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1 Introduction

In this paper, we consider the stochastic programming problem:

min cT x
subject to P(Tx ≥ ξ) ≥ p

Ax ≥ b
x ≥ 0,

(1)

where ξ = (ξ1, . . . , ξr) is a discrete random vector, p is a given probability (0 < p < 1, in

practice near 1) and A, T , c, b are constant matrices and vectors with sizes m× n, r × n, n

and m, respectively. We can write (1) in the equivalent form:

min cT x
subject to P(ξ ≤ y) ≥ p

Tx = y
Ax ≥ b
x ≥ 0.

(2)

Problem (1) for general random vector ξ with stochastically dependent components was

introduced in [6] and [7]. In these and other subsequent papers convexity theorems have

been proved and algorithms have been proposed for the solution of problem (1) and the

companion problem:

max P(Tx ≥ ξ)
subject to Ax ≥ b

x ≥ 0.
(3)

For detailed presentation of these results, the reader is referred to [10] and [11].

For the case of a discrete ξ, the concept of p level efficient point(PLEP) has been intro-

duced in [9]. Below, we recall this definition. Let F (z) designate the probability distribution

function of ξ, i.e., F (z) = P(ξ ≤ z), z ∈ Rr.

Definition 1.1. Let Z be the set of possible values of ξ. A vector z ∈ Z is said to be a p

level efficient point or PLEP of the probability distribution of ξ if F (z) = P(ξ ≤ z) ≥ p and

there is no y ∈ Z such that F (y) ≥ p, y ≤ z and y 6= z.

Dentcheva, Prékopa and Ruszczyński (2000) remarked that, by a classical theorem of

Dickson [1] on partially ordered sets (posets), the number of PLEP’s is finite even if Z is

not a finite set. Let v(j), j ∈ J be the set of PLEP’s. Since

{y | P(ξ ≤ y) ≥ p} = Zp =
⋃
j∈J

{v(j) + Rs
+},
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a further equivalent form of problem (1)is the following:

min cT x
subject to Tx ∈ Zp

Ax ≥ b
x ≥ 0.

(4)

The first paper on problem (1) with discrete random vector ξ was published by Prékopa

(1990). He presented a general method to solve problem (4), assuming that the PLEP’s are

enumerated. Note that problem (4) can be regarded as a disjunctive programming problem.

Sen (1992) studied the set of all valid inequalities and the facets of the convex hull of the

given disjunctive set implied by the probabilistic constraint in (2). Prékopa, Vizvári and

Badics (1998) relaxed problem (4) in the following way:

min cT x

subject to Tx ≥
∑|J |

i=1 v(i)µi∑|J |
i=1 µi = 1, µi ≥ 0, i ∈ {1, . . . , |J |}

Ax ≥ b
x ≥ 0,

(5)

gave an algorithm to find all the PLEP’s and a cutting plane method to solve problem (5).

In general, however, the number of p level efficient points for ξ is very large. To avoid

the enumeration of all PLEP’s, Dentcheva, Prékopa and Ruszczyński (2000) presented a

cone generation method to solve problem (5). Vizvári (2002) further analyzed the above

solution technique with emphasis on the choices of Lagrange multipliers and the solution of

the knapsack problem that comes up as a PLEP generation technique in case of independent

random variables.

Discrete random vectors in the contexts of (1) and (3) come up in many practical prob-

lems. Singh et al. [16] present and solve a chip fabrication problem, where the components

of the random vector designate the number of chip sites in a wafer that produce good chips

of given types. These authors solve a similar problem as (3) rather than problem (1), where

the objective function in (3) is 1 − P(Tx ≥ ξ). Dentcheva et al. [4] present and solve a

traffic assignment problem in telecommunication, where the problem is of type (1) and the

random variables are demands for transmission. In the design of a stochastic transportation

network in power systems, Prékopa and Boros [12] present a method to find the probability

of the existence of a feasible flow problem, where the demands for power at the nodes of the

network are integer valued random variables.

We assume that the components of the random vector ξ have all Poisson, all binomial

or all geometric distributions. We use incomplete gamma, beta and exponential functions,
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respectively, to convexify the problem by replacing smooth distribution functions for the

discrete ones such that they coincide at lattice points. Then the optimal solutions to the

convex problems are used to find the optimal solution of problem (1). This is carried out by

the use of a modified Hooke and Jeeves direct search method. In Section 2 we solve problem

(1) under the assumption that the components of ξ are independent and the solution of

(3) is discussed for the case of discrete random vector ξ. In Section 3 we look at the case

where the components of ξ are partial sums of independent random variables. We prove a

general theorem that implies that in our cases the multivariate c.d.f majorizes the product

of the univariate marginal c.d.f’s. Finally, in Section 4 numerical results, along with new

applications are presented. Comparison is made between the solution of a telecommunication

problem presents in [4] and our solution to the same problem.

2 The case of independent Poisson, binomial and geo-

metric random variables

Assume that ξ1, . . . , ξr are independent and nonnegative integer valued. Let Fi(z) be the

c.d.f. of ξi, i = 1, . . . , r. Then problem (1) can be written in the following form:

min cT x
subject to Tx = y

Ax ≥ b, x ≥ 0∏r
i=1 Fi(yi) ≥ p.

