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Proof of logconcavity of some compound
Poisson and related distributions

Anh Ninh András Prékopa

Abstract. Compound Poisson distributions play important role in many applica-
tions (telecommunication, hydrology, insurance, etc.). In this paper, we prove that
some of the compound Poisson distributions have the logconcavity property that
makes them applicable in stochastic programming problems. The proofs are based
on classical Turan types theorem and orthogonal polynomials.
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1 Introduction

Let X1, X2, ..., be a sequence of nonnegative valued i.i.d random variables and consider the
sum

S = X1 +X2 + ...+XN ,

where N has Poisson distribution with parameter λ > 0 :

pn =
λn

n!
e−λ, n = 0, 1, 2...,

and N,X1, X2..., are mutually independent. The probability distribution of S is called com-
pound Poisson distribution. If the Xi, i = 1, 2, ..., are integer valued then so is S, and for
this case we introduce the notation gn = P (S = n), n = 0, 1, 2, ...

Compound Poisson distributions play important role in many applied areas: acturial
mathematics, physics, engineering, operations research, etc., see, e.g, Bowers et al. ([4]),
Takács ([14]), Prékopa ([9]). The logconcavity property in connection with a compound
Poisson distribution comes up primarily in stochastic optimization, where frequently the
convexity of the optimization problem depends on that property (see Prékopa, 1995). One
example is the bond portfolio construction problem with probabilistic constraints. In that
problem we suppose that an insurance company keeps its wealth in bonds and wants to be
able to meet the claims in subsequent periods with high probability (see Prékopa, 2003).

The notion of a logconcave sequence was first introduced by Fekete (1912) under the
name of 2 -times or twice positive sequence as a special case of an r -times positive sequence,
when r = 2. The sequence of nonnegative elements... a−2, a−1, a0,... is said to be r -times
positive if the matrix

A =



. . . . . . . . .

. . . a0 a1 a2

. . . a−1 a0 a1
. . .

a−2 a−1 a0
. . .

. . . . . . . . .


.

has no negative minor of order smaller than or equal to r (a minor is the determinant of a
finite square part of the matrix traced out by the same number of rows as columns).

The twice-positive sequences are those for which we have∣∣∣∣ ai aj
ai−t aj−t

∣∣∣∣ = aiaj−t − ajai−t ≥ 0,

for every i ≤ j and t ≥ 1. It is easy to see that the above inequality holds if and only if for
every i we have a2i ≥ ai−1ai+1.

Fekete (1912) proved the following important theorem.
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Theorem 1.1 The convolution of two r-times positive sequences is at least r-times positive.

Twice-positive sequences are also called logconcave sequences. Theorem 1.1 states that
the convolution of two logconcave sequences is logconcave.

A univariate discrete probability distribution, defined on the integers, is said to be log-
concave if the sequence of the corresponding probabilities is logconcave.

Various applications of logconcave sequences are known in probability theory, combi-
natorics, etc. Surprisingly, logconcavity property came up in connection with orthogonal
polynomials. The first theorem in this respect was proved by Turán (1950). It states that if
Pn(x) is the nth Legendre’s polynomial, −1 ≤ x ≤ 1, then we have the inequality

Pn(x)2 ≥ Pn−1(x)Pn+1(x). (1.1)

Inequalities of the type (1.1), valid for orthogonal polynomials, are called Turán type in-
equalities. In recent years, many Turán type inequalities have been established for Laguerre
polynomials, Hermite polynomials, Bessel functions, Tschebychef polynomials, etc. Some of
them will be used in this paper to prove logconcavity of special compound Poisson distribu-
tions.

The organization of the paper is as follows. In Section 2, we prove that the sequence
{gn}∞n=1 is logconcave for the case of a compound Poisson random variable with geometrically
distributed terms. In Section 3, we prove the logconcavity of the compound Poisson distri-
bution for the case of Poisson distributed terms. Finally, in Section 4, we use the notion of a
logconcave function f(x), x ∈ R, meaning that f(λx+ (1− λ)y) ≥ (f(x))λ(f(y))1−λ for any
x, y ∈ R, 0 < λ < 1, and for the reader’s convenience, we reproduce Oschwald’s proof of the
logconcavity of the continuous part of the compound Poisson distribution with exponential
distributed terms, then generalize the proof for a class of compound distributions.

