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RUTCOR RESEARCH REPORT 

THE DISCRETE MOMENT METHOD FOR THE 
NUMERICAL INTEGRATION OF PIECEWISE HIGHER 

ORDER CONVEX FUNCTIONS 

András Prékopa      Mariya Naumova    Linchun Gao 

Abstract. A new numerical integration method, termed Discrete Moment Method (DMM), 
is proposed for univariate functions that are piecewise higher order convex. This means that the 
interval where the function is defined can be subdivided into non-overlapping subintervals such 
that in each interval all divided differences of given orders, do not change the sign. The new 
method uses piecewise polynomial lower and upper bounds on the function, created in 
connection with suitable dual feasible bases in the univariate discrete moment problem and the 
integral of the function is approximated by tight lower and upper bounds on them. Numerical 
illustrations are presented for the cases of the normal, exponential, gamma and Weibull 
probability density functions. 
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1 Introduction 

Numerical integration methods generally work in such a way that the integrand is evaluated 
at a finite number of points, called integration points or base points, and a weighted sum of these 
values approximates the integral. The base points and weights depend on the specific method 
used and the required accuracy. 

An important part of the analysis of any numerical integration method is the study of the 
approximation error as a function of the number of integrand evaluations. A method which yields 
a small error for a small number of evaluations is usually considered efficient. 

Many integration rules (see, e.g., [1, 2, 3]) use interpolation functions, typically by 
polynomials, which are easy to integrate. The simplest rules of this type are the midpoint (or 
rectangle), the trapezoidal and the Simpson’s rules, where for a small interval [ ],c d the 
approximations 
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respectively, are used. 
Interpolation with polynomials evaluated at equally-spaced points in [ ],c d  yields the 

Newton-Cotes formulas, of which the rectangle and the trapezoidal rules are examples. 
Simpson’s rule, which is based on a polynomial of order 2, is also a Newton–Cotes formula. If 
we allow the intervals between interpolation points to vary in length, we find other integration 
formulas, such as the Gaussian quadrature formulas. A Gaussian quadrature rule is typically 
more accurate than a Newton–Cotes rule which requires the same number of function 
evaluations, if the integrand is smooth. For a large number of variants of Gaussian quadrature the 
reader is referred to Golub, Meurant [9]. 

Romberg’s method is based upon the approximation of the integral 
 
by the trapezoidal rule. 

Quadrature formulas of higher error order are produced by successive division of the step size by 
2 and by an appropriate linear combination of the resulting approximations for the integral. 

First, one partitions [ , ]c d
 
into 0N

  
subintervals of length 0 0( ) /h c d N= −

 
 and sets  

0 02 , / 2 , 0,1, ,i i
i iN N h h i= = = K  

then the integral is expressed as 
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where ( ) ( ( ))k
iL f x

 
is a quadrature formula with error order 2( 1)( )k

iO h + . 
Romberg’s method provides us with accurate results if the integrand has multiple 

continuous derivatives, though fairly good results may be obtained if only a few derivatives 
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exist. We also mention numerical methods by Tortorella [8] that are useful when it is impossible 
or undesirable to use derivatives of the integrand. 

In this paper we propose a new univariate numerical integration method. We create lower 
and upper bounding polynomials for the function on a finite grid but ensure that the integrals of 
the bounding polynomials provide us with tight lower and upper bounds for the integral of our 
function in an entire interval. We use Lagrange polynomials for bounding that are natural 
outcomes of the use of the discrete power moment problem. We illustrate our new method for 

the functions: 
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2. Bounding by Lagrange Polynomials 
 
2.1. Summary of the Discrete Moment Problem 
In what follows we assume the knowledge of the elements of linear programming. A brief 

summary of it can be found in Prékopa (1995, 1996). The material in this section is based on 
Prékopa (1990). 

