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Abstract� We consider stochastic programming problems with probabilistic con�

straints involving integer�valued random variables
 The concept of p�e�cient points

of a probability distribution is used to derive various equivalent problem formula�

tions
 Next we modify the concept of r�concave discrete probability distributions

and analyse its relevance for problems under consideration
 These notions are used

to derive new lower and upper bounds for the optimal value of probabilistically con�

strained stochastic programming problems with integer random variables
 We also

show how limited information about the distribution can be used to construct such

bounds




RRR ����� Page �

� Introduction

Probabilistic constraints remain one of main challenges of modern stochastic programming�
Their motivation is clear� if in the linear program

min cTx
subject to Tx � ��

Ax � b�
x � ��

the vector � is random� we require that Tx � � shall hold at least with some prescribed
probability p � 	�� 
�� rather than for all possible realizations of the right hand side� This
leads to the following problem formulation�

min cTx
subject to IP 	Tx � �� � p�

Ax � b�
x � ��

	
�

where the symbol IP denotes probability�
Programming under probabilistic constraints was initiated by Charnes� Cooper and

Symonds in ��� They formulated probabilistic constraints individually for each stochas�
tic constraint� Joint probabilistic constraints for independent random variables were used
�rst by Miller and Wagner in ���� The general case was introduced and �rst studied by the
second author of the present paper in �
�� 
���

Much is known about problem 	
� in the case where � has a continuous probability dis�
tribution 	see ���� and the references therein�� However� only a few papers handle the case
of a discrete distribution� In �
�� a dual type algorithm for solving problem 	
� has been
proposed� Bounds for the optimal value of this problem� based on disjunctive program�
ming� were analyzed in ����� The case when the matrix T is random� while � is not� has
been considered in ����� Recently� in ����� a cutting plane method for solving 	
� has been
presented�

Even though the literature for handling probabilistic constraints with discrete random
variables is scarce� the number of potential applications is large� Singh at al�in ���� consider a
microelectronic wafer design problem that arises in semiconductor manufacturing� The prob�
lem was to maximize the probability rather than to optimize an objective function subject to
a probabilistic constraint� but other formulations are possible as well� Another application
area are communication and transportation network capacity expansion problems� where
arc and node capacities are restricted to be integers �
�� �
�� Bond portfolio problems with
random integer�valued liabilities can be formalized as 	
� see ���� Many production planning
problems involving random indivisible demands �t to our general setting as well�

Although we concentrate on integer random variables� all our results easily extend to
other discrete distributions with non�uniform grids� under the condition that a uniform
lower bound on the distance of grid points can be found�
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To �x some notation we assume that in the problems above A is an m� n matrix� T is
an s� n matrix� c� x � IRn� b � IRm and � is a random vector with values in IRs� We use ZZ
and ZZ� to denote the set of integers and nonnegative integers� respectively� The inequality
��� for vectors is always understood coordinate�wise�

� p�E�cient Points

Let us de�ne the sets�

D � fx � IRn � Ax � b� x � �g 	��

and

Zp � fy � IRs � IP 	� � y� � pg� 	��

Clearly� problem 	
� can be compactly rewritten as

min cTx
subject to Tx � Zp�

x � D�
	�

While the set D is a convex polyhedron� the structure of Zp needs to be analysed in more
detail�

Let F denote the probability distribution function of �� and Fi be the marginal probability
distribution function of the ith component �i� By assumption� the set Z of all possible values
of the random vector � is included in ZZ

s�
We shall use the concept of p�e�cient points� introduced in �
���

De�nition ��� Let p � ��� 
�� A point v � IRs is called a p�e�cient point of the probability
distribution function F � if F 	v� � p and there is no y � v� y �� v such that F 	y� � p�

Obviously� for a scalar random variable � and for every p � 	�� 
� there is exactly one
p�e�cient point� the smallest v such that F 	v� � p� This leads to the following observation�

Remark ��� Let p � 	�� 
� and let li be the p�e�cient point of �i� i � 
� � � � � s� Then every
v � IRs such that F 	v� � p must satisfy the inequality v � l � 	l�� � � � � ls��

