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PTIMAL PORTFOLIO SELEC ION BASED ON
ULTIPLE VALUE AT RISK ONSTRAINTS

Kunikazu Yoda Andréas Prékopa

Abstract. A variant of Kataoka’s portfolio selection model is formulated in which
lower bounds are imposed on several VaR values, where the bounds are taken from
a reference probability distribution. Under mild assumptions, the problems are
formulated as convex nonlinear programming problems, so that the global optimal
solution can be found with a nonlinear programming solver. The numerical solution
technique will be discussed and numerical examples will be presented.
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1 Introduction

The portfolio selection problem in finance has been studied extensively since the well-known
model by Markowitz ([2],[3]) was proposed. Suppose we hold n assets with fractions of
investments x,...,x, and returns on investments Ri,..., R,, respectively. Note that each
R; is a random variable. Let us denote

R=(Ry,....,R)", z=(x1,...,2,)".
Let us denote i the mean of R and C' the covariance matrix of R:

= (1, )’ pi= E[R;] forie{1,... n},
C=lca] = E[(R—p)(R—p)"], ci=E[(Ri — )Ry — )],
(Ry— ) (R —pa) -+ (Ba— pa) (R — pin)
(R—p)(R—p)" = : :
(R = pn) (By = 1)+ (Rn = pn) (Ro — i)

Markowitz’s model for portfolio selection is formulated in three different ways. The first
model considers the maximization of the expected return given an upper bound on the
variance of return. The second model considers the minimization of the variance of return
given a lower bound on the expected return. The third model is the combination of the two,
which is formulated as follows:

Markowitz’s model

maximize 'z — Ba’ Cx (1)

subject to le =1, x>0. (2)
i=1

B > 0is a constant. The model considers the maximization of an estimated lower side profit,
which is the expected return minus the amount affected by the variance of return.

Kataoka’s model for portfolio selection ([1]), which is similar to the Markowitz’s third
model, is formulated as follows:

Kataoka’s model
(Px) maximize d (3)
subject to  Pr(R"z >d) >p (4)

inzl, z > 0. (5)
i=1

p =~ 1 is a fixed probability chosen by ourselves, e.g. p = 0.95. The model considers the
maximization of the lower bound of the return which occurs with a high probability.
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Let ¢(z) and ®(x) denote the probability density function and the cumulative distribution
function of the standard normal distribution, respectively:

o) = e (—5) e = [ e

Suppose Ry,..., R, have joint normal distribution. We have the following theorem.
Theorem 1. The set of x vectors satisfying
Pr(RTde) >p where )0 <p<1
s the same as that satisfying
'z +@ (1 —p)VaTCr > d.

Hence a new form of Kataoka’s problem is as follows:

(Pg) maximize d (6)
subject to p'z + ®~'(1 - p)VaTCx > d (7)
dai=1 (8)

i=1
x> 0. 9)

This can be further formulated as follows:

(P{) maximize p'z+® (1 —p)VaTCx (10)
subject to le =1 (11)

i=1
x> 0. (12)

The Value at Risk, or VaR, is a widely used risk measure of the risk on a portfolio
of assets. The VaR of confidence level 100p % of a random variable X (meaning revenue),
denoted by VaR,(X), is defined as the optimum value of the following optimization problem:

maximize v (13)
subject to Pr(X >wv)>p (14)

If X = RTz is the total return of a portfolio where random returns R has joint normal
distribution, then from Theorem 1 we can easily derive that

VaR, (RTz) = p'o + & (1 — p)VaTCr. (15)

Note that this is the same as the objective function value of (Py). And it is also the (1—p)-
quantile of R z.
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2 Model I

In Kataoka’s model (P}) we impose a condition (7) for the VaR. Now we handle two quantiles
and optimize with respect to one of them while imposing a constraint for the other. Since we
set p ~ 1, we want the p-quantile of RTz to be as large as possible and at the same time we
want the VaR(R”z), ((1—p)-quantile) to be not too small. So in connection with problem
(Pf) we consider a new problem as follows:

(Py) maximize VaR, ,(R"z)=p"z+ & ' (p)ValCx (16)
subject to VaR,(R'z) = p'z + @ '(1 — p)VaTCx > d (17)
Y =1 (18)
i=1
x> 0. (19)

The value d is a lower bound on the VaR at confidence level p chosen by ourselves. C'is
supposed to be a positive definite matrix. Since vaCw is convex, ® (p) > 0, and p’x
is convex, it follows that (16) is a convex function. Since ®~'(1 — p) < 0, we have that
®~'(1—p)VaTCx is concave. So the left-hand side of (17) is a concave function, and the set
satisfying (17) is convex. The sets satisfying (18) and (19) are both convex. Therefore the
feasible set of problem (P) is convex. We have a convex feasible set and a convex objective
function to be maximized. The optimal solution of (P) is attained on the boundary of the
feasible set. In case of the optimal solution we have two cases with respect to the strict
inequality or the equality of (17).

Suppose that (17) holds with strict inequality. Then the optimal solution is the same as
that of the following problem:

maximize p’z+ @ (p)VaTCx (20)
n
subject to le =1 (21)
i=1
x> 0. (22)
The optimal solution of this problem is attained at one of the unit vectors ey, ..., e, and the

optimum value is
~ max : {/LT(ZZ' + @_l(p)\/e;pr'ei} = ie?llaXn} {pi+ @ (p)cui} -

Note that we have to check the strict inequality for (17) for the optimal solution. The
optimal solution of this case is undesirable in practice and should be ignored.
Suppose that (17) holds with equality:

prz 4+ @11 —p)VaTCx = d. (23)
T
= VaTCx = d-pw (24)

d-1(1—-p)
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Plugging (24) into (16), we have the objective function as follows:

wat o Oty = e —d (07 (1) = —a7 )
o= (1 - p)
Under the assumption that (23) holds at optimality, we can reformulate problem (P,) as

(Py) maximize 'z (25)
subject to p'z + ®7'(1 —p)ValCx > d (26)
d =1 (27)

i=1
x > 0. (28)

The objective function is linear and the feasible set is convex. Thus we can find the optimum
value of this problem using nonlinear programming. Note that we have to check the equality
(23) for the optimal solution of (Pj).

3 Model 11

Now we generalize the previous model further. We handle multiple quantiles and optimize
with respect to one of them while imposing constraints for the others. Suppose we are given
r > 2 reference quantiles dy, ..., d, corresponding to the probabilities py, ..., p,, respectively.
We want to find x that satisfies the inequalities:

Pr(RTz > d;) > p; forie {1,...,r}. (29)

By Theorem 1, (29) are equivalent to

VaR,,(R"z) = "o + &' (1 — p)VaTCr >d; forie{l,...,r} (30)
We select one index h € {1,...,r} and consider a maximization problem with respect to the

equation for h. Without loss of generality we may assume h = 1. We consider the following
problem:

(P3) maximize VaR,, (RTz)=p'z+® (1 —p)VaTCx (31)
subject to VaR,,(RTz) = pfz +® (1 — p)VaTCx > d; forie {1,....r} (32)

=1 (33)
>0, (34)

If p; >1/2foralli € {1,...,r}, then the objective function (31) is concave and the feasible
set satisfying (32)-(34) is convex as in the argument of the previous section. We can find
the optimum value of this problem using nonlinear programming.
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Generally we may want to have any number of p;’s as p; > 1/2 and any number of p;’s
as p; < 1/2. But in practice it is enough to have only one p; where p; < 1/2 and the rests
are p; > 1/2. Suppose p; satisfy:

pi>1/2forallie {1,...,r—1} but p, < 1/2. (35)

Then the feasible set satisfying (32)-(34) is not convex anymore. However, in case of the
optimal solution we have two cases.

