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Abstract.Prékopa (1973, 1995) has proved that if T is an r×n random matrix with
independent, normally distributed rows such that their covariance matrices are con-
stant multiples of each other, then the function h(x) = P (Tx ≥ b) is quasi-concave
in Rn, where b is a constant vector. We prove that, under same condition, the
converse is also true, a special quasi-concavity of h(x) implies the above-mentioned
property of the covariance matrices.
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1 Introduction

In the theory of programming under probabilistic constraints an important problem is the
convexity of the set

D = {x|h(x) ≥ p} ,

where
h(x) = P (Tx ≥ ξ) ,

p is a fixed probability (0 < p < 1), T a random matrix and ξ a random vector.
For constant T and continuously distributed random ξ with logconcave p.d.f. Prékopa

(1971, 1973) has proved that h(x) is also a logconcave function. This fact clearly implies the
convexity of the set D.

For the case of a random technology matrix a few convexity theorems are also known.
One of them is the following.

Theorem 1 Let ξ be constant and

T =




T1
...
Tr




a random matrix with independent, normally distributed rows such that their covariance
matrices are constant multiples of each other. Then h(x) is a quasi-concave function in Rn.

The quasi-concavity of h(x) implies the convexity of the set D. Similar theorem holds if
the columns of T satisfy the condition that their covariance matrices are constant multiples
of each other. The right hand side vector ξ may also be random. In this case we assume
that it is independent of T and its covariance matrix is a constant multiple of any of the
other covariance matrices.

Recently Henrion (2006) proved the convexity of the set D for independent T1, ..., Tr

under same condition.
The purpose of the paper is to show that under same conditions the converse of Theorem

1 is also true.
While the sum of concave functions is also concave, the same is not true, in general, for

quasi-concave functions. However, we can define a special class of quasi-concave functions
such that the sums and products, within the class, are also quasi-concave.
Definition. Let h1(x), ..., hr(x) be quasi-concave functions in a convex set E. We say that
they are uniformly quasi-concave if for any x, y ∈ E either

min(hi(x), hi(y)) = hi(x) , i = 1, ..., r

or
min(hi(x), hi(y)) = hi(y) , i = 1, ..., r .

Obviously, the sum of uniformly quasi-concave functions, on the same set, is also quasi-
concave and if the functions are also nonnegative, then the same holds for their product as
well. The latter property is used in the next section, where we prove our main result.
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2 The Main Theorem

First let r = 1 and consider the function

h(x) = P (Tx ≤ b) ,

where T is a random vector and b is a constant. The following lemma was first proved by
Kataoka and van de Panne and Popp (1963). See also Prékopa (1965).

Lemma. If T has normal distribution, then the function h(x) is quasi-concave on the set
{
x | P (Tx ≤ b) ≥ 1

2

}
.

Proof. We prove the equivalent statement: for any p ≥ 1
2

the set

{x | P (Tx ≤ b) ≥ p } (2.1)

is convex.
Let Φ designate the c.d.f. of the N(0, 1)-distribution and let µ = E(T ). For any x that

satisfies xT Cx > 0,

h(x) = P (Tx ≤ b)

= P

(
(T − µ)x√

xT Cx
≤ b− µx√

xT Cx

)

= Φ

(
b− µx√
xT Cx

)
≥ p

is equivalent to
µT x + Φ−1(p)

√
xT Cx ≤ b . (2.2)

Since Φ−1(p) ≥ 0 and
√

xT Cx is a convex function in Rn, it follows that the inequality (2.2)
determines a convex set. 2

Let r be an arbitrary positive integer and introduce the function:

hi(x) = P (Tix ≤ bi) , i = 1, ..., r .

If µi = E(Ti) = 0 , i = 1, ..., r and p ≥ 1/2, then the inequality

P (Tix ≤ bi) ≥ P (Tx ≤ b) ≥ p

shows that we have to assume bi ≥ 0 , i = 1, ..., r, otherwise the set (2.1) is empty. So, let
bi ≥ 0 , i = 1, ..., r. We also see that, under the same condition,

E =
r⋂

i=1

{x | P (Tix ≤ bi) ≥ p} (2.3)
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=
r⋂

i=1

{
x |

√
xT Cx ≤ bi

Φ−1(p)

}
.