(6)

Note that the inequality

P(Tix ≥ ξi) ≥ P(Tx ≥ ξ) ≥ p

implies Tix ≥ 0, i = 1, . . . , r. Thus if ξ is a discrete random vector, the above problem is

equivalent to the following:

min cT x
subject to Tx ≥ y, y ∈ Z+

r

Ax ≥ b, x ≥ 0∏r
i=1 Fi(yi) ≥ p.

(7)

We solve problem (7) in such a way that to each Fi we fit a smooth c.d.f. that coincides

with Fi at integers, solve the smooth problem and then search for the optimal solution of

the discrete random variable problem.
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2.1 Independent Poisson random variables

Let ξ be a random variable that has Poisson distribution with parameter λ > 0. The values

of its c.d.f. at nonnegative integers are

Pn =
n∑

k=0

λk

k!
e−λ, n = 0, 1, . . . .

Let

F (p; λ) =

∫ ∞

λ

xp

Γ(p + 1)
e−xdx,

where

Γ(p) =

∫ ∞

0

xp−1e−xdx, for p > −1.

It is well-known (see, e.g., Prékopa 1995) that for n ≥ 0,

Pn =
n∑

k=0

λk

k!
e−λ =

∫ ∞

λ

xn

n!
e−λdx. (8)

We recall the following theorem.

Theorem 2.1. ([10]) For any fixed λ > 0, the function F (p; λ) is logconcave on the entire

real line, strictly logconcave on {p | p ≥ −1} and Pn = F (p, λ) for any nonnegative integer

n = p.

Suppose that ξ1, . . . , ξr are independent Poisson random variables with parameters

λ1, · · · , λr, respectively. To solve (7), first we consider the following problem:

min cT x
subject to Tx = y

Ax ≥ b, x ≥ 0∏r
i=1

∫∞
λi

tyi

Γ(yi+1)
e−tdt ≥ p.

(9)

Then we can rewrite problem (9) in the following form:

min cT x
subject to Tx = y

Ax ≥ b, x ≥ 0∑r
i=1 ln

(
1− 1

Γ(yi+1)

∫ λi

0
tyie−tdt

)
≥ ln p.

(10)

By Theorem 2.1, (9) is a convex nonlinear programming problem.
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2.2 Independent binomial random variables

Suppose ξ has binomial distribution with parameter 0 < p < 1. Let x be a nonnegative

integer. It is known (see, e.g., Singh et. al., 1980; Prekopa 1995) that

x∑
i=a

(
x

i

)
pi(1− p)(x−i) =

∫ p

0
ya−1(1− y)x−ady∫ 1

0
ya−1(1− y)x−ady

. (11)

For fixed a > 0 define G(a, x), as a function of the continuous variable x, by the equation

(11) for x ≥ 0 and let G(a, x) = 0 for x < a. We have the following Theorem.

Theorem 2.2. ([10],[16]) Let a > 0 be a fixed number. Then G(a, x) is strictly increasing

and strictly logconcave for x ≥ a.

If x is an integer then G(a, x) = 1 − F (a − 1) where F is the c.d.f. of the binomial

distribution with parameters x and p. While Theorem 2.2 provides us with a useful tool in

some applications (c.f. [16]), we need a smooth logconcave extension of F and it can not be

derived from G(a, x).

Let X be a binomial random variable with parameter n and p. Then, by (11), we have

for every x = 0, 1, . . . , n− 1:

P (X ≤ x) =

∫ 1

p
yx(1− y)n−x−1dy∫ 1

0
yx(1− y)n−x−1dy

. (12)

The function of the variable x, on the right hand side of (12), is defined for every x

satisfying −1 < x < n. Its limit is 0, if x → 0 and is 1, if x → n. Let

F (x; n, p) =


0, if x ≤ −1;R 1

p yx(1−y)n−x−1dyR 1
0 yx(1−y)n−x−1dy

, if − 1 < x < n;

1, if x ≥ n.

(13)

We have the following:

Theorem 2.3. The function F (x; n, p) satisfies the relations

lim
x→−∞

F (x; n, p) = 0, lim
x→∞

F (x; n, p) = 1, (14)

it is strictly increasing in the interval (−1, n), has continuous derivative and is logconcave

on R1.
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Proof. We skip the proof of the relations because it requires any standard reasoning.

To prove the other assertions first transform the integral in (13) by the introduction of

the new variable y
1−y

= t. We obtain

F (x; n, p) =

∫∞
λ

tx 1
(1+t)n+1 dt∫∞

0
tx 1

(1+t)n+1 dt
, −1 < x < n, (15)

where λ = p
1−p

. To prove strict monotonicity we take first derivative of this function:

dF (x; n, p)

dx
(16)

= F (x; n, p)

(∫∞
λ

tx ln t 1
(1+t)n+1 dt∫∞

λ
tx 1

(1+t)n+1 dt
−
∫∞

0
tx ln t 1

(1+t)n+1 dt∫∞
0

tx 1
(1+t)n+1 dt

)
and show that it is positive if −1 < x < n. The derivative, with respect to λ, of the first

term in the parenthesis equals

d

dλ

∫∞
λ

tx ln t 1
(1+t)n+1 dt∫∞

λ
tx 1

(1+t)n+1 dt

=
−λx ln λ 1

(1+λ)n+1

∫∞
λ

tx 1
(1+t)n+1 dt + λx 1

(1+λ)n+1

∫∞
λ

tx ln t 1
(1+t)n+1 dt∫∞

λ
tx 1

(1+t)n+1 dt
.

