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Abstract� In the past few years ecient methods have been developed for bound�

ing probabilities and expectations concerning univariate and multivariate random

variables based on the knowledge of some of their moments
 Closed form as well as

algorithmic lower and upper bounds of this type are now available
 The lower and

upper bounds are frequently close enough even if the number of utilized moments

is relatively small
 This paper shows how the probability bounds can be incorpo�

rated in probabilistic constrained stochastic programming models in order to obtain

approximate solutions for them in a relatively simple way
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� Introduction

The underlying deterministic problems that are the starting points of the most important
static stochastic programming model formulations are�

min cTx ��	�


subject to

Tx � �

Ax � b

x � �

and

min cTx ��	�


subject to

Tx � �

Ax � b

x � ��

where A is an m�n T is an r�n matrix� c x are n�component vectors b and � are m�and
r�component vectors respectively	

Based on problems ��	�
 and ��	�
 we formulate the recourse type stochastic programming
problem as�

minfcTx� IE�q�� � Tx
�g ��	�


subject to

Ax � b

x � ��

where the function q�z
� z � IRn is usually convex and it is called the penalty function	
If the underlying problem is ��	�
 then we assume that q��
 � � while if it is problem

��	�
 then we assume that q�z
 � � for z � �	 We frequently choose

q�z
 �
nX
i��

�q�i �zi�� � q�i ��zi��
� ��	�


where q�i � �� q�i � �� i � �� � � � � r and q�i � �� i � �� � � � � r if the underlying problem is ��	�
	
If we use the function ��	�
 then problem ��	�
 is called the simple recourse problem	 It was
�rst studied by Dantzig �����
 Beale �����
	 For a detailed discussion see Wets �����
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A more general form of the penalty function is the following�

q�z
 �
nX
i��

qi�zi
� ��	�


where q��z�
� � � � � qr�zr
 are convex or higher order univariate convex functions	 A univariate
function f�z
 is said to be convex of order k if its k�th order devided di�erences are nonneg�
ative on the set where the function is de�ned �see Popoviciu �����

	 Second order convexity
means convexity of the function	 If the penalty function has the form ��	�
 then

IE�q�� � Tx
� �
rX

i��

IE�qi��i � Tix
�� ��	�


In practice we frequently encounter situations where the probability distributions of the
random variables ��� � � � � �r are unknown but some of their moments are known	 If ��� � � � � �r
are discrete with �nite supports and some of their moments are known then each term in
��	�
 can be bounded from both sides by the discrete moment technique	 To obtain bounds
for the expectation of f��
 where � is a discrete random variable with �nite support and
known moments �k � IE��k�� k � �� � � � �m the condition is that the function f should be a
convex function of order m � �	 In this case we can apply the discrete moment bounding
technique described in Pr�ekopa �����b
	

If m � � then the upper bound for IE �f��
� provided by the discrete moment problem
is the same as the Edmundson�Madansky bound but the lower bound is better than Jensen�s
bound	 In fact any of the discrete moment bounds corresponds to an extremal distribution	
If m � � then the supports of the extremal distributions have two elements taken from the
support of �	 In case of the upper bound these are the smallest and largest possible values
of � and the corresponding expectation is the Edmundson�Madansky bound	 In case of the
lower bound the extremal distribution corresponds to two consecutive possible values of �
and the corresponding expectation is greater than or equal to f �IE���
	 For more details see
Pr�ekopa �����
	

Sometimes the distributions of the random variables ��� � � � � �r are known but it is incon�
venient to compute the exact values of the penalty function	 In such cases the application
of the bounding technique based on the discrete moment problems may also be advantageous	

The second stochastic programming problem is the probabilistic constrained problem
that we formulate using problem ��	�
 as�

min cTx ��	�


subject to

P �Tx � �
 � p

Ax � b

x � ��
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where p is some �xed probability in practice near �	 One could de�ne p as a decision variable
and include a function of it in the objective function as an additive term	 However for the
sake of simplicity we will not do so	