Consider the following linear programming problem: 

0
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 0, 0, ,ip i n≥ = K , 

where 0( ), { , ..., }nf z z z z∈  is a discrete function, m n<  and the decision variables are 

0 1, , , np p pK . Problem (2.1) is called discrete power moment problem. The matrix of the 
equality constraints, its columns, and the right hand side vector will be designated by A, 

0 1, , , na a aK  and b , respectively. Thus, 
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We also use the symbol if  as an alternative notation for ( )if z . Note that the matrix A has 
full row rank. Let B be a basis and designate by IB the set of subscripts of those columns of A 
which form B. A basis is said to be dual feasible, relative to the minimization (maximization) 
problem, if we have 

1 1( )T T
B h h B h hf B a f f B a f− −≤ ≥ , 

where Bf  designates the vector of the basic components of f , 0,1, ,h n= K . 

Let ( )
BI

L z  be the Lagrange polynomial of degree m, corresponding to the points iz , Bi I∈ , 
i.e., 
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Define the vector ( )( ) 1, , ,
Tmb z z z= K

  

for every real z. We assert that 
1 ( ) ( )

B

T
B If B b z L z− = . 

In fact, ( )i ib z a=  for Bi I∈ , hence 
1 ( ) ( )T

B i if B b z f z− = , Bi I∈ . 
From the above discussion a nice characterization follows for the dual feasible bases, in terms of 
Lagrange polynomials: in the minimization problem, the function ( )f z  is greater than or equal 
to the Lagrange polynomial ( )

BI
L z  for every iz , Bi I∉ . In the maximization problem, the 

function ( )f z  is smaller than or equal to the Lagrange polynomial ( )
BI

L z  for every iz , i I∉ . In 

both problems, the function ( )f z  coincides with ( )
BI

L z  at every iz , Bi I∈ . Hence, we readily 

obtain methodology to find lower (upper) bounding polynomial for the discrete function ( )f z , 

{ }0 1, , , nz z z z∈ K : choose arbitrarily a dual feasible basis for problem (2.1) and create the 

corresponding Lagrange polynomial with base points iz , Bi I∈ . If the lower and upper bounds 
are close enough, then these polynomials provide us with good approximation for the entire 
discrete function ( )f z . Note that the choice of a dual feasible basis is very simple, it does not 
need any LP algorithm to carry out. The above approximation uses discrete points but, as we will 
see later, they are enough for the approximation of the numerical integral of a function ( )f z , 
defined on an entire interval.  

 
2.2. The Structure of the Dual Feasible Bases 
Let us assume that ( )f z  is defined on the discrete set 0{ , ..., }nz z z∈ . The first order 

divided differences of ( )f z  are 
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The kth order divided differences are defined recursively by 
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It is well-known that if ( )f z  is defined and differentiable on [ ],a b  with ( 1) ( ) 0mf z+ ≥ , 

a z b≤ ≤ , then all divided differences of order 1m+  of ( )f z  in the interval [ ],a b  are 
nonnegative. 

If a function has all nonnegative (positive) divided differences of order 1m +  in its domain 
of definition (no matter if it is a discrete set or an interval), then the function is called convex 



PAGE 4  RRR 17-2010 

(strictly convex) of order 1m + . The function is concave (strictly concave) of order 1m +  if its 
negative is convex (strictly convex) of order 1m + . 

Theorem 1. Suppose that all m+1-order divided differences of the function ( )f z , 

{ }0 1, , , nz z z z∈ K  are positive. Then in Problem (2.1) all bases are dual non-degenerate and the 
dual feasible bases have the following structures, presented in terms of the subscripts of the basic 
vectors: 

m+1 even   m+1 odd 
 min problem  { }, 1, , , 1j j k k+ +K   { }0, , 1, , , 1j j k k+ +K  

 max problem  { }0, , 1, , , 1,j j k k n+ +K  { }, 1, , , 1,j j k k n+ +K  
where in all parentheses the numbers are arranged in increasing order. 

Remark. If the m+1-order divided differences are required to be only nonnegative, then the 
above basis structures are only sufficient for dual feasibility. 

Remark. If the m+1-order divided differences of ( )f z , { }0 1, , , nz z z z∈ K  are negative, 
then the dual feasible basis structures in the min (max) problem are the same as those in 
Theorem 1 for the max (min) problem. 