This is a positive value, since∫ ∞

λ

tx ln t
1

(1 + t)n+1
dt > ln λ

∫ ∞

λ

tx
1

(1 + t)n+1
dt.

Thus, the first term in the parenthesis in (16) is an increasing function of λ, which proves

the positivity of the first derivative of F (x; n, p) in the interval −1 < x < n.

The continuity of the derivative of F (x; n, p) on R1 follows from (16). In fact the deriva-

tive is continuous if −1 < x < n and by the application of a standard reasoning (similar to

the one needed to prove (14)) we can show that

lim
x→−1+0

F (x; n, p)

dx
= lim

x→n−0

F (x; n, p)

dx
= 0.

It is enough to prove the logconcavity of F (x; n, p) for the case of −1 < x < n, because

the logconcavity of the function on R1 easily follows from it. We have the equation

d2F (x; n, p)

dx2
=

∫∞
λ

tx(ln t)2 1
(1+t)n+1 dt∫∞

λ
tx 1

(1+t)n+1 dt
−

(∫∞
λ

tx ln t 1
(1+t)n+1 dt∫∞

λ
tx 1

(1+t)n+1 dt

)2

−

∫∞0 tx(ln t)2 1
(1+t)n+1 dt∫∞

0
tx 1

(1+t)n+1 dt
−

(∫∞
0

tx ln t 1
(1+t)n+1 dt∫∞

0
tx 1

(1+t)n+1 dt

)2
 .

(17)
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Let us introduce the following p.d.f.:

g(t) =
e(x+1)t 1

(1+et)n+1∫∞
−∞ e(x+1)u 1

(1+eu)n+1 du
, −∞ < t < ∞, (18)

where x is a fixed number satisfying −1 < x < n. The function g(t) is exactly logconcave

on the entire real line. Let X be a random variable that has p.d.f. equal to (18). Then (17)

can be rewritten as

d2F (x; n, p)

dx2
=

∫∞
ln λ

t2g(t)dt∫∞
ln λ

g(t)dt
−
(∫∞

ln λ
tg(t)dt∫∞

ln λ
g(t)dt

)2

−

∫∞−∞ t2g(t)dt∫∞
−∞ g(t)dt

−

(∫∞
−∞ tg(t)dt∫∞
−∞ g(t)dt

)2


= E(X2 | X ≥ ln λ)− E2(X | X ≥ ln λ)

− (E(X2)− E2(X)).

(19)

Burridge (1982) has shown that if a random variable X has a logconcave p.d.f., then

E(X2 | X ≥ u)− E2(X |X ≥ u)

is a decreasing function (a proof of this fact is given in Prékopa 1995 pp.118-119). If we

apply this in connection with the function (18), then we can see that the value in (19) is

negative.

Remark The proof of Theorem 2.1 is similar to the proof of Theorem 2.3. In that case

the g(t) function is the following:

g(t) =
e(x+1)te−et∫∞

−∞ e(x+1)ue−eudu
, −∞ < t < ∞,

(see Prékopa 1995, p.117).

Suppose ξ1, ξ2, . . . , ξr are independent binomial random variables with parameters

(n1, p1), . . . , (nr, pr), respectively. To solve problem (7), we first solve the following problem:

min cT x
subject to Tx = y

Ax ≥ b∑r
i=1

(
ln
∫ 1

pi
tyi(1− t)ni−yi−1dt−

ln
∫ 1

0
tyi(1− t)ni−yi−1dt

)
≥ ln p

x ≥ 0.

(20)

This is again a convex programming problem from Theorem 2.3.
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2.3 Independent geometric random variables

Let ξ be a random variable with geometric distribution. ξ has probability function

P (k) = pqk−1 if k = 1, 2, . . .

and P (k) = 0 otherwise, where q = 1− p and 0 < p < 1. Its distribution function is

Pn =
n∑

k=1

pqk−1 = 1− qn. (21)

A general theorem ensures but a simple direct reasoning also shows that (see, e.g. Prekopa

1995, p.110) Pn is a logconcave sequence. The continuous counterpart of the geometric

distribution is the exponential distribution. If λ is the parameter of the later and λ = ln 1
q
,

then

1− e−λx = Pn, for x = n. (22)

The c.d.f. F (x) = 1− e−λx is strictly increasing and strictly logconcave function for x > 0.

Suppose the components ξ1, . . . , ξr of random vector ξ are independent geometric vari-

ables with parameters p1, . . . , pr, respectively. In this case, to solve problem (7), we first

solve the following convex programming problem:

min cT x
subject to Tx = y

Ax ≥ b∑r
i=1 ln(1− e−λiyi) ≥ ln p

x ≥ 0.

(23)

For the above mentioned three convex programming problems, they can be solved by many

known methods, for example, interior trust region approach [3] as it is used in MatLab 6. It

may also be solved by using CPLEX if we have a numerical method to calculate incomplete

gamma and beta functions. In this paper, we use MatLab 6 to solve the problems in the

numerical examples.