The combination of the two model constructions the hybrid model can be obtained from
��	�
 or ��	�
 in such a way that we include the probabilistic constraint P �Tx � �
 � p
among the constraints and the penalty term IE�q�� � Tx
� in the objective function	 A
simpli�ed form of problem ��	�
 where the joint probability constraint is replaced by in�
dividual constraints i	e	 one constraint for each component of Tx and � was �rst studied
by Charnes Cooper and Symonds �����
	 Miller and Wagner �����
 introduced �rst joint
probability constraint assuming independence for the components of �	 The general case was
introduced and �rst studied by Pr�ekopa ���������
	

The recourse and the hybrid models are of great interest both from the theoretical and
practical points of view	 In this paper however we concentrate on the use of probability
bounds in probabilistic constrained stochastic programming problems	

� Bounding Schemes

In this section we summarize those bounding techniques that we apply in the next sections	
All our bounding techniques are based on linear programming	 We present univariate and
multivariate binomial moment problems and the Boolean probability bounding scheme	

The univariate binomial moment problem is formulated for a �nite number of events
A�� � � � � Ar de�ned in an arbitrary probability space	 Our intention is to create sharp lower
and upper bounds for the probability of a Boolean function of these events	 Here we restrict
ourselves to bounding A� � � � � � Ar and A� � � � � � Ar	

Let � designate the number of events out of A�� � � � � Ar which occur	 It can be shown
�see e	g	 Pr�ekopa �����
 p	�������
 that

IE
h��
k

�i
� Sk� k � �� � � � � r� ��	�


where
Sk �

X
��i������ik�r

P �Ai� � � � � �Aik
� k � �� � � � � r�

In view of ��	�
 we call Sk the k�th order binomial moment of the random variable �	 We
de�ne S� � �	

The binomial moment problem is the linear programming problem

min �max

Pr

i�� fivi ��	�
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subject toPr
i��

�
i

k

�
vi � Sk� k � �� � � � �m

vi � �� i � �� � � � � r�

where f�� � � � � fn are constants and m � r	 If

fi �

�
�� if i � ��
�� if i � ��

��	�


then the optimal values of the problems ��	�
 provide us with lower and upper bounds for
P �A� � � � � �Ar
	 If

fi �

�
�� if i � r�
�� if i � r�

��	�


then we obtain bounds for P �A� � � � � �Ar
	

In view of the equation P �A� � � � ��Ar
 � ��P � �A� � � � �� �Ar
 where �Ai is the comple�
mentary event of Ai a connection between the bounds obtained by the use of the functions
��	�
 and ��	�
 can be established	 This connection tells us that the sharp lower �upper

bound for P �A� � � � � � Ar
 using the minimization �maximization
 problem ��	�
 and the
function ��	�
 is the same as ���the sharp upper �lower
 bound for P � �A� � � � � � �Ar
� using
the maximization �minimization
 problem ��	�
 �replacing �Sk for Sk
 and the function ��	�
	

The multivariate binomial moment problem is formulated for the sequences of events�

A��� � � � � A�r��

������������ ��	�


As�� � � � � Asrs�

We de�ne ��� � � � � �s as the numbers of events that occur in the rows �� � � � � s respectively
and introduce the notation

S�������s � IE
h���
��

�
� � �
�
�s
�s

�i
� ��	�


where �� �� � � � � �s � � are integers	

We formulate two types of multivariate binomial moment problems depending on the
range where ��� � � � �s are allowed to vary	 The �rst problem is

min �max

Pr�

i��� � � �
Prs

is�� fi����isvi����is ��	�


subject toPr�
i��� � � �

Prs
is��

�
i�
��

�
� � �
�
is
�s

�
vi����is � S������s

for � � �j � m� j � �� � � � � s� vi����is � �� for all i� � � � is�
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The second problem di�ers from ��	�
 only in the condition regarding ��� � � � � �s	 In the
second problem we assume that �i � �� i � �� � � � � s� �� � � � �� �s � m	

The optimum values of the linear programming problems ��	�
 provide us with sharp
lower and upper bounds for the probabilities of various Boolean functions of the above
sequences of events	 If e	g	

fi����is �

�
�� if ij � �� j � �� � � � � s
� otherwise

��	�


then we obtain bounds for P
�Ts

i��

Sri
j��Aij

�
	

The s event sequences ��	�
 can be formed out of one event sequence A�� � � � � Ar in order
to improve on the bounds	 In fact in this case we use not only the sums S�� � � � � Sm of
the individual and joint probabilities of the events A�� � � � � Ar but more detailed information
represented by the joint binomial moments	 In this case problem ��	�
 �problem ��	�

 can
be regarded as an aggregated �disaggregated
 variant of problem ��	�
 �problem ��	�

	 A
complete disaggregation where each of the events A�� � � � � Ar forms a separate sequence
takes us to the Boolean probability bounding scheme �see Boole �����
 Hailperin �����

	

The Boolean problem can be formulated as follows	 Let A�� � � � � Ar be arbitrary events	
We subdivide the sample space � into �r parts by taking

BJ �
�
�i�J Ai

��
�j� �J

�Aj

�
� ��	�


where J 	 f�� � � � � rg� �J � f�� � � � � rg � J and �Aj � � �Aj� j � �� � � � � r�

Let vJ � P �BJ 
 and pI � P ��i�IAi
� J� I 	 f�� � � � � rg	 For the case of I � 
 we de�ne
pI � �	 Further we introduce the incidence matrix H � �hIJ 
 where

hIJ �

�
�� if I 	 J�
� otherwise	

��	��


We have the equations X
J�f������rg

hIJvJ � pI � I 	 f�� � � � � rg� ��	��


The linear programming problems

min �max

P

J�f������rg fJvJ ��	��


subject toP
J�f������rg

hIJvJ � pI � I 	 f�� � � � � rg� jIj � m�

vJ � � all J 	 f�� � � � � rg�



Page � RRR �����

are called the Boolean probability bounding problems	 The fJ values are constants	 If

fJ �

�
�� if J �� 
�
� otherwise

��	��


then the problems ��	��
 provide us with lower and upper bounds for the probability P �A��
� � � � Ar
	 If

fJ �

�
�� if J � f�� � � � � rg�
� otherwise

��	��


then problems ��	��
 provide us with bounds for P �A� � � � � �Ar
	 These bounds are sharp
in the sense that no better bounds can be given based on the knowledge of pI � jIj � m	

If fJ is de�ned by ��	��
 and fi by ��	�
 then problem ��	�
 can be obtained from
problem ��	��
 by the following aggregation	 We add those equations in ��	��
 for which
jIj � k� �� � k � m
 and then introduce the new variables�

vi �
X
jJj�i

vJ � i � �� � � � �m�

If a linear programming problem is a minimization �maximization
 problem then the
objective function value corresponding to any dual feasible basis is a lower �upper
 bound
for the optimum value	 Thus a variety of bounds can be obtained by the use of the above
LP�s provided that we are able to construct dual feasible bases	 For univariate problems of
type ��	�
 we have a good overview of the dual feasible bases for a variety of objective func�
tions	 This is provided by the basis structure theorems �see Pr�ekopa ����� ����a ����b

	
However there are no general dual feasible basis structure theorems in the multivariate case	
Still a variety of dual feasible bases can be obtained in connection with problem ��	�
 �see
Pr�ekopa ����� ����a

	

Given a dual feasible basis for any of the above problems we can �nd the corresponding
bound in closed form provided that we can obtain a closed form for the inverse of the basis	
Otherwise we can present algorithmic bounds i	e	 obtain the bounds by executing the dual
method of linear programming	

Many probability bounds that have not been obtained in the above described linear pro�
gramming framework can be obtained as objective function values corresponding to some
dual feasible bases in some of the above LP�s	 Examples are described in Kwerel �����

Pr�ekopa ����� ����a
 and Boros and Pr�ekopa �����
	 In Section � we show how Hunter�s
upper bound �Hunter �����

 can be assigned to a dual feasible basis in the Boolean proba�
bility bounding scheme	

Hunter�s bound is an upper bound for P �A�� � � ��An
	 We take the complete undirected
graph of vertices �� � � � � r assign the weight pij � P �Ai �Aj
� i �� j to the edge �i� j
 pick a
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spanning tree with edge set T and then obtain the bound as

P �A� � � � � �Ar
 � S� �
X

�i�j��T

pij� ��	��


The best bound corresponds to the heaviest spanning tree T 	

� The Use of Binomial Moment Bounds

in Probabilistic Constrained

Stochastic Programming Problems

In this section we present stochastic programming problems where the probability bounding
schemes are incorporated into the problems as subproblems	 Our aim is to use the joint prob�
ability distribution functions of several lower dimensional random vectors rather than that
of one higher dimensional random vector	 There is a way to use the probability bounds com�
bined with simulation in the original probabilistic constraint �see Sz�antai �����

	 While
this is quite e�cient the number of stochastic inequalities in the probabilistic constraint
cannot be very large if we want to solve the problem in reasonable time	 We hope that the
methodology that we propose in this paper will signi�cantly improve on the possibilities to
solve probabilistic constrained problems	 Let us introduce the notation�

Fi����ik�zi�� � � � � zik
 � P ��i� � zi�� � � � � �ik � zik
� � � i� � � � � � ik � r

	

If Ai designates the event �i � zi� i � �� � � � � r then we have the equalities�

Sk �
X

��i������ik�r

Fi����ik�zi�� � � � zik
� � � k � r�

The simplest bound that we can use is Boole�s lower bound for the intersection of r events�

P �A� � � � � �Ar
 � S� � �r � �
�

We may use it in problem ��	�
 to replace the probabilistic constraint

P �Tx � �
 � p ��	�


by the constraint
rX

i��

Fi�Tix
� �r � �
 � p� ��	�


The advantage of constraint ��	�
 is that in many cases the function on the left hand side
in ��	�
 is concave	 We only need to ensure that the function Fi�zi
 is concave in the range
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where Tix takes its values i � �� � � � � r� On the other hand since Boole�s lower bound is not
very tight the use of the constraint ��	�
 may signi�cantly increase the optimum value of
problem ��	�
	

It is preferable instead of ��	�
 to use the constraints

P �Tix � �i
 � pi� i � �� � � � � r ��	�
Pr
i����� pi
 � �� p�

Relations ��	�
 imply that P �Tx � �
 � p	 In fact

P �Tx � �
 � P �Tix � �i� i � �� � � � � r
 ��	�


� � � P �fT�x � ��g � � � � � fTrx � �rg

� � �

rX
i��

P �Tix � �i
 � ��
rX

i��

��� P �Tix � �i



� � �
rX

i��

�� � pi
 � p�

In ��	�
 the p�� � � � � pr are variables while p is a constant � � p � �	 The constraints ��	�

ensure that p � pi � �	 Then problem ��	�
 is a convex problem provided that Fi�z
 is
concave for z � F��

i �p
� i � �� � � � � r and the other constraints of the problem guarantee that
Tix � F��

i �p
� i � �� � � � � r	

Now we look for such replacement of the probabilistic constraint in problem ��	�
 that
use joint distributions of the random variables ��� � � � � �r	 The optimum values of the linear
programming problems

min �max
 vr ��	�


subject to

v� � v� � v� � v	 � � � � � vr � �

v� � �v� � �v	 � � � �� rvr �
Pr

i�� Fi�zi


v� �
�
	
�

�
v	 � � � ��

�
r

�

�
vr �

P
��i��i��r Fi�i��zi�� zi�


������������

vm �
�
m��
m

�
vm�� � � � � �

�
r

m

�
�
P

��i������im�r Fi����im�zi�� � � � � zim


v� � �� v� � �� v� � �� � � � � vr � �

provide us with lower and upper bounds for F �z�� � � � � zn
	 Using these  we can formulate
two approximate problems for problem ��	�
	 The �rst one uses the minimum problem ��	�

and is the following�

minfcTx� �vrg ��	�
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subject to

v� � v� � v� � v	 � � � � � vr � �

v� � �v� � �v	 � � � �� rvr �
Pr

i�� Fi�Tix


v� �
�
	
�

�
v	 � � � ��

�
r

�

�
vr �

P
��i��i��r Fi�i��Ti�x� Ti�x


������������

vm �
�
m��
m

�
vm�� � � � ��

�
r

m

�
�
P

��i������im�r Fi����im�Ti�x� � � � � Timx


Ax � b

v� � �� v� � �� v� � �� � � � � vr�� � �� vr � p� x � ��

where � is an arbitrary nonnegative number	 The second one uses the maximum problem
��	�
 and is the following