2 Logconcavity of the compound Poisson distribution

with geometrically distributed terms

If X1, X2, ... has geometric distributions with support {1, 2, 3..} and P (Xi = n) = pqn−1(n =
1, 2, ..) one can easily verify that

P (S = n) =
n∑
k=1

(
n− 1

k − 1

)
pk(1− p)n−kλk e

−λ

k!
. (2.1)

Theorem 2.1 g1, g2, g3, ..., forms a log-concave sequence.

Proof Simple calculation shows that for n = 1,2,...,

gn =
n∑
k=1

(
n− 1

k − 1

)
pk(1− p)n−k(λ)k

e−λ

k!

=
n∑
k=1

(
n− 1

k − 1

)(
pλ

1− p

)k
(1− p)n e

−λ

k!
. (2.2)
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Let
pλ

1− p
= x. Then we can write

gn =
n∑
k=1

(
n− 1

k − 1

)
xk(1− p)n e

−λ

k!
. (2.3)

If we use (2.3), the relation gn
2 ≥ gn−1gn+1, n = 2, 3, ... can be rewritten as:(

n∑
k=1

(
n− 1

k − 1

)
xk

k!
(1− p)ne−λ

)2

≥

(
n−1∑
k=1

(
n− 2

k − 1

)
xk

k!
(1− p)n−1e−λ

)
×(

n+1∑
k=1

(
n

k − 1

)
xk

k!
(1− p)n+1e−λ

)
. (2.4)

If we divide by (1− p)2ne2λ on both sides, then we obtain(
n∑
k=1

(
n− 1

k − 1

)
xk

k!

)2

≥

(
n−1∑
k=1

(
n− 2

k − 1

)
xk

k!

)(
n+1∑
k=1

(
n

k − 1

)
xk

k!

)
. (2.5)

Let Bn =
n∑
k=1

(
n− 1

k − 1

)
xk

k!
for n = 1, 2, ... It suffices to show that {Bn}∞n=1 is a logconcave

sequence.
We have the following identity known as Pascal’s rule:(

n

n− k

)
=

(
n− 1

k − 1

)
+

(
n− 1

n− k − 1

)
. (2.6)

If we apply it in the formula for Bn, then we get:

Bn =
n∑
k=1

xk

k!

[(
n

n− k

)
−
(

n− 1

n− k − 1

)]

=
n∑
k=1

xk

k!

(
n

n− k

)
−

n−1∑
k=1

xk

k!

(
n− 1

n− k − 1

)

=
n∑
k=0

xk

k!

(
n

n− k

)
−

n−1∑
k=0

xk

k!

(
n− 1

n− k − 1

)
= Ln(−x)− Ln−1(−x), (2.7)

where

L(α)
n (x) =

n∑
k=0

(
n+ α

n− k

)
(−x)k

k!
,
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are the Laguerre polynomials [10]. For the case of α = 0, we have L
(0)
n (x) = Ln(x). It

is well-known (see,e.g.,Riordan, 1968) that the Laguerre polynomials satisfy the following
recurrence equation:

x
d

dx
Ln(x) = nLn(x)− nLn−1(x). (2.8)

This implies that Bn = −xL
′
n(−x)

n
. In order to prove the logconcavity of Bn(x), it is enough

to prove the logconcavity of bn(x) = −L
′
n(−x)

n
. We use another recurrence formula for

Laguerre polynomials from Riordan (1968):

DpL(α)
n (x) = (−1)pL

(α+p)
n−p (x). (2.9)

For the case of p = 1 and α = 0, we have L′n(x) = −L(1)
n−1(x). This implies that bn =

L
(1)
n−1(−x)

n
.

To prove the logconcavity of {bn}, we make use of the result derived in Simic (2003) that

the sequence
{
L
(a)
n x/

(
n+a
n

)}
is log-concave for a > −1 and x ∈ R. It follows that {bn} is a

logconcave sequence. �

Based on Theorem 2.1, an interesting inequality on the confluent hypergeometric function
can be derived.

Corollary 2.2 For k > 0, x > 0: 1F1(1 + k; 2;x)2 ≥ 1F1(k; 2;x)1F1(2 + k; 2;x).

