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constrained stochastic programming problems.
Keywords: probability distribution, normal distribution, Dirichelet distribution,
concavity, stochastic programming



RRR 16-99 Page 1

1 Introduction

Let Φ(z; R) be the n-variate normal probability distribution function with correlation matrix R. We asuume
that R is nonsingular, i.e., the distribution is non-degenerate.

It is well-known (see, e.g., Prékopa [2]) that Φ(z; R) is logarithmically concave (logconcave) in the entire
space Rn.

Logconcave probability distributions have many important applications. In probabilistic constrained
stochastic programming we use them to prove the convexity of a large class of problems. If we have, e.g., a
constraint of the form

P (Tx ≥ ξ) ≥ p, (1.1)

where ξ is a normally distributed random vector, then the logconcavity property of its distribution function
implies that the set of x vectors satisfying (1.1) is a convex set.

There are, however, cases (see Prékopa [3]) where logconcavity is not enough and where the stronger
concavity property of the distribution function is needed.

The purpose of this paper is to prove that if the components of z are large, then Φ(z; R) is not only
logconcave but also concave. The method of proof carries over to other probability distribution functions
too.

2 The Main Theorem

In this section our main objective is to prove Theorem 2.2. To do this we need another theorem which is
interesting in itself, too.

Let I1,. . . ,In be finite or infinite intervals on the real line, D = I1 × · · · × In, and F (z) an n-variate
probability distribution function.

Definition. We Say that F (z) is concave in D in the positive direction, if for any z1 ≤ z2, z1, z2 ∈ D and
0 ≤ λ ≤ 1, we have the inequality F (λ z1 + (1 − λz2)) ≥ λF (z1) + (1 − λ)F (z2).

Theorem 2.1 If F (z) is concave in D in the positive direction, then F (z) is concave in D.

Proof. Let z1, z2 ∈ D. If z1 ≤ z2 or z2 ≤ z1, then by assumption the concavity of F between the
two points holds true. Otherwise, some components of z1 are smaller than or equal to the corresponding
components of z2 while for the others the opposite inequalities hold. We may assume that z1, z2 can be
partitioned as

z1 =
(

x1

y1

)
, z2 =

(
x2

y2

)
,

where x1 ≤ x2, y1 ≥ y2. Let us partition any z ∈ Rn as z =
(

x
y

)
and use F (x, y) as an alternative notation

for F (z). If ζ is a random vector that has distribution function F (z), then we partation ζ accordingly,

ζ =
(

ξ
η

)
. Then we have F (z) = F (x, y) = P (ξ ≤ x, η ≤ y).

We have the following relation:

F (x2, y1) + F (x1, y2) − F (x1, y1) − F (x2, y2)
= P (ξ ≤ x2, η ≤ y1) + P (ξ ≤ x1, η ≤ y2)

−P (ξ ≤ x1, η ≤ y1) − P (ξ ≤ x2, η ≤ y2)
= P (ξ ≤ x2, (η ≤ y1) ∩ (η ≤ y2))

−P (ξ ≤ x1, (η ≤ y1) ∩ (η ≤ y2))
= P ((ξ ≤ x2) ∩ (ξ ≤ x1) ∩ (η ≤ y1) ∩ (η ≤ y2)) ≥ 0,

(2.1)

where the upper bars indicate that we take the complementary of the events.
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Relations (2.1) imply that F (x2, y1) + F (x1, y2) ≥ F (x1, y1) + F (x2, y2). Using this, we conclude

F (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)
≥ λ2F (x1, y1) + λ(1 − λ)F (x1, y2)

+λ(1 − λ)F (x2, y1) + (1 − λ)2F (x2, y2)
≥ λ2F (x1, y1) + (1 − λ)2F (x2, y2)

+λ(1 − λ)(F (x1, y1) + F (x2, y2))
= λF (x1, y1) + (1 − λ)F (x2, y2).

The next theorem states our main result. (For the special case of n = 2, the theorem has already been
proved in Prékopa [3]).

Theorem 2.2 The function Φ(z1, · · · , zn; R) is concave in the set {z|zi ≥
√

n − 1, i = 1, · · · , n}.

Proof. If ζ has distribution function Φ(z; R), then it can be represented as ζ = Aγ where A satisfies
R = AAT and γ has independent, standard normally distributed components. Let A1, . . . , An designate the
rows of A. Since R is a correlation matrix, it follows that A1, . . . , An are unit length vectors.

We have the equality

Φ(z; R) = P (Aγ ≤ z) =
∫

· · ·
∫

Av≤z

φ(v1) · · ·φ(vn)dv1 · · ·dvn. (2.2)

The hyperplanes {v|Aiv =
√

n − 1}, i = 1, · · · , n are tangent to the sphere {v|vT v = n − 1}. Thus, the set
{v|Av ≤ z} contains the ball {v|vT v ≤ n − 1}, provided that zi ≥

√
n − 1, i = 1, · · · , n.

Let us introduce polar coordinates in the integral (2.2):

v1 = w sinψ1

v2 = w cosψ1 sinψ2

...
vn−1 = w cosψ1 · · ·cos ψn−2 sinψn−1

vn = w cosψ1 · · ·cos ψn−2 cosψn−1

−π
2 < ψi ≤ π

2 , i = 1, . . . , n − 2, −π < ψn−1 ≤ π.
The determinant of the Jacobian of the transformation is

J = wn−1 cosn−2 ψ1 cosn−3 ψ2 · · ·cosψn−2 = wn−1K(ψ)

where ψ = (ψ1, · · · , ψn−2). With this transformation the integrand in (2.2) takes the form

K(ψ)wn−1e−
w2
2 . (2.3)

For fixed ψ, the function of the variable w in (2.3) is increasing if 0 ≤ w ≤
√

n − 1 and is decreasing if
w ≥

√
n − 1.

