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RRR 31-99, October, 1999

aRUTCOR, Rutgers University, Piscataway, NJ 08854-8003, USA,
darina@rutcor.rutgers.edu.

bRUTCOR, Rutgers University, Piscataway, NJ 08854-8003, USA,
prekopa@rutcor.rutgers.edu.

cRUTCOR, Rutgers University, Piscataway, NJ 08854-8003, USA,
rusz@rutcor.rutgers.edu.



Rutcor Research Report

RRR 31-99, October, 1999

Bounds for Probabilistic Integer

Programming Problems

Darinka Dentcheva András Prékopa Andrzej Ruszczyński

Abstract. We consider stochastic integer programming problems with probabilistic
constraints. The concept of a p-efficient point of a probability distribution is used
to derive various equivalent problem formulations. Next we introduce new methods
for constructing lower and upper bounds for probabilistically constrained integer
programs. We also show how limited information about the distribution can be
used to construct such bounds. The concepts and methods are illustrated on an
example of a vehicle routing problem.
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1 Introduction

Uncertainty is inherent in many applied discrete optimization problems. Uncertain demand
occurs in network design problems, vehicle routing, scheduling, lot sizing, etc. If in the
resulting integer program

min cT x
subject to Tx ≥ ξ,

Ax ≥ b,
x ≥ 0, x - integer,

the right hand side vector ξ is random, it is reasonable to require that Tx ≥ ξ shall hold at
least with some prescribed probability p ∈ (0, 1), rather than for all possible realizations of
the right hand side. This leads to the following probabilistically constrained integer program:

min cT x
subject to IP{Tx ≥ ξ} ≥ p,

Ax ≥ b,
x ≥ 0, x - integer,

(1)

where the symbol IP denotes probability.

We assume throughout this paper that the matrix T is integer. In this case Tx is integer
for all integer x, so there is no need to consider other random right hand side vectors than
integer-valued. In fact, replacing in the constraint IP{Tx ≥ η} the random vector η by its
roundup ξ = �η� strengthens the inequality without cutting off integer solutions. Therefore,
with no loss of generality, we assume that ξ in (1) is integer.

Linear programming models with probabilistic constraints have a long history [3, 8, 11,
12, 16]. Most of the research concentrated on the linear programming case with ξ having a
continuous probability distribution. A few papers handle the case of a discrete distribution
[14, 19, 21, 18]. The case of integer programs with probabilistic constraints has not attracted
much attention.

In section 2 we introduce the disjunctive formulation of (1) and we review its properties.
In section 3 we propose a new special method, called the cone generation method, for gen-
erating lower bounds of probabilistically constrained problems. In Section 4 we consider the
case of limited information about the distribution function available in form of low dimen-
sional marginals. Section 5 is devoted to upper bounds. Finally, in section 6 we present a
simple illustrating example.

We assume that in the problems above A is an m × n matrix, T is an s × n integer
matrix; c, x ∈ IRn, b ∈ IRm and ξ is a random s-dimensional integer vector. We use ZZ and
ZZ+ to denote the set of integers and nonnegative integers, respectively. The inequality ‘≥’
for vectors is always understood coordinate-wise.



Page 2 RRR 31-99

2 Disjunctive Formulation

Let us define the sets:

D = {x ∈ ZZn
+ : Ax ≥ b} (2)

and

Zp = {y ∈ ZZs : IP (ξ ≤ y) ≥ p}. (3)

Clearly, problem (1) can be compactly rewritten as

min cTx
subject to Tx ∈ Zp,

x ∈ D.
(4)

Let F (·) be the probability distribution function of ξ, F (z) = IP{ξ ≤ z}, and let Fi(·)
be the marginal probability distribution function of the ith component ξi, that is, Fi(zi) =
IP{ξi ≤ zi}.

We shall use the concept of p-efficient points, introduced in [14].

Definition 2.1 Let p ∈ [0, 1]. A point v ∈ ZZs is called a p-efficient point of the probability
distribution function F , if F (v) ≥ p and there is no y ≤ v, y �= v such that F (y) ≥ p.