2.4 Relations between the feasible sets of the convex programming
problems and the discrete cases

First, we have the following theorem:

Theorem 2.4. Let ξ be a discrete random variable, F (z) the c.d.f of ξ, z ∈ Z+, and P the

set of all PLEP’s of ξ. Let F̃ (x) be a smooth function, x ∈ R+, such that F (z) = F̃ (x) when

x ∈ Z+. Then

P ∈ Z̃p = {x ∈ Zr
+ | F̃ (x) ≥ p}. (24)
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Proof. Let Zp = {y ∈ Z+ | P(ξ ≤ y) ≥ p}, where P is the distribution function of ξ. Then

P ⊆ Zp. Since the values of F (z) and F̃ (x) coincide at the lattice points, Zp = Z̃p.

Let ξ be an r-component random vector, and P the set of all PLEP’s of ξ. Let

F (y; λ) =

∫ ∞

λ

xy

Γ(y + 1)
e−xdx, y > −1,

F (y; , n, p′) =

∫ 1

p′
xy(1− x)n−y−1dx∫ 1

0
xy(1− x)n−y−1dx

, −1 < y < n,

and

G(y; λ) = 1− e−λy, y > 0

where Γ(·) is the gamma function and p′ ∈ (0, 1). Let

ZP
p = {y + 1 ∈ Zr

+ |
r∏

i=1

F (yi; λi) ≥ p, λi > 0, i = 1, . . . , r},

ZB
p = {y + 1 ∈ Zr

+ |
r∏

i=1

F (yi; ni, p
′
i) ≥ p, p′i ∈ (0, 1), −1 < yi < ni, i = 1, . . . , r}

and

ZG
p = {y ∈ Zr

+ |
r∏

i=1

G(yi; λi) ≥ p, yi > 0, λi = ln
1

1− pi

, i = 1, . . . , r}.

Then we have the following Corollary:

Corollary 2.1. (a) If all components of ξ have independent Poisson distribution with pa-

rameters λ1, λ2, . . . , λr, respectively, then P ⊆ ZP
p ;

(b) If all components of ξ have independent binomial distribution with parameters

(n1, p
′
1), (n2, p

′
2), . . . , (nr, p

′
r), respectively. Then P ⊆ ZB

p ;

(c) If all components of ξ have independent geometric distribution with parameters

p1, p2, . . . , pr, respectively. Then P ⊆ ZG
p .

Proof. The proof can be directly derived from Theorem 24.

Let

Z̄P
p = {y + 1 ∈ Rr

+ |
r∏

i=1

F (yi; λi) ≥ p, λi > 0, i = 1, . . . , r},

Z̄B
p = {y + 1 ∈ Rr

+ |
r∏

i=1

F (yi; ni, p
′
i) ≥ p, p′i ∈ (0, 1), −1 < yi < ni, i = 1, . . . , r}
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and

Z̄G
p = {y ∈ Rr

+ |
r∏

i=1

G(yi; λi) ≥ p, yi > 0, λi = ln
1

1− pi

, i = 1, . . . , r}.

From Theorem 2.1, Theorem 2.3 and c.d.f. of exponential distribution is logconcave, the

three above sets are all convex. From Theorem 2.4, for a multivariate random vector ξ, if all

the components of ξ have independent Poisson, binomial or geometric distribution, then all

the PLEP’s of ξ are contained in a convex set, which is obtained from incomplete gamma

function, incomplete beta function or exponential distribution function, respectively.

So for problem (7), if all components of ξ have independent Poisson, or binomial or

geometric distribution, we can get the corresponding relaxed convex programming problem.

2.5 Local searching method

From the optimal solutions of the relaxed problems, we use a direct search method to find

the optimal solutions of the discrete optimization problems. The method is based on Hooke

and Jeeves searching method (Hook and Jeeves, 1961) and in each step, we have to check

the feasibility of the new trial point. To state the method, without loss of generality, we

simplify problem (7) in the following way:

min cT x
subject to Tx ≥ y, ti,j ∈ Z

Ax ≥ b∏r
i=1 Fi(yi) ≥ p

x ∈ Z+.

(25)

Let x be the optimal solution of problem (6) and x∗ = bxe. Let f(x) = cT x and

D = {x |
r∏

i=1

Fi(Tix) ≥ p, Ax ≥ b, x ∈ Z+}

where Ti is the i-th row vector of T .

The modified Hooke and Jeeves direct searching method is as follows. In each searching

step, it comprises two kinds of moves: Exploratory and Pattern. Let ∆xi be the step length

in each of the directions ei, i = 1, 2, . . . , r.
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The Method

Exploratory move

Step 0: Set i = 1 and compute F = f(x∗) where x∗ = bxe =
(x1, x2, . . . , xr).

Step 1: Set x := (x1, x2, . . . , xi + ∆xi, . . . , xr).

Step 2: If f(x) < F and x ∈ D then set F = f(x), i := i + 1;
Goto Step 1.

Step 3: If f(x) ≥ F and x ∈ D then set x := (x1, x2, . . . , xi −
2∆xi, . . . , xr). If f(x) < F and x ∈ D, the new trial point is
retained. Set F = f(x), i := i + 1, and goto Step 1.
If f(x) ≥ F then the move is rejected, xi remains unchanged.
Set i := i + 1 and goto Step 1.