Proof� For a p�e�cient point v we have

p � F 	v� � IPf� � vg � IPf�i � vig � Fi	vi��

and� by the de�nition of li� we must have vi � li� �

Since rounding down to the nearest integer does not change the value of the distribution
function� p�e�cient points of an integer random vector must be integer� We can thus the
following interesting fact 	noticed earlier in ���� for non�negative integer random variables��
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Theorem ��� For each p � 	�� 
� the set of p�e�cient points of an integer random variable
is nonempty and �nite�

Proof� We shall at �rst show that p�e�cient points exist� Since p � 
� there must exist y
such that F 	y� � p� By Remark ���� all v such that F 	v� � p must satisfy v � l� Therefore�
if y is not p�e�cient� one of �nitely many integer points v such that l � v � y must be
p�e�cient�

We shall now prove the �niteteness of the set of p�e�cient points� Suppose that there
exisits an in�nite sequence of di�erent p�e�cient points vj� j � 
� �� � � � � Since they are
integer� and the �rst coordinate vj� is bounded below by l�� with no loss of generality we
may select a subsequence which is non�decreasing in the �rst coordinate� By a similar
token� we can select further subsequences which are non�decreasing in the �rst k coordinates
	k � 
� � � � � s�� Since the dimension s is �nite� we obtain a subsequence of di�erent p�
e�cient points which is non�decreasing in all coordinates� This contradicts the de�nition of
a p�e�cient point� �

Let p � 	�� 
� and let vj� j � J � be all p�e�cient points of �� By Theorem ���� J is a
�nite index set� Let us de�ne the cones

Kj � vj � IRs
�� j � J�

Remark ��� Zp �
S

j�J Kj �

Proof� If y � Zp then either y is p�e�cient or there exists an integer v � y� v �� y� v � Zp�
By Remark ���� one must have l � v� Since there are only �nitely many integer points
l � v � y one of them� vj� must be p�e�cient� and so y � Kj � �

Thus� we obtain 	for � � p � 
� the following disjunctive formulation of 	��

min cTx
subject to Tx �

S
j�J Kj�

x � D�
	��

Its main advantage is an insight into the nature of the non�convexity of the feasible set� In
particular� we can formulate the following necessary and su�cient condition for the existence
of an optimal solution of 	���

Assumption ��� The set � �� f	u�w� � IRm�s
� j ATw � T Tu � cg is nonempty�

Theorem ��	 Assume that the feasible set of ��	 is nonempty� Then ��	 has an optimal
solution if and only if Assumption 
�� holds�

Proof� If 	�� has an optimal solution� then for some j � J the linear program

min cTx
subject to Tx � vj�

A � b�
x � ��

	��
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has an optimal solution� By duality in linear programming� its dual

max 	vj�Tu� bTw
subject to T Tu�ATw � c�

u�w � ��
	��

has an optimal solution and the optimal values of both programs are equal� Thus� Assump�
tion ��� must hold� On the other hand� if Assumption ��� is satis�ed� all dual programs 	��
for j � J have nonempty feasible sets� so the objective values of all primal problems 	��
are bounded from below� Since one of them has a nonempty feasible set by assumption� an
optimal solution must exist� �

� r�Concave Discrete Distribution Functions

Since the set Zp need not be convex� it is essential to analyse its properties and to �nd
equivalent formulations with more convenient structures� To this end we shall recall and
adapt the notion of r�concavity of a distribution function� It uses the generalized mean
function mr � IR� � IR� � ��� 
�� IR de�ned as follows�

mr	a� b� �� �

������
�����

a�b��� if r � ��
maxfa� bg if r ���
minfa� bg if r � ���

� if r � 	��� ��� ab � ��
	�ar � 	
 � ��br���r otherwise�

	��

De�nition ��� A distribution function F � IRn � ��� 
� is called r�concave� where r �
������� if

F 	�x� 	
� ��y� � mr	F 	x�� F 	y�� ��

for all x� y � IRs and all � � ��� 
��

If r � �� we call F quasi�concave� for r � � it is known as log�concave� and for r � 

the function F is concave in the usual sense�

Another general concept of r�concavity can be introduced for measures� by considering
probabilities of Minkowski sums of sets� In this paper� however� we shall only consider
r�concave disribution functions�

The concept of a log�concave probabiltiy measure 	the case r � �� was intruduced and
studied in �
� 
��� The notion of r�concavity and corresponding results were given in ��� ���
For detailed description and proofs� see �����

By monotonicity� r�concavity of a distribution function is equivalent to the inequality

F 	z� � mr	F 	x�� F 	y�� ��
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for all z � �x� 	
� ��y�
Clearly� distribution functions of integer random variables are not continuous� and cannot

be r�concave in the sense of the above de�nition� Therefore� we relax De�nition ��
 in the
following way�

De�nition ��� A distribution function F is called r�concave on the setA with r � �������
if

F 	z� � mr	F 	x�� F 	y�� ��

for all z� x� y � A and � � ��� 
� such that z � �x � 	
� ��y�

The concept of r�concavity on a set can be used to �nd an equivalent representation of
the set Zp given by 	���

Theorem ��� Let Z be the set of all values of an integer random vector �� If the distribution
function F of � is r�concave on Z �ZZ

s
� for some r � ������� then for every p � 	�� 
� one

has
Zp � fy � IRs � y � z �

X
j�J

�jv
j�
X
j�J

�j � 
� �j � �� z � ZZ
sg�

where vj� j � J � are the p�e�cient points of F �

Proof� By the monotonicity of F we have F 	y� � F 	z� if y � z� It is� therefore� su�cient
to show that IP 	� � z� � p for all z � ZZ

s such that z �
P

j�J �jv
j with �j � ��

P
j�J �j � 
�

We consider four cases with respect to r�

Case �� r � �� It follows from the de�nition of r�concavity that F 	z� � maxfF 	vj�� j �
J � �j �� �g � p�

Case 
� r � ��� Since F 	vj� � p for each index j � J such that �j �� �� the assertion
follows as in Case 
�

Case � r � �� By the de�nition of r�concavity�

F 	z� �
Y
j�J

�F 	vj���j �
Y
j�J

p�j � p�

Case �� r � 	��� ��� By the de�nition of r�concavity�

�F 	z��r �
X
j�J

�j �F 	vj��r �
X
j�J

�jp
r � pr�

Since r � �� we obtain F 	z� � p�

Case �� r � 	����� By the de�nition of r�concavity�

�F 	z��r �
X
j�J

�j �F 	vj��r �
X
j�J

�jp
r � pr�
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�

Under the conditions of Theorem ���� problem 	�� can be formulated in the following
equivalent way�

min cTx 	��

subject to x � D 	
��

Tx � z� 	

�

z � ZZ
s� 	
��

z �
X
j�J

�jv
j 	
��

X
j�J

�j � 
 	
�

�j � �� j � J� 	
��

So� the probabilistic constraint has been replaced by linear equations and inequalites� to�
gether with the integrality requirement 	
��� This condition cannot be dropped� in general�
However� if other conditions of the problem imply that Tx is integer 	for example� we have
an additional constraint in the de�nition of D that x � ZZ

n� and T has integer entries�� we
may dispose of z totally� and replace constraints 	

��	
�� with

Tx �
X
j�J

�jv
j�

The di�culty comes from the implicitly given p�e�cient points vj� j � J � Our objective
will be to avoid their enumeration and to develop an approach that generates them only
when needed�

We end this section with su�cient conditions for the r�concavity of the joint distribution
function in the case of integer�valued independent components� Our assertion� presented in
the next proposition is the discrete version of an observation from �

��

Proposition ��� Assume that the components �i of �� i � 
� � � � � s� are independent� and
that the marginal distribution functions Fi are ri�concave on sets Ai 	 ZZ�

�i	 If ri � �� i � 
� � � � � s� then F is r�concave onA � A� � 
 
 
 � As with r � �
Ps

i�� r
��
i ����

�ii	 If ri � �� i � 
� � � � � s� then F is log�concave on A � A� � 
 
 
 � As�

Proof� Assertion 	i� is a simple consequence of H�older�s inequality� Assertion 	ii� is obvious�
�
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� Lagrangian Relaxation