The proof of theorem 1 can easily be carried out by the application of a well-known 
formula in approximation theory. In our case it can be stated as: 

[ ] ( )( ) ( ) , , ;
B

B

I i B i
i I

f z L z z i I z f z z
∈

− = ∈ −∏ .   (2.2) 

For a different derivation the reader is referred to Prékopa (1990 a, b). 
Based on Theorem 1, we can easily find dual feasible bases for problem (2.1), therefore, it 

is easy to obtain Lagrange polynomials that serve as lower and upper bounds for ( )f z  on the 

discrete set { }0 1, , , nz z zK . 
 
3. Conditions on the Base Points to Obtain Bounds on the Integral 
Let f  be a convex function of order 1m +  in the interval [ , ]c d  and 

{ }0 1, , , [ , ]nZ z z z a b= ⊂K . Suppose that the set { }
0 1
, , ,

mi i iz z z Z⊂K  defines a dual feasible 

basis in minimization problem (2.1) and let ( )l z  designate the corresponding Lagrange 
polynomial (for simplicity we suppress the subscript B ). We have the relation 

( )
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0
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m

i i i
k

f z l z z z z f z z
=

 − = − ≥ ∏K                                 (3.1) 

for any .z Z∈ . If it is dual feasible in the maximization problem (2.1) and the corresponding 
Lagrange polynomial is ( )u z , then we have the relation: 

( )
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0

( ) ( ) , , , ; 0
m k

m

i i i
k

f z u z z z z f z z
=

 − = − ≤ ∏K ,                               (3.2) 

for any z Z∈ . In both cases equality holds for { }
0 1
, , ,

mi i iz z z z∈ K . 
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Inequalities (3.1) and (3.2) hold true also for [ , ]z a b∈  with the exception of the interiors 

of consecutive pairs, described in Theorem 1, among the base points { }
0 1
, , ,

mi i iz z zK , where the 

inequalities are reversed. For this reason from (3.1) and (3.2) we cannot immediately derive that  

( ) ( ) ( )
d d d

c c c

l z dz f z dz u z dz≤ ≤∫ ∫ ∫ .                                          (3.3) 

However, the intervals between the consecutive pairs are small and in practice there is a 
relatively small number of consecutive pairs, hence the integrals of the differences ( ) ( )f z l z− , 

( ) ( )u z f z−
 
over the union of consecutive pairs are small and allow for the validity of the 

relations in (3.3). 
Figures 3.1 and 3.2 illustrate the situation. In Figure 3.1 the graphs show that if the base 

points { }0 1 1, , , ,j j k kz z z z z z+ +∈  are chosen in such a way that 1,j jz z +  as well as 1,k kz z +  are close 

to each other, then ( ) ( )l z f z≥  on the small intervals 1,j jz z +   , [ ]1,k kz z + , otherwise we have 

( ) ( )l z f z≤ . The deficiency in the integral ( )
b

a

l z dz∫  caused by ( ) ( )l z f z≥  in 

( ) ( )1 1, ,j j k kz z z z+ +∪  can easily be offset by choosing 1 1, , ,j j k kz z z z+ +  in a suitable way. The 

same idea applies to the maximization problem (Fig. 3.2). 

 

Figure 3.1. Function ( )f z ; Lagrange polynomial (dotted line) 
Minimization problem, 1m +  odd. 

Basic subscript set: { }1 1, , , ,j j k k nz z z z z z+ +∈  
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Figure 3.2. Function ( )f z ; Lagrange polynomial (dotted line) 
Maximization problem, 1m +  odd. 

Basic subscript set: { }0 1 1, , , ,j j k kz z z z z z+ +∈  

 
Stating it in a different way: under mild conditions on the function and the base points the 

nonpositivity of the integrals of ( ) ( )f z l z−
 
over the intervals between consecutive pairs is offset 

by the nonnegativity of the integrals over the much larger set, where ( ) ( ) 0f z l z− ≥ , and a 
similar assertion holds for ( ) ( )u z f z− . This ensures that we in fact have the relations (3.3). But 
we can say more about it. If that happens then the fact that in some intervals the integral of 

( ) ( )f z l z−
 
is negative 

 
makes the lower bound tighter and the negativity of ( ) ( )u z f z−  in some 

intervals makes the upper bound tighter.  
To support the above statements we prove two theorems but first we mention a simple 

lemma. 
Lemma. If [ ],u v  is a finite interval of positive length, then for any [ ],y u v∈  and 

2
( )

2 2
u v

z z v u
+

≥ = + −  we have the inequality 

( )( ) ( )( )y u v y z u z v− − ≤ − − .     (3.4) 
Proof. The largest value on the left-hand side is attained at ( ) / 2y u v= + . Thus, (3.4) holds 

true if under the given condition for z , we have the inequality 2( )
( )( ) .