Proof LetX1, X2, ..., be i.i.d geometrically distributed random variables with support {0, 1, 2, ..},
i.e., P (Xi = n) = pqn(n = 0, 1, 2, ...). Then the following formula holds for the probability
mass function of the compound Poisson distributions:

P (S = n) =
∞∑
k=1

(
n+ k − 1

n

)
pk(1− p)nλk e

−λ

k!
.

Let x = pλ and gn = P (S = n), then we have

gn =
∞∑
k=1

(
n+ k − 1

n

)
xk(1− p)n e

−λ

k!
. (2.10)

This distribution has connection with the confluent hypergeometric function:

1F1(a; c;x) =
∞∑
k=0

(a)k
(c)k

xk

k!
, (2.11)

where (a)k = a(a+ 1)...(a+ k− 1) is the Pochhammer’s symbol. It can easily be shown that

∞∑
k=1

(
n+ k − 1

n

)
xk

k!
= 1F1(1 + k; 2;x). (2.12)

Theorem 2.1 and equation (2.12) imply the statement. �
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3 Logconcavity of the compound Poisson distribution

with Poisson distributed terms

If X1, X2, ... are i.i.d Poisson distributed random variables with parameter µ > 0, one can
easily verify that

P (S = n) =
∞∑
k=1

(kµ)ne−kµ

n!

λke−λ

k!
, n = 0, 1, 2, ... (3.1)

Let x = e−µλ. Then we can write:

gn = P (S = n) =
µne−λ

n!

∞∑
k=1

kn
xk

k!
. (3.2)

We have the following

Theorem 3.1 The sequence {g(n)}∞n=1 is logconcave.

Proof Equation (3.2) can be rewritten as

gn = µne−λex
Bn(x)

n!
, n = 1, 2, ...,

where theBn(k) are the Bell polynomials. It suffices to show that the sequence {Bn(x)/n!}∞n=1

is logconcave.
It is well-known that (Bender-Canfield’s Theorem) if {1, Z1, Z2, ...} is a logconcave se-

quence of non-negative real numbers and the sequence {a(n)}∞n=0 is defined by

∞∑
n=0

a(n)

n!
yn = exp

(
∞∑
j=1

Zj
j
yj

)
, (3.3)

then the sequence {a(n)/n!}∞n=0 is logconcave and the sequence {a(n)}∞n=0 is logconvex.

Note that e(e
y−1)x = exp

(
∞∑
j=1

x

j!
yj

)
. In addition, we have

e(e
y−1)x =

∞∑
n=0

Bn(x)

n!
yn, (3.4)

thus,

exp

(
∞∑
j=1

x

j!
yj

)
=
∞∑
n=0

Bn(x)

n!
yn. (3.5)
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Let Zj =
x

(j − 1)!
for j ≥ 1. It is easy to check that the sequence 1, Z1, Z2... is logconcave

for x ≥ 1 or x ≤ 0. Thus, according to the Bender-Canfield’s Theorem, {Bn(x)/n!}∞n=1 is
logconcave sequence for x ≥ 1 or x ≤ 0.

If 0 < x < 1, we can always find u ≥ 1 and v ≤ 0 such that x = u + v. Furthermore, it
is proved in [3] that we have the following identity:

Bn(u+ v) =
n∑
k=0

(
n

k

)
Bk(u)Bn−k(v), (3.6)

hence, equation (3.6) can be rewritten as

Bn(u+ v)

n!
=

n∑
k=0

Bk(u)

k!

Bn−k(v)

(n− k)!
. (3.7)

In other words, Bn(x)/n! is the convolution of two logconcave sequences Bn(u)/n! and
Bn(v)/n!. Thus, the sequence {Bn(x)/n!}∞n=1 is logconcave for any x ∈ R. �

4 Logconcavity of the compound Poisson distribution

with exponentially distributed terms

If the terms in a compound Poisson random variable are continuously distributed, then the
probability distribution of S is of a mixed type. It has positive probability mass at 0 and has a
continous part with a p.d.f. M.Oschwald (1985) showed that the p.d.f of the continuous part
of the probability distribution of S is logconcave, if the termsXi are exponentially distributed.
Oschwald published his result only in his thesis, that he wrote under the supervision of the
second author of this paper. Here we reproduce his proof, for the reader’s convenience,
in a slightly more general form: we assume that N has logconcave distribution that is not
necessarily Poisson. Suppose that the terms have the exponential p.d.f:

µe−µx. (4.1)

Then the p.d.f of the continuous part of S is

f(x) =
∞∑
i=1

pi
µi

(i− 1)!
e−µxxi−1, x > 0, (4.2)

and P (S = 0) = p0, where p0 = P (N = 0).

