This holds if and only if

a2
i ≥ ai−1ai+1 .

Fekete [4] also proved that the convolution of two r-times positive sequences is r-times
positive. Twice-positive sequences are also called logconcave sequences. For this, Fekete’s
theorem states that the convolution of two logconcave sequences is logconcave.

A discrete probability distribution, defined on the real line, is said to be logconcave if
the corresponding probability function is logconcave. While continuous unimodal or convex
functions enjoy a number of useful properties, many of them do not carry over the discrete
case (see, e.g., [10]). For example, the convolution of two logconcave distributions on Zn,
the set of lattice points in the space, is no longer logconcave in general, if n ≥ 2.

Favati and Tardella [3] introduced a notion of integer convexity. They analyzed some
connections between the convexity of a continuous function (on Rn) and integer convexity of
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its restriction to Zn. They also presented a polynomial-time algorithm to find the minimum
of a submodular integrally convex function. A further paper in this respect is due to Murota
[6]. He developed a theory of discrete convex analysis for integer valued functions defined
on integer lattice points.

A classical paper on discrete unimodality is due to Barndorff-Nielsen [1] in which a
notion of strong unimodality was introduced. Following Barndorff-Nielsen [1] a discrete
probability function p(z), z ∈ Zn is called strongly unimodal if there exists a convex function
f(x), x ∈ Rn such that f(x) = − log p(x) if x ∈ Zn. If p(z) = 0, then by definition
f(z) = ∞. This notion is not a direct generalization of that of the one-dimensional case, i.e.,
of formula 1.1. However in case of n = 1 the two notions are the same (see, e.g., [10]). It
is trivial that if p is strongly unimodal, then it is logconcave. The joint probability function
of a finite number of mutually independent discrete random variables, where each has a
logconcave probability function is strongly unimodal.

Pedersen [7] presented sufficient conditions for a bivariate discrete distribution to be
strongly unimodal. He also proved that the trinomial probability function is logconcave and
the convolution of any finite number of these distributions with possibly different parameter
sets is also logconcave.

Subasi et al. [13] gave sufficient conditions that ensure the strong unimodality of a
multivariate discrete distribution. In view of this they presented a subdivision of Rn into non-
overlapping convex polyhedra such that f(x) coincides with the values of log p(x), x ∈ Zn,
is linear on each of them. On each subdividing simplex f(x) is defined by the equation of
the hyperplane determined by the values of − log p(x) at the vertices and the convexity of
f(x) on any two neighboring simplices (two simplices having a common facet) is ensured.
The resulting function f(x) is convex on the entire space. In the same paper the authors
also proved the strong unimodality of the negative multinomial distribution, the multivariate
hypergeometric distribution, the multivariate negative hypergeometric distribution and the
Dirichlet (or Beta) compound multinomial distribution. These theoretical investigations lead
to some practical suggestion on how to find the maximum of a strongly unimodal multivariate
discrete distribution.

A function f(z), z ∈ Rn is said to be polyhedral (simplicial) on the bounded convex
polyhedron K ⊆ Rn if there exists a subdivision of K into n-dimensional convex polyhedra
(simplices), with pairwise disjoint interiors such that f is continuous on K and linear on each
subdividing polyhedron (simplex). Prékopa and Li [11] presented a dual method to solve a
linearly constrained optimization problem with convex, polyhedral objective function, along
with a fast bounding technique, for the optimum value. Any f(x) , defined by the use of
a strongly unimodal probability function p(x), is a simplicial function and can be used in
the above-mentioned methodology. In an earlier paper [?] Prékopa developed a dual type
method for the solution of a one-stage stochastic programming problems. The method was
improved and implemented in [2].

The notion of discrete unimodality is of interest, for example, in connection with statis-
tical physics where a typical problem is to find the maximum of a unimodal function. In
this paper we use the results of the paper by Prékopa and Li [11] and present a dual type
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algorithm to locate the maximum of a strongly unimodal multivariate discrete distribution.
In what follows we present our results in terms of probability functions. They generalize in
a straightforward manner for more general discrete unimodal functions.