2
v u

z u z v
−

− − ≥  
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Elementary calculations show the validity of the last inequality for z z≥ .   □ 
Theorem 2. Let ( )f z , a z b≤ ≤ , be a real valued function that has nonnegative divided 

differences of orders 1m +  and 2m + , where a b< . If 1m +  is even then take ( 1) / 2m +
 disjoint, equal positive length and equidistant subintervals of [ , ]a b : 

1 1 2 2 ( 1)/2 ( 1)/2[ , ], [ , ], , [ , ]m mu v u v u v+ +K , 1 1 ( 1)/2 ( 1)/2m ma u v u v b+ +< < < < < <K , and let ( )L z  designate 
the Lagrange polynomial corresponding to their endpoints, as base points. Suppose that 

( 1)/2

1

( )
m

i i
i

v u b z
+

=

− ≤ −∑ , 

where 

( )( 1)/2 ( 1)/2
( 1)/2 ( 1)/2

2
2 2

m m
m m

u v
z u v+ +

+ +

+
= + + . 

Under these conditions we have the inequality 
( 1)/2

1

( ( ) ( )) ( ( ) ( ))
i

i

v bm

i u b z

f z l z dz f z l z dz
+

= −

− − ≤ −∑ ∫ ∫ .   (3.5) 

If 1m +  is odd then we take / 2m  subintervals and create the Lagrange polynomial by the 
use of all endpoints of them and the left-hand endpoint of the interval [ , ]a b . Then (3.5) remains 
true, if we replace m  for 1m +  in it and in two relations above it. 

Remark. Theorem I tells us that the negativity of the integrals of ( ) ( )f z l z−  between the 
consecutive pairs (over the subintervals) can be offset by the integral of ( ) ( )f z l z−  over the 

interval [ , ]b z b−  that is assumed to have length greater than or equal to the sum of the lengths of 
the subintervals. 

Proof of Theorem 2. Assume that 1m +  is even (the proof for the other case is the same). If 
{ }0 1, , , mz z zK  is the set of base points of the Lagrange polynomial, then we have the equality 

[ ] ( )0
0

( ) ( ) , , , ; .
m

m k
k

f z l z z z z f z z
=

− = −∏K     (3.6) 

Theorem I tells us that any dual feasible basis consists of consecutive pairs. Let 

{ } { }0 1 1 1 2 2 ( 1)/2 ( 1)/2, , , , , , , , ,m m mz z z u v u v u v+ +=K K . We want to show that if [ ],i iy u v∈  for some 

{ }1, 2, , ( 1) / 2i m∈ +K  and z z≥ , then we have the inequality 

[ ]

[ ]

0
0

0
0

, , , ; ( )

, , , ; ( ).

m

m i
i

m

m i
i

z z y f y z

z z z f z z

=

=

− −

≤ −

∏

∏

K

K

    (3.7) 

By assumption the length of the interval [ , ]z b  is at least as large as the sum of the 

subintervals [ ],i iu v , 1, 2, , ( 1) / 2i m= +K , thus the negativity of each integral of ( ) ( )f z l z−  
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over a subinterval will be offset by a positive integral over an equal length subinterval of the 
interval [ , ]b z b− . Thus, if we prove (3.7), then the proof of the theorem will be complete. 

To prove (3.7) we proceed as follows. First we look at y  values from ( 1)/2 ( 1)/2[ , ]m mu v+ + . 