Pattern move

Step 1: Set x = xB +(xB−x̄B), where xB is the point arrived by
the Exploratory moves, and x̄B is a point which is also arrived
by exploratory move in previous step where xB is obtained from
the exploratory move starting from x̄B.

Step 2: Starts the Exploratory move. If for the point x obtained
by the Exploratory moves f(x) < f(xB) and x ∈ D, then the
pattern move is recommended. Otherwise xB is the starting
point and the process restarts from xB.

Remark When we consider the discrete random variables which have Poisson, binomial or

geometric distributions, we set ∆xi = 1.

2.6 Probability maximization under constraints

Now we consider problem (1) and the following problem together:

max P(Tx ≥ ξ)
subject to cT x ≤ K

Ax ≥ b
x ≥ 0,

(26)

where ξ is a random vector and K is fixed number. In [10], the relations between problem

(1) and (26) are discussed.

Suppose the components of random vector ξ are independent, then the objective function

of problem (26) is h(x) =
∏r

i=1 Fi(yi), where Tx = y. Since Fi(yi) > 0, we take natural



RRR 29-2005 Page 13

logarithm of h(x) and problem (26) can be written in the following form:

max ln h(x)
subject to cT x ≤ K

Ax ≥ b
x ≥ 0.

(27)

If ξ is a Poisson random vector, problem (27) can be approximated by solving the following

problem:

max
∑r

i=1 ln
(
1− 1

Γ(yi+1)

∫ λi

0
tyie−tdt

)
subject to Tx = y

Ax ≥ b
cT x ≤ K
x ≥ 0.

(28)

From Theorem 2.1, the objective function of problem (28) is concave. Let x be the optimal

solution of problem (27) and x∗ = bxe. Then we apply the modified Hooke and Jeeves

searching method to search the optimal solution of problem (26) around x∗ as described

above, and D is replaced by

D = {x | cx ≤ K, Ax ≥ b, x ∈ Z+}

and ” < ” and ” ≤ ” are replaced by ” > ” and ” ≥ ”, respectively. A numerical example in

Section illustrates the details of this procedure.

For the case of independent binomial and geometric random variables, it can be discussed

in a similar way.

3 Inequalities for the joint probability distribution of

partial sums of independent random variables

For the proof of our main theorems in this section, we need the following

Lemma 3.1. Let 0 ≤ p, q ≤ 1, q = 1− p, a0 ≥ a1, b0 ≥ b1, . . ., z0 ≥ z1, then we have the

inequality

pa0b0 · · · z0 + qa1b1 · · · z1 ≥ (pa0 + qa1)(pb0 + qb1) . . . (pz0 + qz1).

Proof. We prove the assertion by induction. For the case of a0 ≥ a1, b0 ≥ b1, the assertion is

pa0b0 + qa1b1 ≥ (pa0 + qa1)(pb0 + qb1).
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This is easily seen to be the same as

pq(a0 − a1)(b0 − b1) ≥ 0.

which holds true, by assumption. Looking at the general case, we can write

pa0(b0 · · · z0) + qa1(b1 · · · z1)

≥ (pa0 + qa1)(pb0 · · · z0 + qb1 · · · z1)

≥ (pa0 + qa1)(pb0 + qb1)(pc0 · · · z0 + qc1 · · · z1) . . .

≥ (pa0 + qa1)(pb0 + qb1) . . . (pz0 + qz1).

Thus the lemma is proved.

Let A = (ai,k) 6= 0 be an m× r matrix with 0−1 entries and X1, . . . , Xr independent, 0 -

1 valued not necessarily identically distributed random variables. Consider the transformed

random variables

Yi =
r∑

i=1

ai,kXk, i = 1, . . . ,m. (29)

We prove the following

Theorem 3.1. For any nonnegative integers y1, . . . , ym we have the inequality

P (Y1 ≤ y1, · · · , Ym ≤ ym) ≥
m∏

i=1

P (Yi ≤ yi). (30)

Proof. Let I = {i | ai,1 = 1}, Ī = {1, . . . ,m} \ I, p1 = P (X1 = 0), q1 = 1 − p1. Then we

have the relation

P (Yi ≤ yi, i = 1, · · · , m)

= P

(
r∑

j=1

ai,jXj ≤ yi, i ∈ I,
r∑

j=2

ai,jXj ≤ yi, i ∈ Ī

)
(31)

= P

(
r∑

j=2

ai,jXj ≤ yi, i ∈ I,
r∑

j=2

ai,jXj ≤ yi, i ∈ Ī

)
p1

+P

(
r∑

j=2

ai,jXj ≤ yi − 1, i ∈ I,

r∑
j=2

ai,jXj ≤ yi, i ∈ Ī

)
q1.
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We prove the assertion by induction on r. Let yj = mini∈I yi and look at the case r = 1. We

have that

P (Yi ≤ yi, i = 1, · · · , m)

= P (X1 ≤ yi, i ∈ I)

= P (X1 ≤ min
i∈I

yi) = P (X1 ≤ yj)

= P (Yj ≤ yj)

≥
m∏

i=1

P (Yi ≤ yi),

then the assertion holds for the case. Assume that it holds for r − 1. Then, using (31) and

Lemma 3.1, we can write

P (Yi ≤ yi, i = 1, · · · , m)