(Cy) u'z+d (1 —p)ValCx > d,.
In this case, we can remove the constraint for i = r in (32) so that the problem reduces
to the following problem (P34) where p; > 1/2 for all i € {1,...,r — 1} and thus the
feasible set is convex.
(P34) maximize plz+® (1 —p)VaTCOx (36)
subject to plx 4+ ® (1 — p;)VaTlCx > d; fori€ {1,...,r —1} (37)

S a=1 (38)

x> 0. (39)

Note that we have to check the inequality (C) for the optimal solution of (Psy).

(02) MTQT + (I)_l(l — pr) VaTCr = d,.
In this case, we can plug VaTCz = (d, — p"z)/®~'(1 — p,) into (31)-(34) and we get
the following problem:

—p)\ 7 71 —p)
¢ U=p) il VY
)“x+¢lu—m>

Tey>d; forie{1,...,r —1}

=
§

|
=

O-1(1 — p,)
pl'z 4+ &1 —p)ValCx < d,
3=
i=1
z >0

This can be further reformulated as the following problem (Psg). The objective func-
tion (40) is linear. The constraints (41),(43), and (44) are linear. Since p, < 1/2 the
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constraint (42) is convex. Thus the feasible set is convex.

(P3p) maximize p’z (40)
d; + K;d

i To>2—""T fori 1,...,r—1 41
subject to p x> e orie{l,...,r—1} (41)
pl'r + @71 —p)ValCx < d, (42)
d =1 (43)

i=1
2 >0 (44)

Here we have defined

Ki=—®"'(1—-p)/®'(1—-p,)>0 foriec{l,...,r—1}. (45)

Note that we have to check the equality (C3) for the optimal solution of (Psp).

In order that the optimal solution of (Psg) to be at the equality sign of (42), it is necessary
that

di Kidr .
4 =@ (1= pVaTCr > S forie {1, 1},

1+ K;
d; + Kid, _ :
" r—ltLiKz(I) "1 —p)VaTCx >0. forie{l,...,r—1}
Sodpe>dp forie{l,...,r—1}. (46)

We can solve each of the two problems (Ps4) and (Psg), and the solution that has larger
objective value is the optimal solution.

4 Numerical Example

4.1 Example 1
In this example, we use the data in Tables 1 and 2 for ;1 and C taken by [6].

INSTRUMENT S&P Gov. Bond Small Cap
MEAN RETURN | 0.0101110  0.0043532  0.0137058

Table 1: Mean return g for Example 1

The computational result is shown in Tables 3 and 4. In the solutions of Problem (FP;)
and (Ps) at Table 4, the inequality (C}) and equality (C3) are both satisfied. The optimal
solution of the original problem is the optimal solution of problem (Ps).
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S&P

Gov. Bond

Small Cap

S&P
Gov. Bond
Small Cap

0.00324625
0.00022983
0.00420395

0.00022983
0.00049937
0.00019247

0.00420395
0.00019247
0.00764097

Table 2: Covariance matrix C' for Example 1

Optimum value
(2u"z —d)

Optimum sol

()

0.0535089

0.659726
0.217319
0.122955

-0.04

0.0655171

0.531042
0.272793
0.196164

-0.05

0.0772562

0.419314
0.321588
0.259098

-0.06

0.0888812

0.315428
0.365837
0.318735

-0.07

0.100445

0.215317
0.408844
0.375838

-0.08

RRR 12-2010

Table 3: Optimal solutions of Problem P; with p = 0.95 for Example 1

P, opt val | P, opt sol | P opt val | Ps opt sol dy do ds da
(z) (z) 4! D2 D3 D4
-0.0134292 | 0.872726 -0.00399 0.95206 | -0.03 -0.02 -0.01 0.01
0.125375 0.04794 0.8 0.7 0.6 0.3
0.001898 0
Table 4: Optimal solutions of Problem P, and Ps for Example 1
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4.2 Example 2
In this example, we use the data in Tables 5 and 6 for ;1 and C taken by [6].