Since the 2m+ -order divided differences of f  are positive, it follows that 

[ ] [ ]0 0, , , ; , , , ;m mz z y f z z z f≤K K .     (3.8) 
So we have to prove that 

0 0

( ) ( ).
m m

i i
i i

y z z z
= =

− − ≤ −∏ ∏      (3.9) 

By the lemma we know that if z z≥ , then 

1 1( )( ) ( )( ).m m m my z y z z z z z− −− − ≤ − −    (3.10) 
On the other hand, we clearly have the inequalities 

i iy z z z− ≤ − , 1, 2, , 2i m= −K .    (3.11) 
Inequalities (3.10) and (3.11) imply (3.9) and (3.9) and (3.8) imply (3.7). 

If [ ],i iy u v∈ , 
1

2
m

i
+

< , then since the intervals have equal lengths we have that 

2 2

2 1 2 1( )( ) ( )( ) ( )( )
2 2

i i m m
i i i i m m

v u v u
y z y z y u y v z z z z− −

− −   − − − = − − − ≤ = = − −   
   

. 

If we look at the distances of the subintervals from y  and from z , we easily see that 
1

1

( )( ) ( )( )
m

j j j j
j i j

y u y v z u z v
−

≠ =

− − ≤ − −∏ ∏ , 

provided that z z≥  and the assertion follows.       
            □ 
 

Theorem 3. Keep the conditions of Theorem I except for the requirements that the 
subintervals have equal lengths and are equidistant. Then the assertion of Theorem 2, i.e., 
inequality (3.5) holds true if the inequalities below are satisfied. 

If 1m +  is even, then 
2 ( 1)/2 ( 1)/21

1 1 1

( )( ) ( )( ) ( )( )
2

m mi
i i

i j i j k i k i i i
j k i i

v u
v v v u v u u u z u z v

+ +−

= = + =

−  − − − − ≤ − − 
 

∏ ∏ ∏ ,   (3.12) 

1, , ( 1) / 2i m= +K , ( )
( 1)/2

1

m

i i
i

v u b z
+

=

− ≤ −∑ ,    (3.13) 

where ( )
1 ( 1)/2

2
max

2 2
i i

i ii m

u v
z v u

≤ ≤ +

 +
= + −  

 
. 

If 1m +  is odd, then the required relations can be obtained if we replace m  for 1m + . 
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Proof. The proof is carried out for the case of 1m +  even and is based on the inequality 

(3.7). We increase the first line by taking 
2

2
i iv u− 

 
 

 as an upper bound for ( )( )i iy u y v− − −  and 

in the other factors we take iu  or iv  for y , depending on whichever has larger distance from y . 
In the other hand, the smallest value in the second line is obtained for z z= . After this 
substitutions we obtain (3.12), and the value in (3.13) is the same as the value in the second line 
of (3.7). It follows that (3.12) and (3.13) imply (3.7).       
            □ 

 
Note that inequalities (3.12), (3.13) are easy to check and it is easy to choose the 

subintervals and z  in such a way that (3.12) and (3.13) are satisfied. 
 

4. The Discrete Moment Method (DMM) of Univariate Numerical 
Integration 

In this section we briefly describe the new numerical integration method, the main 
contribution of this paper. 

If a function ( )f z , a z b≤ ≤  is convex of order 1m+ , then for any discrete set of points 
Z  of at least 2m+  points the discretized function ( )f z  has all nonnegative divided differences 
of order 1m+ . As we have seen, we can construct two m-degree polynomials ( )l z  and ( )u z  
such that 

( ) ( ) ( )l z f z u z≤ ≤ , .z Z∈                                                (4.1) 
The bounding polynomials can be obtained by the use of dual feasible bases, corresponding to 
problem (2.1). Then we approximate 

( )
b

a

f x dx∫                                                                         (4.2) 

by the integrals 

( )
b

a

l z dz∫ , ( )
b

a

u z dz∫                                                              (4.3). 

Our intention is not only to approximate the integral (4.2) by the integrals (4.3) but to ensure that 
the integrals (4.3) serve as lower and upper bounds, respectively for the integral (4.2), i.e., 

( ) ( ) ( )
b b b

a a a

l z dz f z dz u z dz≤ ≤∫ ∫ ∫ .                                                 (4.4) 

As we have mentioned in Section 3, inequality (4.4) is not a direct consequence of (4.1) but 
its validity can be ensured by suitable choices of the points in the base sets, in other words, the 
dual feasible bases in problem (2.1) that define the polynomials ( )l z , ( )u z . 