Theorem 4.1 If N has logconcave distribution on the set of nonnegative integers and the
terms Xi, i = 1, 2, ... are exponentially distributed, then the continuous part of the distribution
of S is logconcave.
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Proof It suffices to prove that
(lnf(x))′′ ≤ 0.

Simple calculation shows that

(lnf(x))′′ =

−µ+

∞∑
i=1

pi
µi

(i− 1)!
(i− 1)xi−2

∞∑
i=1

pi
µi

(i− 1)!
xi−1


′

. (4.3)

The derivative of the left-hand-side, with respect to x, equals

(lnf(x))′′ = [
∞∑
i=1

pi
µi

(i− 1)!
xi−1

∞∑
i=1

pi
µi

(i− 1)!
(i− 2)(i− 1)xi−3

−

(
∞∑
i=1

pi
µi

(i− 1)!
(i− 1)xi−2

)2

] :

(
∞∑
i=1

pi
µi

(i− 1)!
xi−1

)2

. (4.4)

If we start the summation from i = 0 and use the Cauchy product formula, then the right-
hand-side of (4.4) becomes

∞∑
j=0

j∑
i=0

[pi+1pj+1−ix
j−2 µ(j+2)

i!(j − i)!
i(i− 1)− pi+1pj+1−ix

j−2 µ(j+2)

i!(j − i)!
i(j − i)] =

∞∑
j=0

xj−2µj+2

j∑
i=0

pi+1pj+1−i
(i− 1)i− (j − i)i

i!(j − i)!
.

Since x and µ are positive, it suffices to prove that the inner sum is nonpositive. Thus,
it is enough to consider two cases as follows.

Case 1: j is even. We combine the first term with the last term, the second term with
the second to the last term, etc. In this case we have

j∑
i=1

pi+1pj+1−i
(i− 1)i− (j − i)i

i!(j − i)!

=

j/2∑
i=1

(pi+1pj+1−i
2i− j − 1

i!(j − i)!
+ pj+2−ipi

j − 2i+ 1

i!(j − i)!
)

=

j/2∑
i=1

(pi+1pj+1−i − pipj+2−i)
2i− j − 1

i!(j − i)!
. (4.5)

Case 2: j is odd. We combine the first term with the last term, the second term with the
second to the last term, etc. In this case we have
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j∑
i=1

pi+1pj+1−i
(i− 1)i− (j − i)i

i!(j − i)!

=

(j−1)/2∑
i=0

pi+1pj+1−i(
i(2i− j − 1)

i!(j − i)!
+

(j − i)(j − 2i− 1)

i(j − i)!
)

=

(j−1)/2∑
i=1

pi+1pj+1−i
i(2i− j − 1)

i!(j − i)!
+

(j−3)/2∑
i=0

pi+1pj+1−i
(j − i)(j − 2i− 1)

i!(j − i)!

=

j/2∑
i=1

(pi+1pj+1−i
2i− j − 1

(i− 1)!(j − i)!
+ pipj+i−2

j − 2i− 1

(i− 1)!(j − i)!
). (4.6)

Since in both (4.5) and (4.6), the factor (2i− j − 1) is negative and the logconcavity of
{pn}∞n=0 implies that pi+1pj+i−1 − pipj+2−i is nonnegative for i = 1, ..., [j/2], the assertion
follows. �
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[11] A. Ruszczyński, A. Shapiro, Handbooks in Operations Research and Management Sci-
ence, Elsevier Science, Amsterdam, 2003.

[12] F. W. Steutel, K. Van Harn, Infinite Divisibility of Probability Distributions on the Real
Line, New York: Marcel-Dekker, 2003.

[13] Slavko Simic, Turan’s inequality for Appell polynomials, Journal of Inequalities and
Applications, Vol.2006, pp.1-7, 2003.
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