1077 082 0.8 0.62 0.6 |

Table 5: Mean return p for Example 2

0.00421276  0.00004712 -0.00080459 -0.00022827 -0.00104229
0.00004712  0.00350952  -0.0011045 0.00172536 -0.00085248
-0.00080459  -0.0011045 0.00254941 -0.00001498  0.00105894
-0.00022827  0.00172536 -0.00001498  0.00173681 -0.00080253
-0.00104229 -0.00085248  0.00105894 -0.00080253 0.0010889

Table 6: Covariance matrix C' for Example 2

The computational result is shown in Tables 7 and 8. In the solutions of Problem (FP;)
and (Ps) at Table 8, the inequality (C}) and equality (C3) are both satisfied. The optimal
solution of the original problem is the optimal solution of problem (Py).

4.3 Example 3

In this example, we use the data in Tables 9 and 10 for p and C. The data is computed
by the annualized daily returns of foreign exchange rates of six currencies against US dollar
(the value of one unit of a foreign currency in US dollar) from January 1 to June 30 in
2008. The meaning of the symbols in the table are the following: AUD=Australian Dollar,
CAD=Canadian Dollar, CHF=Swiss Franc, EUR=European Euro, GBP=British Pound,
and JPY=Japanese Yen.

The computational result is shown in Tables 11 and 12. In the solutions of Problem (FP;)
and (Ps) at Table 12, the inequality (C}) and equality (C3) are both satisfied. The optimal
solution of the original problem is the optimal solution of problem (Py).

4.4 Code
The AMPL model file for the problem P is the following.

set ASSET;

param MU {ASSET}; # mean

param C {ASSET,ASSET}; # covariance marix
param PHI_INV_P; # \Phi~{-1}(p)

param D;
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Optimum value | Optimum sol d
(2u"x —d) (z)
0.856958 0.041162 | 0.76
0.485705
0.473133
0

0
0.878339 00.75
0.708468
0.291532
0

0
0.907184 00.73
0.92961
0.0703901
0

0.92 0.72

o O o= OO

Table 7: Optimal solutions of Problem P; with p = 0.95 for Example 2

P, opt val | Py opt sol | Ps opt val | Ps opt sol dy do ds dy ds
(z) (z) P1 P2 P3 P4 Ps
0.77089 0.08010 0.75779 0.20733 | 0.50 0.54 0.58 0.60 0.80
0.45093 0.32272| 09 08 0.7 06 0.3

0.46897 0.40748

0 0

0 0.06247

Table 8: Optimal solutions of Problem P, and P5 for Example 2
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AUD  0.189553

CAD -0.054767

CHF  0.207133

EUR  0.143516

GBP  0.000331

JPY  0.118982

Table 9: Mean return p for Example 3

AUD EUR GBP CAD CHF JPY
AUD 0.009719 0.004404 0.003313 0.004594 0.002253  0.000577
CAD 0.004404 0.007305 0.001093 0.002475 0.002467 -0.000936
CHF 0.003313 0.001093 0.012349 0.007801 0.002737  0.009873
EUR 0.004594 0.002475 0.007801 0.006503 0.002848  0.005011
GBP 0.002253 0.002467 0.002737 0.002848 0.004508  0.001213
JPY 0.000577 -0.000936 0.009873 0.005011 0.001213 0.011690

Table 10: Covariance matrix C' for Example 3

Optimum value optimal solution d
(2u"z —d) ()
0.4125 | AUD 0.05013 | 0.030
CAD 0
CHF 0.94987
EUR 0
GBP 0
JPY 0
0.39427 | AUD 0 | 0.020
CAD 0
CHF 1
EUR 0
GBP 0
JPY 0

Table 11: Optimal solutions of Problem Ps; with p = 0.95 for Example 3
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P, opt val P, opt sol | Ps opt val P opt sol dy do ds dy ds
(z) (z) P1 P2 P3 P4 Ds
0.08981 | AUD 0.51004 0.08389 | AUD 0.55928 | 0.010 0.012 0.014 0.016 0.23
CAD 0 CAD 0 0.9 0.8 0.7 0.6 0.3