The function ( )f z  may not be higher order convex (or concave) in the entire interval 

[ ],a b . However, it may be true that the interval [ ],a b  can be subdivided into a finite number of 
non-overlapping intervals such that on each of them the function is higher (not necessarily 
always of the same) order convex (concave). If this is the case, then we apply the numerical 
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integration procedure for each subdividing interval and create bounds and approximations of the 
integral of ( )f z  on [ ],a b  by the use of the integrals on the subdividing intervals. 
 
Algorithm. 
 
Initialization: Use Lsum as the notation that the lower bound summation of integral of Lagrange 
polynomials in subintervals; Use Usum as the notation that the upper bound summation of 
integral of Lagrange polynomials in subintervals. 
Procedure: 
Step 1. Determine the subdividing intervals where the rth divided difference of the function is 
positive or negative. 
Step 2. For each subdividing interval [ ],c d , 

a) If the rth divided difference of the function is positive, repeat 
- subdivide it into n subintervals of equal length ( n r≥ ); 
- label those endpoints by 0 1, , , nz z zK , evaluate the function at these labeled points. 
- Find any dual feasible basis according to Theorem 1 to get its corresponding upper and 

lower bounding Lagrange polynomials. 
- Integrate the upper and lower bounding Lagrange polynomials in the subinterval. 
- Lsum = Lsum + Integral of the lower bounding Lagrange polynomial in [ ],c d . 

- Usum = Usum + Integral of the upper bounding Lagrange polynomial in [ ],c d . 
b) If the rth divided difference of the function is negative, multiply the function by -1, 

continue as in part a. 
Note that the error in this new numerical integration method can easily be controlled 

because we provide simultaneous lower and upper bounds for the integral. If the bounds are not 
close enough then we may increase the number of base points to increase accuracy. The 
inclusion of new base points increases the lower bound and decreases the upper bound. 

 
5. Illustration for the Case of the Normal Probability Density Function 
We pay special attention to the univariate normal probability density function because of 

the connection to orthogonal polynomials. 
The Hermite polynomials, a classical sequence of orthogonal polynomials, arise e.g. in 

probability theory, combinatorics and physics, and can be defined as 
2 2

2 2( ) ( 1)
x xr

r
r r

d
H x e e

dx

− 
= −   

 
 

or as 

( )2 2

( ) ( 1)
r

r x x
r r

d
H x e e

dx
−= −% . 

These two definitions are not exactly equivalent; either is a rescaling of the other, more precisely 

2( ) 2 ( 2 )
r

r rH x H x=% . 
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We use the first definition which is often preferred in probabilistic applications. In fact, 

( )2( ) 1/ 2 exp / 2x xϕ π= −  is the probability density function of the standard normal 

distribution. The first ten Hermite polynomials are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The roots of the Hermite polynomials for 2r =  to 10r =  have been tabulated to eight decimals 
and are presented in the table below. Because of symmetry it is enough to present the 
nonnegative values. 
 

Table 5.1 
2r =  1.00000000 
3r =  0.00000000 

 1.73205081 
4r =  0.74196378 

 2.33441422 
5r =  0.00000000 

 1.35562618 
 2.85697001 

6r =  0.61670659 
 1.88917588 
 3.32425743 

7r =  0.00000000 
 1.15440539 
 2.36675941 
 3.75043971 

8r =  0.53907981 
 1.63651904 
 2.80248586 
 4.14454719 

9r =  0.00000000 

0

1

2
2

3
3

4 2
4

5 3
5

6 4 2
6

7 5 3
7

8 6 4 2
8

9 7 5 3
9

( ) 1;

( ) ;

( ) 1;

( ) 3 ;

( ) 6 3;

( ) 10 15 ;

( ) 15 45 15;

( ) 21 105 105 ;

( ) 28 210 420 105;

( ) 36 378 1260 945 .