Theorem 2.2 For each p ∈ (0, 1) the set of p-efficient points of F is nonempty and finite.

Proof. For a p-efficient point v we have

p ≤ F (v) = IP{ξ ≤ v} ≤ IP{ξi ≤ vi} = Fi(vi),

Obviously, for a scalar random variable ξi there is exactly one p-efficient point: the smallest
li such that Fi(li) ≥ p. Thus all p-efficient points satisfy the inequality v ≥ l = (l1, . . . , ls).
Our result follows now from Dickson’s Lemma [2, Cor. 4.48]. �

Let p ∈ (0, 1) and let vj, j ∈ J , be the finite set of all p-efficient points of ξ. Defining the
cones

Kj = vj + IRs
+, j ∈ J,

we can equivalently express the set (3) as Zp =
⋃

j∈J Kj . Thus, we obtain (for 0 < p < 1)
the following disjunctive formulation of (4):

min cTx
subject to Tx ∈

⋃
j∈J Kj,

x ∈ D.
(5)

Its main advantage is an insight into the nature of the non-convexity of the feasible set.
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A straightforward way to solve (1) is to enumerate all p-efficient points vj, j ∈ J , and to
process all problems of form

min cTx
subject to Tx ≥ vj,

x ∈ D.
(6)

Simple bounding–pruning techniques can be used to avoid solving all of them.
For multi-dimensional random vectors ξ the number of p-efficient points can be very

large and their straightforward enumeration – very difficult. A better approach would be,
therefore, to avoid the complete enumeration and to generate only promising p-efficient
points. We shall discuss this issue in the next section.

3 Convexification and the Cone Generation Method

Let us convexify the disjunctive formulation (4). We obtain the relaxed problem

min cT x (7)

Ax ≥ b, (8)

Tx ≥
∑
j∈J

λjv
j, (9)

∑
j∈J

λj = 1, (10)

x ≥ 0, λ ≥ 0. (11)

Obviously, the optimal value of this problem provides a lower bound for the optimal value
of (4). We should not forget, though, that the set of sll p-efficient points is not known.

For the solution of (7)–(11) we shall develop a special method, which separates the
generation of p-efficient points and the solution of the approximation of the original problem
using these points. It is related to column generation methods (see, e.g., [1, 4]).

The Cone Generation Method

Step 0: Select a p-efficient point v0. Set J0 = {0}, k = 0.

Step 1: Solve the master problem

min cT x (12)

Ax ≥ b, (13)

Tx ≥
∑
j∈Jk

λjv
j, (14)

∑
j∈Jk

λj = 1, (15)

x ≥ 0, λ ≥ 0. (16)
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Let uk be the vector of Lagrange multipliers associated with the constraint (14).

Step 2: Calculate

d(uk) = min
j∈Jk

(uk)Tvj.

Step 3: Find a p-efficient solution vk+1 of the subproblem:

min
z∈Zp

(uk)Tz

and let

d(uk) = (vk+1)Tuk.

Step 4: If d(uk) = d(uk) then stop; otherwise set Jk+1 = Jk ∪ {k + 1}, increase k by one
and go to Step 1.

Few comments are in order. The first p-efficient point v0 can be found by solving the
subproblem of Step 3 for an arbitrary u > 0. All master problems will be solvable, if the
first one is solvable, i.e., if the set {x ∈ IRn

+ : Ax ≥ b, Tx ≥ v0} is nonempty.

Let us now focus our attention on solving the auxiliary problem of Step 3:

min{uTz | F (z) ≥ p}, (17)

where F (·) denotes the distribution function of ξ.

Assume that the components ξi, i = 1, . . . , s, are independent. Since

ln(F (z)) =
s∑

i=1

ln(Fi(zi)),

we obtain a nonlinear knapsack problem:

min
s∑

i=1

uizi

s∑
i=1

ln(Fi(zi)) ≥ ln p,

zi ≥ li, zi ∈ ZZ, i = 1, . . . , s.