maxf�cTx� �vrg ��	�


subject to

v� � v� � v� � v	 � � � � � vr � �

v� � �v� � �v	 � � � �� rvr �
Pr

i�� Fi�Ti
x

v� �
�
	
�

�
v	 � � � ��

�
r

�

�
vr �

P
��i��i��r Fi�i��Ti�x� Ti�x


������������

vm �
�
m��
m

�
vm�� � � � ��

�
r

m

�
�
P

��i������im�r Fi�����im�Ti�x� � � � Timx


Ax � b

v� � �� v� � �� v� � �� � � � � vr�� � �� vr � p� x � ��

where � is some �xed positive number	

We show that under some circumstances a relaxed version of problem ��	�
 is a convex
programming problem	 We look at the case m�� and relax problem ��	�
 in such a way that
we replace � for � in the second constraint	 Then the probability bounding subproblem
takes the form�

max vr ��	�


subject to

v� � v� � v� � v	 � � � � � vr � �

v� � �v� � �v	 � � � � � rvr � S�

v� �
�
	
�

�
v	 � � � � �

�
r

�

�
vr � S�

v� � �� v� � �� � � � � vr � ��

The optimum value of this problem is equal to S��
�
r

�

�
	 This is a concave function of x

provided that all functions Fi�i��zi�� zi�
 are concave	 If it holds then ��	�
 is a convex
problem	 In Section � we show that the above distribution functions are in fact concave at
least in some cases	
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� The Use of the Boolean Probability Bounding Scheme

in Probabilistic Constrained Stochastic Programming

Problem

The Boolean probability bounding scheme provides us with better bounds than the binomial
moment problems	 If we use it to obtain a lower bound for the probability in the probabilistic
constraint then we formulate the problem�

minfcTx� �vNg ��	�


subject toP
J�N

hIJvJ � FI�TIx
� I 	 N� jIj � m

Ax � b

vJ � �� J 	 N� J �� N� vN � p� x � ��

where � is a �xed nonnegative number N � f�� � � � � rg� I 	 N� TI � �Ti� i � I
� zI �
�zI � i � I
� FI�zI
 � P ��i � zi� i � I
	

In a similar way we can replace the constraining function in the probabilistic constraint
by its upper bound if we use the optimum value of the maximization problem in ��	��
 with
objective function ��	��
	 Then we formulate the problem�

maxf�cTx� �vNg ��	�


subject toP
J�N

hIJvJ � FI�TIx
� I 	 N� jIj � m

Ax � b

vJ � �� J 	 N� J �� N� vN � p� x � ��

where � is a �xed positive number	

Let xopt� xlaggr� x
l
Boole� x

u
aggr� x

u
Boole designate the x parts of the optimal solutions to the

problems ��	�
 ��	�
 ��	�
 and the maximization counterparts of ��	�
 ��	�
 respectively	
Then if � is small we have the approximate inequalities�

cTxuaggr � cTxuBoole � cTxopt � cTxlBoole � cTxlaggr ��	�


The �rst two inequalities hold exactly if � is chosen equal to �	 We proceed with the
discussion by establishing a connection between Hunter�s �����
 bound and the Boolean
probability bounding scheme	 We choose the coe�cient vector of the objective function
equal to that given by ��	��
	 However we use a modi�ed version of the Boolean problem	
We remove the variable corresponding to J � 
 and the constraint corresponding to I � 
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Theorem ��� Hunter�s upper bound is the objective function value corresponding to a dual

feasible basis of the following LP�

max
P

���J�N
vJ ��	�


subject toP
���J�N

hIJvJ � pI � 
 �� I 	 N� jIj � �

vJ � �� all J�

The dual feasible basis can be chosen as the collection of those columns of the matrix H
of the equality constraints in ��	�
 which are labelled by f�g� � � � � frg and those J which are
vertex sets in any paths that exist in T 	

Proof of Theorem ���� The number of equality constraints in problem ��	�
 is r�
�
r

�

�


the same as the collection of vectors we choose to create a suitable dual feasible basis	 The
proof has three steps	 Let B designate the matrix of the selected columns	

��
 The collection of the selected vectors are linearly independent	 To show this let us
subdivide the rows of the matrix �hIJ
 into two blocks according as jIj � � or jIj � �	
Assume that in H the �rst r columns and rows are labeled by f�g� � � � � frg respectively	
Then the �rst r columns of B are the �rst r of the r �

�
r

�

�
� component unit vectors	 Thus

to prove that B is non�singular it is enough to prove that if we remove the �rst r rows and
columns from B we obtain a nonsingular matrix	 To show this we �rst arrange the rows in
the second block of H in such a way that �rst come those labeled by pairs I � fi� jg which
are at the same time edges of T � then come those labeled by I � fk� lg for which k and l are
connected by a path of length � etc	

After that we arrange the columns in such a way that �rst come the same r� � pairs in
the same order that label the �rst r � � rows� the further ordering of the columns follows
the ordering of the remaining rows� the tth column should have that label J which consists
of the nodes sitting in the path connecting the pair of nodes that constitute the label of
the tth row I	 The obtained matrix is an upper triangular matrix with all ��s in the main
diagonal	 Hence it is nonsingular	

��
 If y � �y�� � � � � yr� y��� y�	� � � � � yr��r
T designates the solution of the linear equation

yTB � �
T � ��	�


where � is the r �
�
r

�

�
�component vector with all ��s as components then

yi � �� for i � �� � � � � r
yij � ��� for i � fi� jg � T
yij � �� for i � fi� jg �� T�
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We only have to check that y satis�es ��	�
	 The �rst r equations in ��	�
 that correspond to
the �rst r columns in B are satis�ed trivially	 If we pick a column of B the label of which is
J and jJ j � k then there are k�� edges in that path the vertex set of which is J 	 These k��
edges are all in T and they determine k � � row labels I such that the corresponding rows
�and no other rows
 have a � in that column	 Thus equation ��	�
 is satis�ed for that column	

��
 For any column h	J of H which is not in B

yTh	J � �� ��	�


Now J is not the vertex set of a path	 This implies that if jJ j � k then there are at most
k � � edges in T such that the vertices incident to them are in J 	 Thus ��	�
 holds and the
proof of the theorem is complete	 �	

Theorem �	� can be used in problem ��	�
 in the following way	 We write up problem ��	�

for the events� �i 	 Tix� i � �� � � � � r	 Then the optimum value of problem ��	�
 provides us
with an upper bound for the probability of the union or what is the same � � P �Tx � �
	
Thus ���optimum value of the problem ��	�

 is a lower bound for P �Tx � �
	 Hence if
we remove the variable vJ for J � 
 and the constraint corresponding to I � 
 from the
probability bounding subproblem in ��	�
 then we may replace vN in problem ��	�
 by

� � X
���J�N

vJ � ��	�


Since the prescribed probability level p �in the probabilistic constraint
 is usually large and
the binomial as well as the Boolean probability bounding schemes perform quite well in
such cases we can expect similar good performance from the approximate problems	 If m is
increased in the bounding schemes then the lower and upper bounds become closer to each
other and to the true probability value	

When we solve problem ��	�
 then we may do it in such a way that at any iteration
with respect to the variables in x we fully solve the problem with respect to the v variables
or we handle the two groups of variables simultaneously	 In the �rst case we always have a
good initial dual feasible basis provided by Theorem �	� and the dual method can be rec�
ommended to solve the problems for the v variables	 In the second case it is advantageous
to use the dual method simoltaneously for all variables for the same reason	

If the objective function in problem ��	�
 is extended by penalty terms stemming from
the simple recourse problem �i	e	 we are dealing with the hybrid problem
 then again the
dual method is very suitable for the solution of the overall problem	 This is because the
simple recourse problem has an e�cient solution based on the dual method �see Pr�ekopa
�����c����
 Ru��Fiedler Pr�ekopa F�abi�an �����

	 Hansen Jaumard and Nguest�e �����

developed an e�cient column generation metod for the solution of problem ��	�
 that can
also be utilized here	
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� Convexity of the Approximate Problem

The convexity of a large class of probabilistic constrained stochastic programming problems
was established by Pr�ekopa by the use of logconcave measures	 �For detailed description of
the relevant results see Pr�ekopa �����
	
 If the random vector � has logconcave probability
distribution then the constraining function in the constraint P �Tx � �
 � p is logconcave
which imlies that the set of x vectors satisfying this constraint is convex	