≥
∏
i∈I

P

(
r∑

j=2

ai,jXj ≤ yi

)∏
i∈Ī

P

(
r∑

j=2

ai,jXj ≤ yi

)
p1

+
∏
i∈I

P

(
r∑

j=2

ai,jXj ≤ yi − 1

)∏
i∈Ī

P

(
r∑

j=2

ai,jXj ≤ yi

)
q1

≥
∏
i∈I

[
P

(
r∑

j=2

ai,jXj ≤ yi

)
p1 + P

(
r∑

j=2

ai,jXj ≤ yi − 1

)
q1

]
∏
i∈Ī

P

(
r∑

j=2

ai,jXj ≤ yi

)

=
∏
i∈I

P

(
r∑

j=1

ai,jXj ≤ yi

)∏
i∈Ī

P

(
r∑

j=2

ai,jXj ≤ yi

)

=
m∏

i=1

P

(
r∑

j=1

ai,jXj ≤ yi

)

=
m∏

i=1

P (Yi ≤ yi).

This prove the theorem.

Theorem 3.2. Let X1, . . . , Xr be independent, binomially distributed random variables with

parameter (n1, p1), . . . , (nr, pr), respectively. Then for the random variables (29), then in-

equality (30) holds true.
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Proof. The assertion is an immediate consequence of Theorem 3.1.

Note that in case of Theorem 3.2, the random variables Yi, i = 1, . . . , r are not necessarily

binomially distributed. They are, however, if p1 = . . . = pr.

Theorem 3.3. Let X1, . . . , Xr be independent, Poisson distributed random variables with

parameter λ1, . . . , λr, respectively. Then for the random variables (29), then inequality (30)

holds true.

Proof. If in Theorem 3.2, we let ni → ∞, pi → ∞ such that nipi → λi, i = 1, . . . , r, then

the assertion follows from (30).

In case of Theorem 3.3, the random variables Yi, i = 1, . . . ,m have Poisson distribution

with parameter
∑r

i=1 ai,hλj, i = 1, . . . m, respectively.

Theorem 3.3 obviously remain true if X1, . . . , Xr are independent random variables such

that the c.d.f of Xi can be obtained as a suitable limit of the c.d.f of binomial distributions,

i = 1, . . . , r. Since m-variate normal distribution with nonnegative correlations can be

obtained this way as the joint distribution of the random variables Y1, . . . , Ym. In this case,

inequality (30) is a special case of the well-known Slepian-inequality (see Slepian, 1962).

4 Numerical examples

In [4], Dentcheva, Prékopa and Ruszczyński presented an algorithm to solve a stochastic

programming problem with independent random variables. In this section, we compare

the optimal values and solutions by using DPR algorithm and approximation methods,

respectively, to solve two numerical examples.

4.1 A vehicle routing example

Consider the vehicle routing problem in [4], which is a stochastic programming problem with

independent Poisson random variables, and the constraints have prescribed probability 0.9.

We use the same notations as [4] and the problem is following:

minπ∈Π

∑
π∈Π c(π)x(π)

subject to P
(∑

π∈R(e) x(π) ≥ ξ(e), e ∈ E
)
≥ p

x(π) ≥ 0, integer.

(32)
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To approximate the optimal solution of (32), we formulated it as follows:

min cx
subject to Tx = y∑16

i=1 ln
(
1− 1

Γ(yi+1)

∫ λi

0
xyie−xdx

)
≥ ln p

x ≥ 0, integer,

(33)

where

c = (10 15 18 15 32 32 57 57 60 60 63 63 61 61 75 75 62 62 44),

λ = (2 3 2 2 1 1 2 1 4 2 4 3 2 3),

p = 0.9 and

T =



1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0
0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0
0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1



.

The optimal solution of problem (32) obtained from DPR algorithm is

x̂ = (2 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T

and the optimal value 977 is reached at the following 0.9-level efficient point

v̂ = (6 7 6 7 5 4 7 4 8 6 8 7 7 7)T .

By solving problem (33), the optimal value is 972.5315, which is reached at

x = (1.7869, 3.0314, 5.8495, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 3.9970, 4.1492, 6.7917)
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Let x∗ = bxe, which is exactly x̂. By using the modified Hooke and Jeeves searching method

to search around x∗, the optimal solution is remained at x∗, i.e.,

x∗ = (2 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T .

Problem (33) is solved by using MatLab 6, and the time is 5 seconds in a PIII-750 CPU

computer.

Now we reconsider the vehicle routing problem, suppose we have a budget $1, 000K, and

we want to maximize the probability of vehicle routing. Then the problem is formulated in

the following way:

max P
(∑

π∈R(e) x(π) ≥ ξ(e), e ∈ E
)

subject to c(π)x(π) ≤ 1000, π ∈ Π
x(π) ≥ 0, integer,

(34)

and we use the following formulation to approximate the optimal solution of (34):

max
∑16

i=1 ln
(
1− 1

Γ(yi+1)

∫ λi

0
xyie−xdx

)
subject to Tx = y

cT x ≤ 1000
x ≥ 0 integer.

(35)

The optimal solution to problem (35) is

x = (1.8475, 3.1173, 6.0080, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 4.1117, 4.2633, 6.9857).

The optimal probability p at this point is 0.9188 and the cost reaches the $1000K. Let

x∗ = (2 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T .