Each function hi is quasi-concave on the set (2.3).

Theorem 2 Let bi > 0 , i = 1, ..., r and E(Ti) = 0 , i = 1, ..., r. If the functions h1, ...hr

are uniformly quasi-concave on the set E, defined by (2.3), and Ci 6= 0 , i = 1, ..., r, then
each Ci is a constant multiple of a covariance matrix C.

Proof. We already know that the functions h1, ..., hr are all quasi-concave on the set (2.3)
and that

hi(x) = Φ

(
bi√

xT Cx

)
, i = 1, ..., r .

It is enough to show that if we take two functions hi, hj, i 6= j, then the corresponding
covariance matrices Ci, Cj are constant multiples of each other. Let h1 and h2 be the two
functions.

Since h1 and h2 are uniformly quasi-concave on E, it follows that for any two vectors
y, z ∈ E, the inequality

Φ


 b1√

yT C1y


 ≥ Φ

(
b1√

zT C1z

)

implies that

Φ


 b2√

yT C2y


 ≥ Φ

(
b2√

zT C2z

)
.

An equivalent form of the statement is that the inequality

zT C1z ≥ yT C1y (2.4)

implies that
zT C2z ≥ yT C2y . (2.5)

From linear algebra we know that for any two quadratic forms, in the same variables, there
exists a basis such that both quadratic forms are sums of squares if the variables are expressed
in that basis. In our case this means that there exist linearly independent vectors a1, ..., an

such that the transformation

x = a1u1 + ... + anun = Au ,

applied to the quadratic forms xT C1x and xT C2x, takes them to the forms

xT C1x = uT AT C1Au = λ1u
2
1 + ... + λnu2

n

xT C2x = uT AT C2Au = γ1u
2
1 + ... + γnu

2
n ,

where λi, γi ≥ 0 , i = 1, ..., n and λ1 + ... + λn > 0 , γ1 + ... + γn > 0.
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The transformation x = Au transforms the set E into a set H that is the intersection of
ellipsoids with centers in the origin and main axes lying in the coordinate axes. If u = A−1y
and v = A−1z, then the statement that (2.4) implies (2.5) can be formulated in such a way
that if u, v ∈ H, then

λ1v
2
1 + ... + λnv2

n ≥ λ1u
2
1 + ... + λnu2

n

implies that
γ1v

2
1 + ... + γnv

2
n ≥ γ1u

2
1 + ... + γnu2

n .

This, in turn, is the same as the statement:

λ1(v
2
1 − u2

1) + ... + λn(v2
n − u2

n) ≥ 0

implies that
γ1(v

2
1 − u2

1) + ... + γn(v2
n − u2

n) ≥ 0 .

Let us introduce the notation wi = v2
i − u2

i , i = 1, ..., n. Then a further form of the
statement is:

λ1w1 + ... + λnwn ≥ 0 (2.6)

implies that
γ1w1 + ... + γnwn ≥ 0 . (2.7)

The above implication is true for any w = (w1, ..., wn) in an open convex set around the
origin in Rn. It follows that it is also true without any limitation for the variables w1, ..., wn.

By Farkas’ theorem there exists a nonnegative number α such that

γ = (γ1, ..., γn) = α(λ1, ..., λn) = αλ . (2.8)

Since γ 6= 0, λ 6= 0, the number α must be positive. The relation can be written in matrix
form: 


γ1 0

. . .

0 γn


 = α




λ1 0
. . .

0 λn


 . (2.9)

If we take into account that



λ1 0
. . .

0 λn


 = AT C1A




γ1 0
. . .

0 γn


 = AT C2A ,

and combine it with (2.9), we can derive the equation

AT C2A = α AT C1A .
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Since A is a nonsingular matrix, we conclude that

C2 = α C1 .

This proves the theorem. 2
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