2 A Dual Type Algorithm

The problem of interest is to find the maximum of a strongly unimodal probability function
p(x), x ∈ Zn which is the same as the minimum value of the convex function f(x) on Rn

such that
f(x) = − log p(x) if x ∈ Zn

that we will be looking at.
In addition to the strongly unimodality of p(x), x ∈ Zn we assume that there exists a

subdivision of Rn into simplices with pairwise disjoint interiors such that all vertices of all
simplices are elements of Zn and a function f(x), x ∈ Rn that is linear on each of them,
otherwise convex in Rn and f(x) = − log p(x) if x ∈ Zn.

Probability functions frequently take zero values on some points of Zn. If p(x) = 0, then
by definition f(x) = ∞ and therefore any x with this property can be excluded from the
optimization. We can also restrict the optimization to bounded sets. In fact, since

∑

x∈Zn

p(x) = 1

it follows that there exists a vector b such that the minimum of f is taken in the set
{x | |x| ≤ b}. Such a b can easily be found without the knowledge of the minimum of f , we
simply take a b with large enough components. For simplicity we assume that the minimum
of f is taken at some point of the set {x | 0 ≤ x ≤ b} and such a b is known.

Probability functions sometimes are of the type where the nonzero probabilities fill up the
lattice points of a simplex. An example is the multinomial distribution where p(x1, ..., xn) > 0
for the elements of the set

{x ∈ Zn | x ≥ 0, x1 + ... + xn ≤ n}.
Taking this into account, we will be looking at the problems

min f(x)
subject to

0 ≤ x ≤ b, x integer
(2.1)

where b has positive integer components and

min f(x)
subject to

x1 + ... + xn ≤ b
x ≥ 0, x integer

(2.2)
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where b is a positive integer.
Our assumption regarding the subdivision of Rn into simplices and the function f(x), x ∈

Rn carry over to the feasible sets in problems (2.1) and (2.2) in a natural way.
The integrality restriction of x can be removed from both problems (2.1) and (2.2). In

fact, our algorithm not only produces an optimal x but also a subdividing simplex of which
x is an element and at least one of the vertices of the resulting simplex also is an optimal
solution.

First we consider problem (2.1). Let N be the number of lattice points of the set

{x | 0 ≤ x ≤ b} .

Any function value f(x), 0 ≤ x ≤ b can be obtained by λ-representation, as the optimum
value of a linear programming problem:

f(x) = min
λ

N∑

k=1

f(zk)λk

subject to
N∑

k=1

zkλk = x

N∑

k=1

λk = 1

0 ≤ x ≤ b
λ ≥ 0 .

(2.3)

By the use of problem (2.3), problem (2.1) can be written in the following way:

min
x

f(x) = min
λ,x

N∑

k=1

f(zk)λk

subject to
N∑

k=1

zkλk = x

N∑

k=1

λk = 1

x ≤ b
λ ≥ 0 , x ≥ 0.

(2.4)
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Introducing slack variables we rewrite the problem as

min
x

f(x) = min
λ,x

N∑

k=1

f(zk)λk

subject to
N∑

k=1

zkλk − x = 0

N∑

k=1

λk = 1

x + u = b
λ ≥ 0 , x ≥ 0 , u ≥ 0.

(2.5)

In order to construct an initial dual feasible basis to problem (2.5) we use the following
theorem by Prékopa and Li [11] (Theorem 2.1).

Theorem 1. Suppose that z1, ..., zk are elements of a convex polyhedron K that is subdivided
into r-dimensional simplices S1, ..., Sh with pairwise disjoint interiors and the set of all of
their vertices is equal to {z1, ..., zk}. Suppose further that there exists a convex function
f(z), z ∈ K, continuous on K and linear on any of the simplices S1, ..., Sh with different
normal vectors on different simplieces such that fi = f(zi), i = 1, ..., k. Let B1, ..., Bh be
those (n + 1)× (n + 1) parts of the matrix of equality constraints of problem (2.3), the upper
n×(n+1) parts of which are the sets of vertices of the simplices S1, ..., Sh, respectively. Then
B1, ..., Bh are the dual feasible bases of problem (2.3) and each of them is dual nondegenerate.

If the above-mentioned normal vectors are not all different, the assertion that the vertices of
any simplex form a dual feasible basis, remains true but these bases are no longer all dual
nondegenerate, as it turns out from the proof of the theorem.
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Let S1, ..., Sn! designate the subdividing simplices. Let us rewrite problem (2.5) into more
detailed form:

min
N∑

k=1

f(zk)λk

subject to
x1 + u1 = b1

...
xn + un = bn

N∑

k=1




zk1
...

zkn


 λk −




x1
...
0


− ...−




0
...

xn


 =




0
...
0




N∑

k=1

λk = 1

λ ≥ 0 , x ≥ 0 , u ≥ 0.