H x

H x x

H x x

H x x x

H x x x

H x x x x

H x x x x

H x x x x x

H x x x x x

H x x x x x x

=

=

= −

= −

= − +

= − +

= − + −

= − + −

= − + − +

= − + − +
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 1.02325566 
 2.07684798 
 3.20542900 
 4.51274586 

10r =  0.48493571 
 1.46600182 
 2.48432584 
 3.58182348 
 4.85946283 

 

Once the roots of ( )rH x  are found, it is possible to determine the intervals where 
2

2
xr

r

d
e

dx

− 
  
 

 is 

positive or negative. Therefore, for each interval, if 
2

2
xr

r

d
e

dx

− 
  
 

 is positive, the lower (upper) 

bound of 
2

2
x

e
−

 is the value at x  of the Lagrange polynomial, associated with the minimization 

(maximization) problem (2.1), where 
2

2( )
x

f x e
−

= . If 
2

2
xr

r

d
e

dx

− 
  
 

 is negative, the lower (upper) 

bound of 
2

2
x

e
−

 is the value at x  of the Lagrange polynomial, associated with the minimization 
(maximization) problem. 
Hence, we propose the following algorithm to approximate the normal integral in interval [ ],a b : 
 
Algorithm. 
 
Step 1. Calculate the rth roots of the Hermite polynomial in the interval [ ],a b . 

Step 2. Determine the subdividing intervals where the rth derivative of 
2

2
x

e
−

 is positive or 
negative. 
Step 3. For each subdividing interval [ ],c d , 

c) If the rth derivative of 
2

2
x

e
−

 is positive, repeat 
- subdivide it into n subintervals of equal length ( n r≥ ); 
- label those endpoints by 0 1, , , nz z zK , evaluate the function at these labeled points and 

construct the following problem: 

0

min max ( )
n

i i
i

f z p
=
∑  
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s.t. 
0

, 0, , ;
n

k
i i k

i

z p k mµ
=

= =∑ K  

 0, 0, ,ip i n≥ = K , 

that is, problem (2.1). 

- Find any dual feasible basis according to Theorem 1 to get its corresponding upper and 
lower bounding Lagrange polynomials. 

- Integrate the upper and lower bounding Lagrange polynomials in the subinterval. 
- Lsum = Lsum + Integral of the lower bounding Lagrange polynomial in [ ],c d . 

- Usum = Usum + Integral of the upper bounding Lagrange polynomial in [ ],c d . 

d) If the rth derivative of 
2

2
x

e
−

 is negative, multiply the function by -1, continue as in part a. 

Step 4. Multiply the Lsum and Usum by 
1
2π

 to get the lower and upper bound for the 

integral of univariate normal in interval [ ],a b . 

 

6. Further Numerical Results 

We evaluated the probability integrals of the following functions : 
2

2
x

e
−

, 
2

2
x

mx e
−

, 
1 mm xx
e λ

λ

−  − 
  

 
 

, and xe λλ −  with different parameters in ( , )a b . 

For a fixed r  we consider the zeros of the Hermite polynomials that are in the interval 
( , )a b . Each interval between two zeroes (or between one zero and one endpoint of ( , )a b ), we 
divide into k  subintervals, and each subinterval  - into n  smaller intervals of equal length. For 
each small interval we choose m  points to generate two Lagrange polynomials. Integration of 
these polynomials and summation over all the subintervals yields the final bounds. 

The results for different parameters are presented in the tables below. 
 

Table 6.1. 
2

2( )
x

f x e
−

= , 0, 2a b= =  
M k N Lsum Usum Average Exact value 

(5 digits accuracy) 
3 6 20 1.19513 1.19754 1.19634 1.19629 
3 7 20 1.19552 1.19711 1.19632 1.19629 
3 8 20 1.19583 1.19682 1.19633 1.19629 
3 10 20 1.19604 1.19655 1.19630 1.19629 
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3 15 20 1.19621 1.19638 1.19623 1.19629 
4 5 20 1.19627 1.19633 1.19630 1.19629 
5 5 20 1.19629 1.19630 1.19630 1.19629 
5 10 20 1.19629 1.19629 1.19629 1.19629 

 