Let us split variables in problem 	��

min cTx

Tx � z� 	
��

x � D�

z � Zp�

Associating Lagrange multipliers u � IRs with constraints 	
�� we obtain the Lagrangian
function�

L	x� z� u� � cTx� uT 	z � Tx��

Owing to the structure of Zp 	Remark ����� we could have replaced equality Tx � z in 	
��
by an inequality Tx � z� and use u � � in the Lagrangian� However� formal splitting 	
��
leads to the same conclusion� The dual functional has the form

�	u� � inf
�x�z��D�Zp

L	x� z� u� � h	u� � d	u��

where

h	u� � inff	c� T Tu�Tx j x � Dg� 	
��

d	u� � inffuTz j z � Zpg� 	
��

Lemma ��� dom� � fu � IRs
� � there exists w � IRm

� such that ATw � T Tu � cg�

Proof� Clearly� dom � � domh � dom d� Let us calculate domh� The recession cone of D�

C � fy � IRn � Ay � �� y � �g�

has the dual cone

C� � fv � IRm � vTy � � for all y � Cg � fv � IRm � v � ATw� w � �g�

as follows from Farkas lemma� Thus

domh � fu � IRs � c� T Tu � C�g � fu � IRs � T Tu�ATw � c� w � �g�

On the other hand� by Lemma �� dom d � IRs
�� and the result follows� �

It follows that Assumption ���� which is necessary and su�cient for the existence of solutions�
is also necessary and su�cient for the nonemptiness of the domain of the dual functional�

For any u � IRs
� the value of �	u� is a lower bound on the optimal value F � of the original

problem� Consequently� the best lower bound will be given by

D� � sup�	u�� 	
��
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If an optimal solution of 	� exists� then Assumption ��� holds� so� by Lemma �
�

�� � D� � F ��

We shall show that the supremum D� is attained� Indeed� h	u� � �	�D	�c � T Tu�� where
	�D	
� is the support function of D� Thus h	
� is concave and polyhedral 	see ����� Corollary

����
�� By Remark ��� for u � � the minimization in 	
�� may be restricted to �nitely
many p�e�cient points vj� j � J � For u �� � one has d	u� � ��� Therefore� d	
� is concave
and polyhedral as well� Consequently� �	
� is concave and polyhedral� Since it is bounded
from above by F �� it must attain its maximum�

Another lower bound may be obtained from the continuous relaxation of problem 	�

F �
co � minfcTx j Tx � z� x � D� z � coZpg� 	���

It is known 	see �
��� that

F �
co � D� � F ��

We now analyse in more detail the structure of the dual functional � � Let us start from
h	
��

Fact ��� Let Condition 
�� be ful�lled� Then for each u � IRs

h	u� � supfbTw j T Tu�ATw � c� w � �g�

Proof� The result follows form the duality theory in linear programming� �

This allows us to reformulate the dual problem 	
�� in a more explicit way�

max d	u� � bTw 	�
�

T Tu�ATw � c� 	���

u � �� w � �� 	���

Let us observe that we may write �max� instead of �sup� because we already know that the
supremum is attained� We may also add the constraint �u � �� explicitly� since it de�nes the
domain of d�

Properties of d	
� can also be analysed in a more explicit way�

Lemma ��� For every u � � the solution set of the subproblem

min
z�Zp

uT z 	��

is nonempty and has the following form�

�Z	u� �
�

j� �J�u�

fvjg� C	u��

where �J	u� is the set of p�e�cient solutions of �
�	� and

C	u� � fd � IRs
� � di � � if ui � �� i � 
� � � � � sg� 	���
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Proof� The result follows from Remark ��� Let us at �rst consider the case u � �� Suppose
that a solution z to 	�� is not a p�e�cient point� Then there is a p�e�cient v � Zp such that
v � z� so uTv � uT z� a contradiction� Thus� for all u � � all solutions to 	�� are p�e�cient�
In the general case u � �� if a solution z is not p�e�cient� we must have uTv � uTz for all
p�e�cient v � z� This is equivalent to z � fvg� C	u�� as required� �

The last result allows us to calculate the subdi�erential of d in a closed form�

Lemma ��� For every u � � one has 
d	u� � co fvj� j � �J	u�g� C	u��

Proof� From 	
�� it follows that

d	u� � �	�Zp
	�u��

where 	�Zp
	
� is the support function of Zp� and� thus� of coZp� This fact follows from the

structure of Zp 	Remark ��� by virtue of Corolarry 
����
 in ����� By ���� Thm ������
g � 
	�Zp

	�u� if and only if 	�Zp
	�u� � 	coZp	g� � �gTu� where 	coZp	
� is the indicator

function of coZp� It follows that g � coZp and 	�Zp
	�u� � �gTu� Thus� g is a convex

combination of solutions to 	�� and the result follows from Lemma ��� �

Therefore the following necessary and su�cient optimality conditions for problem 	�
��
	��� can be formulated�

Theorem ��� A pair 	u�w� � � is an optimal solution of �
�	��
	 if and only if there
exists a point x � IRn

� such that�

Ax � b� wT 	Ax� b� � �� 	���

and

Tx � co fvj � j � �J	u�g� C	u�� 	���

where �J	u� is the set of p�e�cient solutions of �
�	� and C	u� is given by �
�	�

Proof� The vector x plays the role of the Lagrange multiplier associated with the constraint
	���� Let us decipher the relation



�
bTw � d	u� � xT 	c� T Tu�ATw�

�
�K	u�w� �� ��

where K	u�w� is the normal cone to IRm�s
� at 	u�w�� Using the closed�form expression for

the subdi�erential of d from Lemma �� we obtain�



�
bTw � d	u� � xT 	c� T Tu�ATw�

�
�

	
co fvj � j � �J	u�g� C	u�� Tx
b�Ax



�

On the other hand�

K	u�w� � f	u�� w�� � u� � �� w� � �� hu�� ui � �� hw�� wi � �g �

	
�C	u�
�C	w�



�
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Consequently� the condition co fvj � j � �J	u�g�C	u��Tx��C	u� �� � implies the existence
of elements v � co fvj � j � �J	u�g and c�� c� � C	u� such that� v � c� � Tx � �c�� which
is equivalent to the condition 	���� Furthermore� we obtain that b�Ax � �C	w� �� �� The
de�nition of C	w� implies condition 	���� �

It follows that the optimal Lagrangian bound is associated with a certain primal solution
x which is feasible with respect to the deterministic constraints and such that Tx � coZp�
Moreover� since 	u�w� � �� the point x is optimal for the convex hull problem�

min cTx 	���

Ax � b� 	���

Tx �
X
j�J

�jv
j� 	���

X
j�J

�j � 
� 	�
�

x � �� � � �� 	���

Indeed� associating with 	��� multipliers w� with 	��� multipliers u� and with 	�
� a
multiplier � � d	u�� we can show that 	x� ��� is optimal for 	����	��� provided that ��j are
the coe�cients at vj in the convex combination in 	����

Since the set of p�e�cient points is not known� we need a numerical method for solving
	�
��	��� or its dual 	����	����

� Cone generation methods

The idea of a numerical method for calculating Lagrangian bounds is embedded in the convex
hull formulation 	����	���� We can easily adapt to it the classical column generation scheme
known from large scale linear and integer programming ��� 
��

Cone Generation Method

Step 
� Select a p�e�cient point v�� Set J� � f�g� k � ��

Step �� Solve the master problem

min cTx 	���

Ax � b� 	��

Tx �
X
j�Jk

�jv
j� 	���

X
j�Jk

�j � 
� 	���

x � �� � � �� 	���

Let uk be the vector of simplex multipliers associated with the constraint 	����
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Step �� Calculate an upper bound for the dual functional�

d	uk� � min
j�Jk

	uk�Tvj�

Step �� Find a p�e�cient solution vk�� of the subproblem�

min
z�Zp

	uk�Tz

and calculate

d	uk� � 	vk���Tuk�

Step �� If d	uk� � d	uk� then stop� otherwise set Jk�� � Jk  fk � 
g� increase k by one
and go to Step 
�

Few comments are in order� The �rst p�e�cient point v� can be found by solving 	��
for an arbitrary u � �� All master problems will be solvable� if the �rst one is solvable� i�e��
if the set fx � IRn

� � Ax � b� Tx � v�g is nonempty� If not� adding a penalty term M
lT t to
the objective� and replacing 	��� by

Tx� t �
X
j�Jk

�jv
j�

with t � � and a very large M � is the usual remedy 	
lT � �
 
 � � � 
��� The calculation of
the upper bound at Step � is easy� because one can simply select jk � Jk with �jk � � and
set d	uk� � 	uk�Tvjk � At Step � one may search for p�e�cient solutions only� due to Lemma
���

Convergence of the algorithm follows from a standard argument� The set Jk cannot
grow inde�nitely� because there are �nitely many p�e�cient points 	Theorem ����� If the
stopping test of Step  is satis�ed� optimality conditions for 	����	��� are satis�ed� Moreover
�Jk � fj � Jk � hvj� uki � d	uk�g � �J	u��

Our cone generation method shares its drawbacks with other column generation schemes�
Initial iterations are ine�cient� The number of p�e�cient points grows and there is no reliable
way for deleting them� For these reasons� especially when the dimension of x is large and the
number of rows of T small� an attractive alternative is provided by bundle methods applied
directly to the dual problem

max
u��

h
h	u� � d	u�

i
�

because at any u � � subgradients of h and d are readily available� For a comprehensive
description of bundle methods the reader is refereed to ��� ��� It may be interesting to note
that in our case they correspond to a version of the augmented Lagrangian method 	see
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��� �����

Let us now focus our attention on solving the auxiliary problem 	��� which is explicitly
written as�

minfuTz j F 	z� � pg� 	���

where F 	
� denotes the distribution function of ��
Assume that the components �i� i � 
� � � � � s� are independent� Then we can write the

probability constraint in the following form�

ln	F 	z�� �
sX

i��

ln	Fi	zi�� � ln p�

Since we know that one of the solutions is a p�e�cient point� with no loss of generality we
may restrict the search to integer vectors z� Furthermore� by Remark ���� we have zi � li�
where li are p�e�cient points of �i� We obtain the problem�

min
sX

i��

uizi

sX
i��

ln	Fi	zi�� � ln p�

zi � li� zi � ZZ� i � 
� � � � � s�

This is a knapsack problem that can be solved by e�cient methods� like dynamic program�
ming 	for an appropriately discretized approximation� or branch�and�bound schemes �
���

For log�concave marginals� a ��
 formulation may be convenient� Let li � bi be an upper
bound on zi� Setting

zi � li �

biX
j��

zij�

where zij � f�� 
g we can reformulate the problem as follows�

min
sX

i��

biX
j��

uizij

sX
i��

biX
j��

aijzij � r�

where aij � ln	Fi	li � j�� � ln	Fi	li � j � 
��� and r � ln p � lnF 	l�� Indeed� by the
log�concavity� we have ai�j�� � aij� so there is always a solution with nonincreasing zij�
j � 
� � � � � bi�

Clearly� these simpli�cations are due to the independence of the components of �� If they
are dependent� bounding techniques from the next section may be employed�
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� Bounds via binomial moments

If the components of � are dependent� subproblem 	
�� may be di�cult to solve exactly�
Still� some bounds on its optimal solution may prove useful� We shall develop a number of
bounds using only partial information on the distribution function of � in the form of the
marginal distributions�

Fi����ik	zi�� � � � � zik� � IPf�i� � zi�� � � � �ik � zikg� 
 � i� � � � � � ik � s�

Since for each marginal distribution one has Fi����ik 	zi�� � � � � zik� � F 	z� the following relax�
ation of Zp 	de�ned by 	��� can be obtained�

Fact 	�� For each z � Zp and for every 
 � i� � � � � � ik � s the following inequality must
hold�

Fi����ik	zi�� � � � � zik� � p�

We shall base further developments on the following result of �
���

Theorem 	�� For any distributon function F � IRs � ��� 
� and any 
 � k � s� at every
z � IRs the optimal value of the following linear programming problem

max vs
v� � v� � v� � v	 � 
 
 
 � vs � 


v� � �v� � �v	 � 
 
 
 � rvr �
X
��i�s

Fi	zi�

v� �
�
	
�

�
v	 � 
 
 
 �

�
s
�

�
vs �

X
��i��i��s

Fi�i�	zi�� zi��

���

vk �
�
k��
k

�
vk�� � 
 
 
 �

�
s
k

�
vs �

X
��i������ik�s

Fi����ik 	zi�� � � � � zik�

v� � �� v� � �� � � � � vs � ��

	���

provides an upper bound for F 	z�� � � � � zs��

We can use this result to bound our auxiliary problem 	
���

Proposition 	�� Let � � 	��� � � � � �s� be an integer random vector and let Fi����� �ik denote
its marginal distribution functions� Then for every p � 	�� 
� and for every 
 � k � s the
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optimal value of the problem

min uTz
v� � v� � v� � v	 � 
 
 
 � vs � 


v� � �v� � �v	 � 
 
 
 � rvr �
X
��i�s

Fi	zi�

v� �
�
	
�

�
v	 � 
 
 
 �

�
s
�

�
vs �

X
��i��i��s

Fi�i�	zi�� zi��

���

vk �
�
k��
k

�
vk�� � 
 
 
 �

�
s
k

�
vs �

X
��i������ik�s

Fi����ik 	zi�� � � � � zik�

v� � �� v� � �� � � � � � vs�� � �� vs � p� z� � l�� z� � l�� � � � � zs � ls�
z � ZZ

s

	��

provides a lower bound on the optimal value d	u� given by ���	�

Proof� If z � Zp� that is� F 	z� � p� then the optimal value of 	��� satis�es vs � p� Thus
z and the solution v of 	��� are feasible for 	��� Since the objective functions of 	
�� and
	�� are the same� the result follows� �

Problem 	�� is a nonlinear mixed�integer problem� Its advantage over the original formu�
lation is that it uses marginal functions in an explicit way which allows for the development
of specialized solution methods�

	 Primal feasible solution and upper bounds

Let us consider the optimal solution xlow of the convex hull problem 	����	��� and the
corresponding multipliers �j � De�ne J low � fj � J � �j � �g�

If J low contains only one element the point xlow is feasible� and therefore optimal� for the
disjunctive formulation 	��� If� however� there are more positive ��s� we need to generate a
feasible point� A natural possibility is to consider the restricted disjunctive formulation�

min cTx
subject to Tx �

S
j�J low Kj �

x � D�
	
�

It can be solved by simple enumeration of all cases for j � J low�

min cTx
subject to Tx � vj�

x � D�
	��

In general� it is not guaranteed that any of these problems has a nonempty feasible set� as the
following example shows� Let n � �� T � I� and let there will be only three p�e�cient points�
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v� � 	
� �� ��� v� � 	�� 
� ��� v	 � 	�� �� 
�� and two additional deterministic constraints�
x� � 
��� x� � 
��� and c � 	�� �� 
�� The convex hull problem has �� � �� � 
��� �	 � ��
but both problems 	�� for j � 
� � have empty feasible sets�

To ensure that problem 	
� has a solution it is su�cient that the following stronger
version of Assumption ��� holds�

Assumption ��� The set � �� f	u�w� � IRm�s
� j ATw � T Tu � cg is nonempty and

bounded�

Indeed� each od the dual problems 	�� has an optimal solution� so by duality in linear
programming each of the subproblems 	�� has an optimal solution� We can� therefore� solve
all of them and choose the best solution� An alternative strategy would be to solve the
corresponding upper bounding problem 	�� every time a new p�e�cient point is generated�
This may be computationally e�cient� especially if we solve the dual problem 	��� in which
only the objective function changes from iteration to iteration�

If the distribution function of � is r�concave on the set of possible values of �� Theorem
��� provides an alternative formulation of the upper bound problem 	
��

min cTx

subject to x � D

Tx � z�

z � ZZ
s�

z �
X

j�J low

�jv
j�

X
j�J low

�j � 


�j � �� j � J low�

It may be easier to deal with if the number of p�e�cient points in Llow is large�
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