CHF 0.48995 CHF 0.33037

EUR 0 EUR 0

GBP 0 GBP 0

JPY 0 JPY 0.11035

Table 12: Optimal solutions of Problem P, and P;5 for Example 3

var x {ASSET} >= 0;

var mux;

var xCx

>= 1d-20;

maximize Max_Portfolio: 2 * mux;

subject
mux =

subject
xCx =

subject
mux -

subject

to MU_X:
sum {i in ASSET} MU[i] * x[il;

to X_C_X:
sum {i in ASSET, j in ASSET} C[i,jl*x[ilx*x[j];

to Low_Bound_Return:
PHI_INV_P * sqrt(xCx) >= D;

to Sum_Portfolio:

sum {i in ASSET} x[i] = 1;

The AMPL model file for the problem P; is the following.

set ASSET;
param MU {ASSET}; # mean

param C

set REF_

{ASSET,ASSET}; # covariance marix
DIST ordered; # reference distribution

param RD_PHI_INV_P {REF_DIST}; # \Phi~{-1}(p_i)
param RD_D {REF_DIST};

# The following two params are not used in this model.
param PHI_INV_P;

param D;
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var x {ASSET} >= 0;
var mux;
var xCx >= 1d-20;

maximize Max_0One_Bound:
mux - RD_PHI_INV_P[first(REF_DIST)]*sqrt(xCx);

subject to MU_X:
mux = sum {i in ASSET} MU[i] * x[il;

subject to X_C_X:
xCx = sum {i in ASSET, j in ASSET} C[i,jl*x[il*x[j];

subject to Lower_Bound_of_Return {k in REF_DIST diff {last(REF_DIST)}}:
mux - RD_PHI_INV_P[k] * sqrt(xCx) >= RD_D[k];

subject to Sum_Portfolio:
sum {i in ASSET} x[i] = 1;

The AMPL model file for the problem Ps is the following.

set ASSET;

param MU {ASSET}; # mean

param C {ASSET,ASSET}; # covariance marix

set REF_DIST ordered; # reference distribution

param RD_PHI_INV_P {REF_DIST}; # \Phi~{-1}(p_i)

param K {k in REF_DIST} = -RD_PHI_INV_P[k]/RD_PHI_INV_P[last(REF_DIST)];
param RD_D {REF_DIST};

# The following two params are not used in this model.
param PHI_INV_P;
param D;

var x {ASSET} >= 0;
var mux;
var xCx >= 1d-20;

maximize Max_One_Bound: mux;

subject to MU_X:
mux = sum {i in ASSET} MU[i] * x[il;

subject to X_C_X:
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xCx = sum {i in ASSET, j in ASSET} C[i,jl*x[il*x[j];

subject to Lower_Bound_of_Return {k in REF_DIST diff {last(REF_DIST)}}:
mux >= (RD_D[k] + K[k]*RD_D[last(REF_DIST)])/(1+K[k]);

subject to Upper_Bound_of_Return:
mux - RD_PHI_INV_P[last(REF_DIST)]*sqrt(xCx) <= RD_D[last(REF_DIST)];

subject to Sum_Portfolio:
sum {i in ASSET} x[i] = 1;

The AMPL data file for Example 1 is the following.

# Data file for example 1

set ASSET := SandP GovBond SmallCap; # asset
param: MU := # mean

SandP 0.0101110

GovBond 0.0043532

SmallCap 0.0137058;

param C: SandP GovBond SmallCap := # covariance
SandP 0.00324625 0.00022983 0.00420395

GovBond 0.00022983 0.00049937 0.00019247

SmallCap 0.00420395 0.00019247 0.00764097;

param PHI_INV_P:=1.644854; # = \Phi“{-1}(p), p=0.95
param D:=-0.08;

set REF_DIST :

1 2 3 4; # reference distribution

param: RD_D RD_PHI_INV_P :=

1 -0.03 0.841621 # p=0.8
2 -0.02 0.524401 # p=0.7
3 -0.01 0.253347 # p=0.6
4 0.01 -0.524401; # p=0.3
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