We apply the modified Hooke and Jeeves searching method.

Exploratory move

Step 0: x0 = (2 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T , p = 0.9017 and cT x0 = 977.

Step 1: x1 = (3 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T , p = 0.9049 and cT x1 = 987.

Step 2: x2 = (3 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T , p = 0.9131 and cT x2 = 1002, which is

great than 1000. so x2 is rejected. Then check x3 = (3 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T ,
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p = 0.8821 and cT x2 = 972. Since the probability at x3 is less than the probability at x1, we

do not accept x3.

Pattern move

Step 1: Let x4 = 2x1 − x0. Then x4 = (4 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T .

Step 2: Start the exploratory moves from x4. First check

x5 = (5 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T , which is not in D because cT x5 = 1007 > 1000.

Then try x6 = x4 = (4 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T . At x6, p = 0.9057 and

cT x6 = 997 < 1000. Also the probability at x6 is the greatest one in all the tested feasible

points. Repeat the procedure from x6, finally the procedure stops at x6. So the optimal

solution to problem (34) is

x = (4 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7)T ,

and the optimal value is p = 0.9057 and the cost is $997K.

4.2 A stochastic network design problem

We look at the power system model presented in Prékopa (1995, Section 14.3) and formulate

an optimization problem based on the special system of four nodes.

We reproduce here the graph of the system topology as shown in Figure 2, where

x1, x2, x3, x4 are the power generating capacities and ξ1, ξ2, ξ3, ξ4 the local demands corre-

sponding to the nodes 1, 2, 3, 4, respectively. The values y2, y3, y4 are transmission capacities.

The differences ξi − xi, i = 1, 2, 3, 4 are called network demands.

We want to find minimum cost optimal generating capacities subject to the condition

that all demands can be satisfied simultaneously on at least p probability level together with

some lower and upper bounds on the xi’s.

u uu

u

�
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�
�

�
�

�
��

Q
Q

Q
Q

Q
Q

Q
QQ

ξ2 − x2 ξ3 − x3 ξ4 − x4

ξ1 − x1

y2 y3 y4

Figure 2. A power system with four nodes

A system of linear inequalities in the variables ξ1, ξ2, ξ3, ξ4, x1, x2, x3, x4, y1, y2, y3 provides

us with a necessary and sufficient condition that all demands can be satisfied, given the
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realized values of the random variables (see Prékopa, 1995, p.455). If we remove those which

are consequences of others, then we obtain the following inequalities:

ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ4 − x4 ≤ 0

ξ1 − x1 ≤ y2 + y3 + y4

ξ2 − x2 ≤ y2

ξ3 − x3 ≤ y3

ξ4 − x4 ≤ y4

ξ1 − x1 + ξ2 − x2 ≤ y3 + y4 (36)

ξ1 − x1 + +ξ3 − x3 ≤ y2 + y4

ξ1 − x1 + ξ4 − x4 ≤ y2 + y3

ξ1 − x1 + ξ2 − x2 + ξ3 − x3 ≤ y4

ξ1 − x1 + ξ2 − x2 + ξ4 − x4 ≤ y3

ξ1 − x1 + ξ3 − x3 + ξ4 − x4 ≤ y2

Assume that the random variables ξ1, ξ2, ξ3, ξ4 are independent and ξi has parameters

(ni, pi), i = 1, 2, 3, 4. We rewrite (36) in the following form:

x1 + x2 + x3 + x4 ≥ ξ1 + ξ2 + ξ3 + ξ4

x1 + y2 + y3 + y4 ≥ ξ1

x2 + y2 ≥ ξ2

x3 + y3 ≥ ξ3

x4 + y4 ≥ ξ4

x1 + x2 + y3 + y4 ≥ ξ1 + ξ2 (37)

x1 + x3 + y2 + y4 ≥ ξ1 + ξ3

x1 + x4 + y2 + y3 ≥ ξ1 + ξ4

x1 + x2 + x3 + y4 ≥ ξ1 + ξ2 + ξ3

x1 + x2 + x4 + y3 ≥ ξ1 + ξ2 + ξ4

x1 + x3 + x4 + y2 ≥ ξ1 + ξ3 + ξ4

a more compact form of (37) is:

T1x + T2y = Tz ≥ η.
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Our optimization problem is the following:

min cT z
subject to P(Tz ≥ η) ≥ p

z
(l)
i ≤ zi ≤ z

(u)
i .

(38)

Suppose the demands at the nodes x1, x2, x3 and x4 in Figure 2 have binomial distri-

butions with parameters (45, q), (15, q), (25, q) and (30, q), respectively, where p ∈ (0, 1).