(2.6)

It is easy to see that the rank of the matrix of equality constraints in (2.6) is 2n + 1. Let
v1, v2, ... , vn, y1, y2, ... , yn, w designate the dual variables. The coefficient matrix of
problem (2.6) has a special structure illustrated in Table 1.

0 · · · 0 0 · · · 0 f(z1) · · · f(zn)
1 · · · 0 1 · · · 0 0 · · · 0 b1
... · · · ...

... · · · ...
... · · · ...

...
0 · · · 1 0 · · · 1 0 · · · 0 bn

-1 · · · 0 0 · · · 0 z11 · · · zN1 0
... · · · ...

... · · · ...
... · · · ...

...
0 · · · -1 0 · · · 0 z1n · · · zNn 0
0 · · · 0 0 · · · 0 1 · · · 1 1

Block 0 Block 1

Table 1. Coefficient matrix of problem (2.6), together with the objective function coefficients
and the right-hand side vector

First, let us introduce the notations:

A =




1 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 1


 , T =



−1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . −1 0 . . . 0


 , b =




b1
...
bn
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To initiate the dual algorithm we compose a dual feasible basis for problem (2.6). To
accomplish this job we pick an arbitrary simplex Si whose vertices are zi1 , ..., zin+1 and
form the 2n + 1-component vectors




0
...
0
zi1

1




, ... ,




0
...
0

zin+1

1




. (2.7)

Then we compute the dual variables y and w by using the equation:

zT
ik
y + w = f(zik), k = 1, ..., n + 1 .

Next we solve the linear programming problem

min − yT T

(
x
u

)

subject to
x1 + u1 = b1

...
xn + un = bn

x ≥ 0 , u ≥ 0,

(2.8)

by a method that produces a primal-dual feasible basis. Let B be this optimal basis and d a
dual vector corresponding to B, i.e., any solution of the equation dT B = −yT TB, where TB

is the part of T which correspond to the basis subscripts. Since A has full rank B and d is
uniquely determined.

Problem (2.9), however, is equivalent to

min y1x1 + ... + ynxn

subject to
x1 + u1 = b1

...
xn + un = bn

x ≥ 0 , u ≥ 0

(2.9)

which can be solved easily: if yi ≤ 0, we take the column of xi otherwise we take the column
of ui into the basis. We have obtained a dual feasible basis for problem (2.6). It consists of
those vectors that trace out B from A and TB from T in Block 0, furthermore the previously
selected vectors (2.7) in Block 1 in Table 1. The dual feasibility is guaranteed by the theorem
of Prékopa and Li in [11] (Theorem 2.2).

The next step is to check the primal feasibility of basis. The first n constraint in problem
(2.6) ensure that in case of any basis the basic xi, uj, (i 6= j) variables are positive, since we



RRR 12-2009 Page 9

have the inequality b > 0. Thus, if the basis is not primal feasible, then only the λ variables
can take negative value.

If λj < 0, then the column of zij can be chosen to be the outgoing vector. The incoming
vector is either a nonbasic column from Block 0 or a nonbasic column from Block 1 in Table
1. The algorithm can be described in the following way.

Dual algorithm to maximize strongly unimodal functions
Let us introduce the notations:

H = {1, 2, ..., h}, K = {1, 2, ..., k},

Zj = {zk | zk is a vertex of the simplex Sj , k ∈ K}, j ∈ H,

Lj = {k | zk ∈ Zj}, j ∈ H.

Step 0. Pick arbitrarily a simplex Sj and let zi, i ∈ {i1, ..., in+1} be the collection of its
vertices and

I(0) ← Lj = {i1, ..., in+1}
Go to Step 1.
Step 1. Solve for y, w the system of linear equations:

zT
ik
y + w = f(zik), k ∈ I(0),

where y ∈ Rn, w ∈ R Go to Step 2.
Step 2. Compose a dual feasible basis B by including the vectors (2.7), any column of xi if
yi ≤ 0 and any column of ui if yi > 0. Go to Step 3.
Step 3. Check the primal feasibility of basis B. If λ ≥ 0, stop, the basis is optimal. If
λ � 0, then pick λq < 0 arbitrarily and remove zq from the basis. Go to Step 4.
Step 4. Determination of incoming vector. The following columns may enter:

(1) A nonbasic column from Block 0.