The di�culty in using joint probabilistic constraint is computational	 In the course of
an algorithmic solution of the problem we have to compute function and gradient values
of P �Tx � �
 which is computationally intensive	 In order to alleviate this di�culty we
formulated the problems in Sections � and �	 In those problems we encounter two kinds
of di�culties	 The �rst one is that on the right hand sides of the problems of Section �
we have sums of probability distribution functions	 If � has logconcave probability density
function then the distribution of � and all its marginal distributions are logconcave �Pr�ekopa
�����

	 However the logconcavity property does not carry over for sums thus we cannot
guarantee that the functions standing on the left hand sides of the problems are logconcave or
quasi�concave	 We can overcome this di�culty in some special cases	 The second di�culty
in problems of Sections � and � is that we have equality constraints involving nonlinear
functions	 We o�er some analysis in this respect too	 A theorem concerning the multivariate
normal distribution follows	

Theorem ��� The standard multivariate normal probability distribution function

��z�� � � � � zr�R
 is concave in the set fzj zi �
p
r � �� i � �� � � � � rg�

Proof� We present the proof for the case of r � �	 The proof for the general case
is presented in Pr�ekopa �����b
	 In order to simplify the notation the variables of the
distribution function are designated by x and y	 The function is then ��x� y� 

	 If 
 � �
then we have the equation

��x� y� 

 � ��min�x� y

�

where � is the univariate standard normal distribution function	 If 
 � �� then
��x� y� 

 � ��x
 � ��y
� ��

Since ��z
 is concave for z � � in both cases ��x� y� 

 is concave in the set f�x� y
jx �
�� y � �g	

Let j
j � �	 Since ��x� y� 

 is a continuous function it is enough to prove that if
x�� x�� y�� y� � � then

��
�

�
x� �

�

�
x��

�

�
y� �

�

�
y�� 

 � �

�
��x�� y�� 

 �

�

�
��x�� y�� 

� ��	�


In addition it is enough to prove ��	�
 for the case of � � x� � x�� � � y� � y� for the
following reason	 If ��	�
 holds for this case then as a special case of it we obtain that
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��x� y� 

 is concave in each variable in the set f�x� y
jx � �� y � �g	 � A stronger result
in this respect presented in Pr�ekopa �����
 is the following� ��x� y� 

 is concave in each
variable for x � �� y � � if 
 � � and for x � �� y � � for 
 � � where

� �

vuut ���


����
 � ���

� ������

and � is the univariate standard normal probability density function	
 The second observa�
tion is that if � � x� � x� and � � y� � y� then since ��x� y� 

 is a bivariate probability
distribution function we have the inequality�

��x�� y�� 

 � ��x�� y�� 

� ��x�� y�� 

� ��x�� y�� 

 � �� ��	�


Hence we can derive ��	�
 also for these points �x�� y�
� �x�� y�
�

��
�

�
x� �

�

�
x��

�

�
y� �

�

�
y�� 

 � ��	�


� �

�

�
��x�� y�� 

 � ��x�� y�� 

 � ��x�� y�� 

 � ��x�� y�� 



�

� �

�
��x�� y�� 

 �

�

�
��x�� y�� 

�

Let ��� �� be two random variables such that

P ��� � x� �� � y
 � ��x� y� 

�

We may represent ��� �� in the form�

�� � �� ��	�


�� � 
�� �
q
�� 
� ���

where ��� �� are independent N��� �
�distributed random variables	 The hyperplanes�

x � �


x�
q
� � 
� y � �

have unit�length normal vectors ��� �
� �
�
p
� � 
�
 respectively and are tangent to the unit

circle
f�x� y
 jx� � y� � �g�

Using the joint density function of ��� �� we may write ��x� y� 

 in the form�

��x� y� 

 �
R R �

��e
� �

�
�u��v��du dv�

u�x

�u�
p

����v�y

��	�
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We want to derive ��	�
 for x� � x� � �� y� � y� � �	 Let x	 �
�
�
�x� � x�
� y	 �

�
�
�y� � y�
�

D�x� y
 � f�u� v
j� u � x� 
u�
q
� � 
�v � yg

H� � D�x	� y	
 nD�x�� y�
� H� � D�x�� y�
 nD�x	� y	
�

Using this notation ��	�
 is equivalent to

RR �
��
e�

�

�
�u��v��du dv � RR �

��
e�

�

�
�u��v��du dv

H� H�

��	�


Introducing polar coordinates u � w cos� v � w sin  the determinant of the Jacobian is
w and the integrand in ��	�
 equals

