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Abstract. The term ’Hungarian inventory control model’ refers to a model system
initiated by Prékopa (1965) and Ziermann (1964), where the ordered amount is
delivered in an interval, rather than at a designated time epoch according to some
stochastic process and consumption takes place in the same interval according to
some other stochastic process. The problem is to determine the minimum level of
initial safety stock that ensures continuous consumption, without disruption, in the
whole time interval with a prescribed high probability. The models in this system
have been primarily of static (single-stage) type. Recently Prékopa (2004) has shown
that the interval type delivery and consumption processes can be combined with
classical inventory models and also formulated a dynamic type (two-stage) model
with such interval type processes and probabilistic constraints. In this paper we
modify the assumptions of those models and formulate simpler, numerically more
tractable models. We also discuss the computational aspects of our problems and
present numerical examples.
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1 Introduction

The term ’Hungarian inventory control model’ refers to a model system, where both the
deliveries of the ordered amounts and consumption take place in an interval according to some
random processes, rather than at one time epoch. The problem is to determine the minimum
level of initial safety stock that ensures continuous consumption, without disruption, in the
whole time interval with a prescribed high probability.

The Hungarian inventory control model was initiated by Prékopa (1965) and Ziermann
(1964). The original model is of a static and single item type, where the delivered and
consumed amounts are assumed to be the same and the mathematical tool used to solve the
problem comes from order statistics. In Prékopa (1965) already more general models have
been presented and some theorems proved in Prékopa (1973a) have been used to numerically
solve the problems. From the later literature in connection with the Hungarian inventory
control models we mention the papers by Prékopa and Kelle (1978), Kelle (1984) and the
summarizing paper of Prékopa (1980).

Recently Prékopa (2004) has shown that interval type delivery and consumption pro-
cesses can be combined with classical inventory models. The ’order up to S’ model is taken
as an example. He also presented dynamic type (two-stage) inventory models using interval
type delivery and consumption stochastic processes which appear in the Hungarian models.
However, the solutions of the obtained nonlinear programming problems are computationally
intensive. They involve the solutions of nonlinear decomposition type problems, along with
the calculation of the multivariate Dirichlet distribution function and gradient values. A
normal approximation to the Dirichlet distribution alleviates the numerical difficulties but
still further research is needed to come up with efficient numerical solutions for the prob-
lems. Those models are hybrid type stochastic programming models, i.e. both probabilistic
constraints and penalties for unsatisfied demands are used.

In the present paper we keep some of the main characteristics of the new models in
Prékopa (2004) but introduce simpler, numerically more tractable formulations. We also
discuss the numerical solution methods to our problems and present numerical examples.

In Section 2 we recall some earlier results and develop mathematical tools for our model
constructions. In Section 3 we formulate a probabilistically constrained multi-item inventory
control model with interval type delivery and consumption processes. The consumption
process is assumed to be linear with random, normally distributed slope while the expectation
of total consumption minus the delivery process is approximated by a Brownian bridge. In
Section 4 a two-stage model combined with probabilistic constraints is formulated. We
assume that the consumption and delivery processes in connection with the different items
are stochastically independent. Research is underway to take stochastic dependence into
consideration. Finally, in Section 5 the computational aspects are discussed and numerical
examples are presented.
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2 Assumptions of the Proposed Model and its Approx-

imation

For the details of the original Hungarian inventory control model and some new variants of
it see Prékopa (2004). In connection with the delivery and consumption processes we make
the following assumptions:

(a) We assume that delivery takes place during an interval rather than at a single time
epoch. We also assume that the delivery process begins τ time after the order is placed
and has a duration of time T. Thus, if an order is placed at time 0 then the delivery
takes place in the interval [τ, τ + T ].

(b) Deliveries take place at discrete times the number of which is fixed and designated by
n; it can be obtained from past history.
The n delivery times are random and their joint probability distribution is the same
as that of n random points chosen independently from the interval [τ, τ +T ] according
to a uniform distribution.

(c) The delivery and consumption processes are stochastically independent.

(d) The consumption of the material is linear with random intensity c. Thus, the total
consumption in the time interval [τ, τ + T ] is cT . We assume that c is normally
distributed with mean value µ and variance σ2

c .

(e) The amount delivered in [τ, τ + T ] is equal to the expected total consumption in that

interval. Let c0
def
= E(cT ).