Let us introduce the notation
D(z) = {v|Av ≤ z} (2.4)

Take two vectors z1, z2 and a λ such that z1 ≤ z2, 0 < λ < 1 and all components z1i of z1 satisfy z1i ≥
√

n − 1.
Define z3 as z3 = λz1 + (1 − λ)z2. Take a unit length vector c ∈ Rn and consider the ray

{tc|t ≥ 0} (2.5)
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Let t(z) designate the length of the intersection of the boundary of the set (2.4) and the set (2.5). If
there is one, then it is equal to the optimum value of the LP (for illustration see Figure 1):

a1
a2

a3

z

z

z

1

2

3

The relation z2 = λz1 + (1 − λ)z2 implies that t(λz1 + (1 − λ)z2) ≥ λt(z1) + (1 − λ)t(z2), where t(zi) is the
distance between the origin and ai, i = 1, 2, 3.

Max t
subject to

Atc ≤ z
t ≥ 0,

(2.6)

where z ≥ 0 is some fixed vector.
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Since the optimum value of problem (2.6) is a concave function of the right hand side vector z, it follows
that

t(z3) ≥ λt(z1) + (1 − λ)t(z2). (2.7)

If we integrate the function (2.3) along the ray {tc|t ≥ 0} for fixed ψ, then by (2.7) we obtain

K(ψ)
∫ t3
0

wn−1e−
w2
2 dw

≥ λK(ψ)
∫ t1
0

wn−1e−
w2
2 dw

+(1 − λ)K(ψ)
∫ t2
0

wn−1e−
w2
2 dw

(2.8)

Integrating on both sides in (2.8) with respect to the angles in ψ, we get Φ(z3; R) ≥ λΦ(z; R)+(1−λ)Φ(z2 ; R).
Thus Φ(z; R) is concave in {z|zi ≥

√
n − 1, i = 1, . . . , n}.

In view of Theorem 2.1, the function Φ(z; R) is concave in the same set.
One can argue that the usefulness of the above result is restricted by the fact that the value of the

distribution function becomes very large if the components of z are at least
√

n − 1. This is certainly true
for the univariate marginal distribution function Φ(z).

The n-variate standard normal probability distribution function, however, takes much smaller values if
the components of z are around

√
n − 1. For illustration we take the distribution function corresponding to

independent components and define an = Φn(
√

n − 1). Then we have the figures: a1 = 0.50, a2 = 0.71, a3 =
0.78, a4 = 0.84, a5 = 0.89, a6 = 0.93. Thus, if the probability p in (1.1) is large enough but not irrealistically
large, we have a chance that condition (1.1) implies that each component of Tx is at least

√
n − 1 which, in

turn, implies the concavity of P (Tx ≥ ξ) in the set {x|Tx ≥
√

n − 1}. On the other hand, high dimensional
probability distribution functions can be closely approximated by linear combinations of lower dimensional
ones, at least in many cases (see [3] and the references there). Theorem 2.2 is very useful in some applications.

3 Miscellaneous Remarks

The lower bound (in Theorem 2.2)
√

n − 1 for the components of z to ensure concavity of Φ(z; R) is not
always the best one. If, e.g., ρ = 0 , then the bivariate standard normal probability distribution function
is concave for, zi ≥ 0.51, i = 1, 2. It is an open problem to determine that α = α(R) for which Φ(z; R) is
concave in the set {z|zi ≥ α, i = 1, . . . , n} and then find the worst bound, i.e., the maximum of α(R) with
respect to all correlation matrices R.

In the degenerate case where all entries of R are +1 or -1, Φ(z; R), z ∈ R, is concave in {z|z ≥ 0}. The
proof is very simple and is omitted.

There are other multivariate probability distribution functions too, for which the reasoning in Theorem
2.2 can be used with slight modification.

As an example, we look at the Dirichlet distribution with parameters a1 > 0,. . . , an > 0, an+1 > 0, the
probability density function of which is

Γ(a1 + · · ·+ an+1)
Γ(a1) · · ·Γ(an+1)

za1−1
1 · · · zan−1

n (1 − z1 − · · · − zn)an+1−1 (3.2)

for zi > 0, i = 1, . . . , n, z1 + · · ·+ zn ≤ 1.
Suppose that (3.2) is the probability distribution of ξ = (ξ1, · · · , ξn)T and let η = (η1, · · · , ηn)T designate

the intersection of the ray {λξ|λ ≥ 0} and the simplex {z|z ≥ 0, z1 + · · ·zn ≤ 1}. Given η = u, the random
vector ξ has the distribution given by the density function:

Γ(a1 + · · ·+ an+1)
Γ(a1 + · · ·+ an)Γ(an+1)

1
d

(x

d

)a1+···+an−1(
1 − x

d

)an+1−1

(3.3)

0 < x < d, on the line segment between the origin and u, where d =
√

u2
1 + · · ·+ u2

n (see, e.g., Wilks [4]).
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The function (3.3) is decreasing in (0, d), if (assume a1 + · · ·+ an �= 2)

α(d) =
(a1 + · · ·+ an − 1)d
a1 + · · ·+ an+1 − 2

≤ 1. (3.4)

If this value is positive, the function (3.3) is increasing for z ≤ α(d) and is decreasing for z ≥ α(d). The
largest α(d) corresponds to d = 1. Let α = α(1). If we apply the same reasoning what we have applied in
Theorem 2.2, then we obtain:

Theorem 3.1 The probability distribution function F (z) of the Dirichlet distribution, given by the probability
density function (3.2), is concave in {z|z ≥ 0}, if α ≤ 0 and in {z|zi ≥ α, i = 1, . . . , n}, if α > 0.
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