The unit costs for nodes are c1 = 15, c2 = 8, c3 = 12, c4 = 13, and the unit costs for links

y1, y2, y3 are 11, 12, 13, respectively. Let us impose the following bounds on the decision

variable: 0 < x1 ≤ 45, 0 < x2 ≤ 15, 0 < x3 ≤ 25 0 < x4 ≤ 30, 0 < y1 ≤ 10, 0 < y2 ≤ 10 and

0 < y3 ≤ 10. From Theorem 3.1, instead of solving (38), we solve the following problem:

min 15x1 + 8x2 + 12x3 + 13x4 + 11y1 + 12y2 + 13y3

subject to ln(1− betainc(q, x1 + x2 + x3 + x4 + 1, 115− x1 − x2 − x3 − x4))+
ln(1− betainc(q, x1 + y1 + y2 + y3 + 1, 75− x1 − y1 − y2 − y3))+
ln(1− betainc(q, x2 + y1 + 1, 25− x2 − y1))+
ln(1− betainc(q, x3 + y2 + 1, 35− x3 − y2))+
ln(1− betainc(q, x4 + y3 + 1, 40− x4 − y3))+
ln(1− betainc(q, x1 + x2 + y2 + y3 + 1, 80− x1 − x2 − y2 − y3))+
ln(1− betainc(q, x1 + x3 + y1 + y3 + 1, 90− x1 − x3 − y1 − y3))+
ln(1− betainc(q, x1 + x4 + y1 + y2 + 1, 95− x1 − x4 − y1 − y2))+
ln(1− betainc(q, x1 + x2 + x3 + y3 + 1, 95− x1 − x2 − x3 − y3))+
ln(1− betainc(q, x1 + x2 + x4 + y2 + 1, 100− x1 − x2 − x4 − y2))+
ln(1− betainc(q, x1 + x3 + x4 + y1 + 1, 110− x1 − x3 − x4 − y1)) ≥ ln p
0 < x1 ≤ 45, 0 < x2 ≤ 15
0 < x3 ≤ 25, 0 < x4 ≤ 30
0 < y1, y2, y3 ≤ 10,

where betainc is the incomplete beta function. For different p and q, the optimal solutions

and costs are listed in the following table.
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(p, q) x y cost
(0.95, 0.80) 37.9611 14.5608 22.7719 26.9669 9.8140 10.000 10.000 1.6677e+003
(0.90, 0.80) 37.7537 14.4422 22.4671 26.6126 9.6601 9.8660 9.8145 1.6497e+003
(0.85, 0.80) 37.6570 14.3641 22.2777 26.3844 9.5544 9.7371 9.6664 1.6377e+003
(0.90, 0.75) 35.6027 13.9996 21.4929 25.3966 9.3855 9.5897 9.5288 1.5763e+003
(0.85, 0.75) 35.5101 13.9013 21.2772 25.1391 9.2583 9.4390 9.3580 1.5628e+003
(0.95, 0.70) 33.5815 13.6740 20.8184 24.5413 9.2816 9.5198 9.4804 1.5216e+003
(0.90, 0.70) 33.4251 13.4952 20.4603 24.1194 9.0659 9.2672 9.1985 1.4989e+003
(0.85, 0.70) 33.3368 13.3803 20.2229 23.8383 8.9209 9.0986 9.0090 1.4841e+003
(0.95, 0.65) 31.3732 13.1414 19.7653 23.2437 8.9485 9.1828 9.1376 1.4425e+003
(0.90, 0.65) 31.2254 12.9393 19.3791 22.7914 8.7087 8.9060 8.8309 1.4182e+003
(0.85, 0.65) 31.1419 12.8104 19.1241 22.4913 8.5491 8.7225 8.6260 1.4023e+003
(0.95, 0.60) 29.1448 12.5595 18.6638 21.8950 8.5784 8.8077 8.7573 1.3601e+003
(0.90, 0.60) 29.0063 12.3380 18.2547 21.4185 8.3187 8.5108 8.4301 1.3345e+003
(0.85, 0.60) 28.9279 12.1973 17.9856 21.1035 8.1470 8.3151 8.2128 1.3178e+003
(0.95, 0.55) 26.8978 11.9331 17.5177 20.4994 8.1745 8.3972 8.3425 1.2748e+003
(0.90, 0.55) 26.7692 11.6951 17.0908 20.0044 7.8984 8.0842 7.9992 1.2481e+003
(0.85, 0.55) 26.6962 11.5447 16.8109 19.6782 7.7171 7.8787 7.7720 1.2308e+003
(0.95, 0.50) 24.6332 11.2639 16.3290 19.0591 7.7385 7.9532 7.8951 1.1865e+003
(0.90, 0.50) 24.5150 11.0127 15.8891 18.5510 7.4495 7.6277 7.5392 1.1591e+003
(0.85, 0.50) 24.4479 10.8544 15.6015 18.2171 7.2604 7.4148 7.3047 1.1414e+003

Table 1. Computing result for different (p, q).

5 Conclusion

We have presented efficient numerical solution techniques for probabilistic constrained stochas-

tic programming problems with discrete random variables on the right hand sides. We have

assumed that the r.h.s. random variables are partial sums of independent ones where all

of them are either Poisson or binomial or geometric with arbitrary parameters. The proba-

bility that a joint constraint of one of these types is satisfied is shown to be bounded from

below by the product of the probabilities of the individual constraints. The probabilistic

constraint is imposed on the lower bound. Then smooth logconcave c.d.f’s are fitted to the

univariate discrete c.d.f’s and the continuous problem is solved numerically. A search for the

discrete optimal solution, around the continuous one, completes the procedure. Applications

to vehicle routing and network design are presented. The former problem is taken from

the literature, where a solution technique to it is also offered. Our method turns out to be

significantly faster.
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[9] A.Prékopa, Dual method for a one-stage stochastic programming problem with random
rhs obeying a discrete probability distribution, Z. Operations Research, 34 (1990), 441–
461.
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