(f) The delivery process can be described by the following model: whenever delivery takes
place there is a minimal amount delivered equal to δ. The remaining parts of the n
delivery amounts can be described as the lengths of the subsequent intervals obtained
by choosing a random sample of size n− 1 from a population uniformly distributed in
the interval [0, c0 − nδ].

Assumptions (a), (b), (c) and (f) have already been introduced in Prékopa (1965) and
Kelle (1984) has investigated the case where (d) holds true.

Let λ = δn/c0 and let Xn(t, λ) denote the amount delivered in the time interval (τ, t)
where τ ≤ t ≤ τ +T . An amount M of safety stock ensures consumption without disruption,
in the same time interval, if and only if M +Xn(t, λ)− c(t− τ) ≥ 0 for any τ ≤ t ≤ τ +T . If
we want this to happen with probability at least 1− ε then M has to satisfy the following
probabilistic constraint:

P

(
sup

τ≤t≤τ+T
{c(t− τ)−Xn(t, λ)} ≤ M

)
≥ 1− ε, (2.1)

where 0 < ε < 1.
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Without loss of generality we may assume T = 1, therefore c0 = E(c) = µ. If T is not
equal to 1 we have to multiply the safety stock level obtained from the model by T to find
the actual safety stock level.

For the case of a constant c we have the following

Theorem 1 (Prékopa, 1973a). The probability distribution of the stochastic process
√

n

1 + (1− λ)2
(Xn(t, λ)− t) (2.2)

converges weakly to the probability distribution of the standard Brownian bridge, i.e. the
Gaussian process U(t) defined in [0, 1] having continuous sample functions with probability 1
and satisfying

E (U(t)) = 0, 0 ≤ t ≤ 1

E (U(s)U(t)) = s(1− t), 0 ≤ s ≤ t ≤ 1.

If we apply the results in Prékopa (1973a) for the stochastic process Xn(t, λ)− c0(t− τ)
then we easily obtain the following relations:

E(Xn(t, λ)− c0(t− τ)) = 0, τ ≤ t ≤ τ + 1

E [(Xn(s, λ)− c0(t− τ))(Xn(t, λ)− c0(t− τ))] = κ2c2
0(s−τ)(τ+1−t), τ ≤ s ≤ t ≤ τ+1,

where

κ2 =
1

n

(
1 +

n− 1

n + 1
(1− λ)2

)
.

On the other hand, Theorem 1 tells us that the stochastic process

1

c0

√
n

1 + n−1
n+1

(1− λ)2
(c0(t− τ)−Xn(t, λ)) (2.3)

converges to the standard Brownian bridge process in the interval [τ, τ + 1].
In view of the results mentioned above we approximate the stochastic process Xn(t, λ))−

c0(t− τ) defined in the interval [τ, τ + 1] by a Brownian bridge process with σ2 = κ2c2
0.

Let us introduce the notation

Y (t, λ) = c(t− τ)−Xn(t, λ) = (c0(t− τ)−Xn(t, λ)) + (c− c0)(t− τ)

Taking into account our Brownian bridge approximation, the stochastic process Y (t, λ)
can be approximated as follows:

Y (t, λ) ≈ Ỹ (t, λ)
def
= Z(t−τ, λ)c0

√
1 + n−1

n+1
(1− λ)2

n
+(c−c0)(t−τ), τ ≤ t ≤ τ +1, (2.4)
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or, introducing t̄ = (t− τ),

Y (t, λ) ≈ Ỹ (t, λ) = Ȳ (t̄, λ)
def
= Z(t̄, λ) c0

√
1 + n−1

n+1
(1− λ)2

n
+ (c− c0)t̄, 0 ≤ t̄ ≤ 1, (2.5)

where Z(t̄, λ) is a standard Brownian bridge process in the interval [0, 1]. From now on we
will be dealing with the process Ȳ (t̄, λ) rather than with Y (t, λ).

Remark 1. It is shown in Doob (1949) that if Z(t), 0 ≤ t ≤ 1, is a standard Brownian
bridge process then the process

W (t) = (t + 1)Z

(
t

t + 1

)
, t ≥ 0

is a standard Brownian motion process, i.e. a stochastic process with independent incre-
ments, E(W (t)) = 0 (t ≥ 0) and E(W (s)W (t)) = s for 0 ≤ s ≤ t. This result was used
by Doob to derive the limiting distributions of the Smirnov’s statistic. We will use it for a
similar purpose later in our paper.

3 A Stochastic Programming Type Inventory Control

Model

Here we present a stochastic programming type problem in connection with the model de-
scribed in Section 2.