If bi is a known upper bound on zi, i = 1, . . . , s, we can transform the above problem to a
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0–1 linear programming problem:

min
s∑

i=1

bi∑
j=li

juiyij

s∑
i=1

bi∑
j=li

ln(Fi(j))yij ≥ ln p,

bi∑
j=li

yij = 1, i = 1, . . . , s,

yij ∈ {0, 1}, i = 1, . . . , s, j = li, . . . , ui.

(18)

Obviously, zi =
∑bi

j=li
jyij.

If the conponents of ξ are dependent, bounding techniques from the next section may be
employed.

4 Bounds via binomial moments

If the components of ξ are dependent, subproblem (17) may be difficult to solve exactly. Still,
some bounds on its optimal solution may prove useful. We shall develop bounds using only
partial information on the distribution function of ξ in the form of the marginal distributions:

Fi1...ik(zi1, . . . , zik) = IP{ξi1 ≤ zi1, . . . ξik ≤ zik}, 1 ≤ i1 < . . . < ik ≤ s.

Since for each marginal distribution one has Fi1...ik(zi1, . . . , zik) ≥ F (z) the following relax-
ation of Zp (defined by (3)) can be obtained.

Fact 4.1 For each z ∈ Zp and for every 1 ≤ i1 < . . . < ik ≤ s the following inequality must
hold:

Fi1...ik(zi1, . . . , zik) ≥ p.

We shall base further developments on the following result of [13].

Theorem 4.2 For any distributon function F : IRs → [0, 1] and any 1 ≤ k ≤ s, at every
z ∈ IRs the optimal value of the following linear programming problem

max vs

v0 + v1 + v2 + v3 + · · · + vs = 1

v1 + 2v2 + 3v3 + · · · + svs =
∑

1≤i≤s

Fi(zi)

v2 +
(
3
2

)
v3 + · · · +

(
s
2

)
vs =

∑
1≤i1<i2≤s

Fi1i2(zi1, zi2)

...

vk +
(

k+1
k

)
vk+1 + · · · +

(
s
k

)
vs =

∑
1≤i1<...<ik≤s

Fi1...ik(zi1, . . . , zik)

v0 ≥ 0, v1 ≥ 0, . . . , vs ≥ 0.

(19)
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provides an upper bound for F (z1, . . . , zs).

We can use this result to bound our auxiliary problem (17).

Proposition 4.3 Let ξ = (ξ1, . . . , ξs) be an integer random vector and let Fi1,... ,ik denote
its marginal distribution functions. Then for every p ∈ (0, 1) and for every 1 ≤ k ≤ s the
optimal value of the problem

min uTz
v0 + v1 + v2 + v3 + · · · + vs = 1

v1 + 2v2 + 3v3 + · · · + svs =
∑

1≤i≤s

Fi(zi)

v2 +
(
3
2

)
v3 + · · · +

(
s
2

)
vs =

∑
1≤i1<i2≤s

Fi1i2(zi1, zi2)

...

vk +
(

k+1
k

)
vk+1 + · · · +

(
s
k

)
vs =

∑
1≤i1<...<ik≤s

Fi1...ik(zi1, . . . , zik)

v0 ≥ 0, v1 ≥ 0, , . . . , vs−1 ≥ 0, vs ≥ p, z1 ≥ l1, z2 ≥ l2, . . . , zs ≥ ls,
z ∈ ZZs

(20)

provides a lower bound on the optimal value of (17).

Proof. If z ∈ Zp, that is, F (z) ≥ p, then the optimal value of (19) satisfies vs ≥ p. Thus
z and the solution v of (19) are feasible for (20). Since the objective functions of (17) and
(20) are the same, the result follows. �

Problem (20) is a nonlinear mixed-integer problem. Its advantage over the original for-
mulation is that it uses only marginal distribution functions.

5 Primal feasible solution and upper bounds

Let us consider the optimal solution xlow of the convex hull problem (7)–(11) and the corre-
sponding multipliers λj . Define J low = {j ∈ J : λj > 0}.