Table 6.2. 
2

2( )
x

f x e
−

= , 0, 3a b= = . 
M k N Lsum Usum Average Exact value 

(5 digits accuracy) 
3 6 20 1.24872 1.25018 1.24945 1.24993 
3 7 20 1.24917 1.25028 1.24973 1.24993 
3 8 20 1.24942 1.25016 1.24979 1.24993 
3 10 20 1.24967 1.25005 1.24986 1.24993 
3 15 20 1.24985 1.24997 1.24991 1.24993 
4 5 20 1.24990 1.24995 1.24993 1.24993 
5 5 20 1.24993 1.24993 1.24993 1.24993 
5 10 20 1.24993 1.24993 1.24993 1.24993 

 

Table 6.3. 
2

2( )
x

mf x x e
−

= , 3m = , 0, 2a b= =  
M k n Lsum Usum Average Exact value 

(5 digits accuracy) 
3 6 20 1.18644 1.18930 1.18787 1.18799 
3 7 20 1.18692 1.18889 1.18791 1.18799 
3 8 20 1.18723 1.18858 1.18791 1.18799 
3 10 20 1.18755 1.18832 1.18792 1.18799 
3 15 20 1.18779 1.18813 1.18796 1.18799 
4 5 20 1.18795 1.18806 1.18801 1.18799 
5 5 20 1.18798 1.18801 1.18800 1.18799 
5 10 20 1.18799 1.18798 1.18799 1.18799 

 

Table 6.4. 
2

2( )
x

mf x x e
−

= , 3m = , 0, 4a b= =  
M k n Lsum Usum Average Exact value 

(5 digits accuracy) 
3 6 20 1.99258 1.99539 1.99399 1.99396 
3 7 20 1.99302 1.99489 1.99396 1.99396 
3 8 20 1.99334 1.99453 1.99394 1.99396 
3 10 20 1.99361 1.99425 1.99393 1.99396 
3 15 20 1.99380 1.99407 1.99394 1.99396 
4 5 20 1.99387 1.99402 1.99395 1.99396 
5 5 20 1.99393 1.99398 1.99396 1.99396 
5 10 20 1.99395 1.99397 1.99396 1.99396 
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Table 6.5.
 

1

( )

mm xx
f x e λ

λ

−  − 
  =  

 
, 3m = , 4λ = , 0, 4a b= =  

M k n Lsum Usum Average Exact value 
(5 digits accuracy) 

3 6 20 0.84150 0.84410 0.84280 0.84283 
3 7 20 0.84194 0.84368 0.84281 0.84283 
3 8 20 0.84225 0.84336 0.84281 0.84283 
3 10 20 0.84253 0.84311 0.84282 0.84283 
3 15 20 0.84271 0.84293 0.84282 0.84283 
4 5 20 0.84276 0.84287 0.84282 0.84283 
5 5 20 0.84280 0.84284 0.84282 0.84283 
5 10 20 0.84282 0.84283 0.84283 0.84283 

 
Table 6.6.

 
( ) xf x e λλ −= , 1λ = − , 0, 2a b= =  

M k n Lsum Usum Average Exact value 
(5 digits accuracy) 

3 6 20 0.86439 0.86479 0.86459 0.86466 
3 7 20 0.86444 0.86471 0.86458 0.86466 
3 8 20 0.86465 0.86466 0.86466 0.86466 

 
7. Conclusion 
We have introduced a new numerical integration method that can be applied if the 

integrand is a univariate piecewise higher order convex or concave function of the same or 
different orders. Using the theory of the discrete moment problem, we easily obtain Lagrange 
polynomials that serve as lower and upper bounds of the function in suitable subintervals. The 
bounds hold true in the entire interval, except for a few very small intervals, where the 
differences of the function and the bounding polynomials have opposite signs than required. 
However, the negative effects of the integrals on these small subintervals are offset by the 
integrals of the polynomials on the other parts of the interval. Two theorems serve as guidelines 
how to choose the base points to allow for the offsetting effect. The new numerical integration 
technique is illustrated on four special functions and it is shown that in the numerical integration 
high accuracy can be obtained with a relatively few base points. 
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