(2) A nonbasic column zj from Block 1.

Updating formulas

(1) Given I(k), in order to update a column from Block 0 which traces out the nonbasic
column ap from A, solve the following system of linear equations:

ABdp = ap

TBdp +
∑

i∈I(k)

zidi = tp (2.10)

∑

i∈I(k)

di = 1 ,
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where AB, TB are the parts of A and T , respectively, corresponding to basis B; dp is a vector
with suitable size and tp is the p column of the matrix T .

Compute the reduced costs:

c̄p =
∑

i∈I(k)

f(zi)di .

(2) Assume that a nonbasic column zj from Block 1, where |I(k)| < n + 1, j 6= q and

{j}∪ I(k)\{q} is a subset of Ll for some l ∈ H, enters the basis. Let Î(k) designate the set of
all possible j from Block 1 satisfying above requirements. To update the column containing
zj , j ∈ Î(k), we solve the system of linear equations:

ABrj = 0

TBrj +
∑

i∈Î(k)

zidi = zj (2.11)

∑

i∈Î(k)

di = 1 ,

where rj is a vector with suitable size.
Compute the reduced costs:

f̄j = −f(zj) .

Determination of the vector that enters the basis

Let d̃ T = (dT
p , di1 , ..., din+1) and d̃(q) be the qth component of d̃ in (2.10). Let r̃ T =

(rT
j , di1 , ..., din+1) and r̃(q) be the q component of r̃ in (2.11). Then the incoming vector is

determined by taking the minimum of the following minima:

mind̃(q)<0

{∑
i∈I(k) f(zi)di

d̃(q)

}
, (2.12)

minr̃(q)<0

{−f(zj)

r̃(q)

}
. (2.13)

If the minimum is attained in (2.12), let

I(k+1) = I(k)\{q} .

Update the basis B by replacing the outgoing vector by the column of ap in Block 0.
If the minimum is attained in (2.13), then the column of zj is the incoming vector. Let

I(k+1) = I(k) ∪ {j}\{q} .

Update the basis B by replacing the outgoing vector by the column of zj in Block 1. Go to
Step 3.
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If no two linear pieces of the function f(x) are on the same hyperplane, then cycling
cannot occur, i.e., no simplex that has been used before returns. Otherwise an anti-cycling
procedure has to be used: lexicographic dual algorithm (see, e.g., [12]) or Bland’s rule [?].

We can also find bounds for the optimum value of problem (2.6) by the use of the fast
bounding technique by Prékopa and Li [11]. First we construct a dual feasible basis as
described before. If v, y, w are the corresponding dual vectors, then bTv + w is a lower
bound for the optimum value of problem (2.6). In order to find an upper bound we use
any method that produces a pair of primal and dual optimal solutions (not necessarily an
optimal basis). Having the optimal (x̂T , ûT ), we arbitrarily pick a simplex Sk and represent
(x̂T , ûT ) as the convex combination of the vertices of Sk. If all coefficients are nonnegative,
then we stop. Otherwise we delete the corresponding vertex from the simplex and update
the basis by including the vertex of the neighboring simplex into the basis which is not a
vertex of the current simplex. If the representation of the vector −T (x̂T , ûT ) is

−T (x̂T , ûT ) =
∑
zj∈S

zjλj,

where
∑

j

λj = 1 , λj ≥ 0, then the upper bound is given by

−yT T (x̂T , ûT ) +
∑

j

f(zj)λj .

The solution of problem (2.2) can be accomplished in the same way, only trivial modifica-
tions are needed. If the minimum of f is taken in the set {x ∈ Zn | x > 0, x1 + ...+xn ≤ b},
then we assume that f(x) = M (M > 0) for every x that does not belong to this set,
where M is large enough (or ∞). In this case, problem (2.2) can be solved by the use of
above-mentioned methods.

We also remark that in continuous optimization one of the important properties of convex
functions is the coincidence between their local and global minima. A function is g : Zn → R
called integrally convex if and only if its extension g̃ : Rn → R is convex. In this case a
global minimum for (continuous) function g̃ is a global minimum for (discrete) function g,
and vice versa.
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