�

��
we�

w
�

� � w � ���� �  � �� ��	�


The function ��	�
 is increasing if � � w � � and is decreasing if w � � for any �xed 	
The sets H��H� are disjoint and do not intersect the interior of the unit circle	 Hence the
function ��	�
 is decreasing in the sets along any ray that start at the origin	

Let l� and l� be the lengths of the intersections of the ray  �const	 with the sets H�

and H� respectively	 These intersections are simultaneously empty or have positive lenghts	
Figure � shows that we always have the inequality l� � l�	 More precisely if � is the
smallest and � is the largest of the angles of the lines connecting the origin and the points
�xi�

yi��xip
����


� i � �� �� � then l� � l� if  � � or  � � and l� 	 l� if � �  � �	 This im�

plies that the integral of the function ��	�
 along the intersection of the ray w � ��  �const	
and H� is greater than or equal to the integral of the function along the intersection of the
ray and H�	 Integrating with respect to  the inequality follows	 �

The proof shows that ��x� y� 

 is also strictly concave in f�x� y
jx � �� y � �g	
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Figure �	�

We intend to use the problems of Sections � and � for the case of small r values	 In these
cases the limitation zi �

p
r � �� i � �� � � � � r is not very restrictive	 In fact if the random

variables are independent then the value of their joint distribution at zi �
p
r � �� i �

�� � � � � r is ar � �r�
p
r � �
 and a� � ����� a	 � ����� a
 � ����� a� � ����� a� � ����	 For

large probabilities the binomial moment probability bounds are reasonably good if m � �
which means that at most ��variate probability distributions appear in the problems	 On
the other hand numerical results show that the Boolean probability bounding schemes are
quite accurate in case of m � �	 We have obtained concavity results for other probability
distributions too such as the multivariate Dirichlet gamma and uniform distributions	

Despite of these favorable results the problems formulated in Sections � and � are in
general not convex problems even if concave probability distribution functions are used	 The
reason is that in problem ��	�
 the objective function in the minimization �maximization

problem is not a decreasing �increasing
 function of the right hand side values	
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We may overcome this di�culty if we relax problem ��	�
 by changing some of the equali�
ties into inequalities	 The background for that is provided by a property of the dual variables
y�� � � � � ym corresponding to any dual feasible basis in problem ��	�
� these variables have al�
ternating signs starting with � ��
 in case of the minimization �maximization
 problem	
In agreement with this we may change every odd �even
 numbered equality in ��	�
 into
� ��
	 Numerical experience will tell us how far the new probability bounds go from the
true probability by these relaxations	

If m is small then we have formulas for the probability bounds	 Still to keep the LP�s
rather than to work with the formulas seems to be advantageous especially if we design
algorithms for the solutions of the problems	

We close our discussion by looking at the maximization problem ��	�
 in case of m � �	
If ai designates the i�th column of the matrix of the equality constraints i � �� � � � � r then
all dual feasible bases are of the form �see Pr�ekopa ����� Section �	�

� B � �ai� ai��� ar
	
The dual vector y � �y�� y�� y�


T  corresponding to B can be computed from the equation

yTB � ��� �� �


and the result is

y� �
i�i� �


�r � i
�r � i� �

� y� �

��i
�r � i
�r � i� �


� y� �
�

�r � i
�r � i� �

�

Thus the objective function value corresponding to this basis is

i�i� �
 � ��S� � iS�


�r � i
�r � i� �

� ��	�


The smallest value ��	�
 i	e	 the best upper bound for P �A� � � � � �Ar
 corresponds to

imin �
h�r � �
S� � �S�

r � S�

i
� ��	�


If i � imin then the sequence ��	�
 is decreasing and it is increasing if i � imin	 Using this
we can write the approximate stochastic programming problem in the following form�

min cTx
subject to

Ax � b� x � �
�

�r�i��r�i���

h
i�i� �
 � �

P
��i�j�r Fij�Tix� Tjx
�Pr

i�� Fi�Tix

i
� p�

i � �� �� � � � � r � ��

��	��
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