To generate a feasible point we consider the restricted disjunctive formulation:

min cTx
subject to Tx ∈

⋃
j∈J low Kj ,

x ∈ D.
(21)

It can be solved by simple enumeration of all cases for j ∈ J low:

min cTx
subject to Tx ≥ vj,

x ∈ D.
(22)
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An alternative strategy would be to solve the corresponding upper bounding problem
(22) every time a new p-efficient point is generated. If Uj denotes the optimal value of (22),
the upper bound at iteration k is

Ūk = min
0≤j≤k

Uj . (23)

This is computationally efficient and provides valid upper bounds at every iteration of the
method.

6 Numerical Illustration

We have a directed graph with node set N and arc set E. A set of cyclic routes Π, understood
as sequences of nodes connected with arcs and such that the last node of the sequence is the
same as the first one, has been selected. For each arc e ∈ E we denote by R(e) the set of
routes containing e, and by c(π) the unit cost on the route.

A random integer demand ξ(e) is associated with each arc e ∈ E. Our objective is to find
non-negative integers x(π), π ∈ Π, such that

IP
{ ∑

π∈R(e)

x(π) ≥ ξ(e), e ∈ E
}
≥ p,

and the cost

∑
pi∈Π

c(π)x(π)

is minimized.

As an illustration, let us consider the graph shown in Figure 1. We assume that the
demands ξ(e) associated with the arcs are independent Poisson random variables with the
expected values given in Table 1.
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Figure 1: The graph of the example problem.

Arc Expected Demand
AB 2
AC 3
AE 2
BA 1
BC 1
BD 2
CA 2
CB 1
CD 4
DB 2
DC 4
DE 3
EA 2
ED 3

Table 1: Expected demands
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The set of routes Π is given by the following arc–route incidence matrix T :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AB 1 1 1 1 1 1
AC 1 1 1 1
AE 1 1 1 1 1
BA 1 1 1 1 1 1
BC 1 1
BD 1 1 1
CA 1 1 1 1
CB 1 1
CD 1 1 1
DB 1 1 1
DC 1 1 1
DE 1 1 1 1
EA 1 1 1 1 1
ED 1 1 1 1

For example, route 7 has the form ACDBA.
The cost coefficients associated with the routes are given by

c = (10 15 18 15 32 32 57 57 60 60 61 61 75 75 44).

Finally, the probability level is p = 0.9.
This problem has been solved by the cone generation method, as described in section 3.

The master problem (12)–(16) was solved by the simplex method. The subproblem of Step 3
was formulated as a binary knapsack problem (18) and solved by 0–1 linear programming
methods. The entire algorithm has been implemented in AMPL [7].

To generate the first p-efficient point we solved the subproblem of Step 3 with u0 =
(1 1 . . . 1). This gave

v0 = (6 7 6 4 5 6 6 4 9 4 7 7 5 7).

The method terminated after 27 iterations satisfying the stopping criterion of Step 4, with
the objective value of the convexified problem equal to 1145.075. The solution was fractional,
so this value could be considered only as a lower bound.

The upper bound (obtained already at the 14th iteration) is equal to 1152 and corresponds
to the solution

x̂ = (0 3 6 0 0 0 0 0 0 0 5 4 3 3 0),

that is, 3 units on the route ACA, 6 on ABDBA, 5 on ACDEA , 4 on AEDCA and 3 on
ABCDEA and AEDEA. The revelant p-efficient point is:

v14 = (7 8 7 5 3 6 6 3 8 5 7 8 7 7).

The values of the objective fuctions of the master problem and the subproblem at successive
iterations are illustrated in Figure 6. We also include the upper bounds (23).
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Figure 2: Objective values of the master and the subproblem in the cone generation method
applied to the vehicle routing example. ‘Upper Bound’ is the value of the simple bound (23).
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[2] T. Becker and V. Weispfenning, Gröbner Bases, Springer-Verlag, New York, NY, 1993.

[3] A. Charnes, W.W.Cooper and G.H. Symonds, Cost Horizons and Certainty Equivalents: An
Approach to Stochastic Programming of Heating Oil, Management Science 4 (1958) 235–263.
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