Throughout this section we approximate the stochastic process Y (t, λ) by the Gaussian
process given in (2.4).

3.1 Formulation of the Objective Function

The objective function, by definition, equals the expected long term average inventory hold-
ing cost plus the expected long term average shortage cost. If we take the time averages
of the two quantities in the time interval [τ, τ + 1], we obtain the long term time aver-
ages. We assume that both the inventory holding and stockout costs are time and quantity
proportional with proportionality factors q+ and q−, respectively.

First we elaborate on the single item case. The amount ordered at time 0 will be delivered
in the time interval (τ, τ + 1) and in that interval no delivery arising from any other order
takes place. This implies that the initial safety stock M for the period [τ, τ + 1] equals the
on hand inventory at time τ .

If τ < s < τ + 1 then the on hand inventory at time s equals [M − Y (s, λ)]+ and the
shortage at time s equals [Y (s, λ)−M ]+ , where [u]+ = max {u, 0}.

The approximate cost function to be minimized is the following function of the variable
M :
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C̃(M) = q−
∫ τ+1

τ

E([Ỹ (s, λ)−M ]+) ds + q+

∫ τ+1

τ

E([M − Ỹ (s, λ)]+)ds (3.1)

Since we have the relation [u]+ − [−u]+ = u for any real u, (3.1) can be written in the
following form:

C̃(M) = q+

∫ τ+1

τ

E
(
M − Ỹ (s, λ)

)
ds + (q+ + q−)

∫ τ+1

τ

E
(
[Ỹ (s, λ)−M ]+

)
ds (3.2)

Let F̃ (y, s) designate the c.d.f. of the random variable Ỹ (s, λ). Using integration by
parts it can be shown that

E
(
[Ỹ (s, λ)−M ]+

)
=

∫ ∞

M

(1− F̃ (y, s))dy.

(3.3)

According to (2.4) and (2.5) we have the following equation:

F̃ (y, s) = P
(
Ỹ (s, λ) ≤ a

)
(3.4)

= P


Z(s̄, λ) c0

√
1 + n−1

n+1
(1− λ)2

n
+ (c− c0)s̄ ≤ a


 , s̄ = s− τ τ ≤ s ≤ τ + 1,

where Z(s̄, λ) is a standard Brownian bridge process in the interval [0, 1].
Since it is assumed that the delivery and consumption processes are stochastically inde-

pendent and c ∼ N (c0, σ
2
c ), we can obtain F̃ (y, s) as follows:

F̃ (y, s) = Φ


 y√

(s− τ)(1 + τ − s)c2
0

(1+n−1
n+1

(1−λ)2)

n
+ σ2

c (s− τ)2


 . (3.5)

Since E (c(s− τ)−Xn(s, λ)) is approximated by E

(
Z(s, λ) c0

√
1+n−1

n+1
(1−λ)2

n
+ (c− c0)(s− τ)

)
,

E[Z(s, λ)] = 0 and E(c− c0) = 0, we have the following:

E (M + Xn(s, λ)− c(s− τ)) ≈ M. (3.6)

Using (3.6) we can write the final form of the approximate cost function:

C̃(M) = q+M + (q− + q+)

∫ ∞

M

(
1−

∫ τ+1

τ

F̃ (y, s)ds

)
dy, (3.7)

where F̃ (y, s) is given by (3.5).
The cost function of the inventory control model described above has a straightforward

generalization for the case of a multi-item problem.
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Suppose that the number of items is r and let C̃j(Mj) designate the cost function (3.7)
for the jth item. Then the cost function to be minimized is

∑r
j=1 C̃j(Mj). It is a convex

function since its terms are univariate convex functions. The convexity of C̃j(Mj) follows
immediately from (3.7) if we take into account the fact that for each j

∫ τj+1

τj

F̃j(y, s)ds

is a c.d.f. in the variable y.

3.2 Probabilistic Constraint Formulation

First we consider the case of a single item and designate by M the safety stock that we want
to determine.

For a random delivery process Xn(t, λ) the safety stock must satisfy the probabilistic
constraint (2.1), therefore in order to formulate our model we have to find the corresponding
probability distribution function.

3.2.1 Maximum of a Brownian motion process

Let τa denote the first time when the Brownian motion process σB(t, λ) + µt hits the level
a > 0, where σ > 0 and µ are real constants and B(t, λ) is a standard Brownian motion
process. Then (see Bachelier, 1900, Baxter and Donsker, 1957, Takács, 1967) we have:

P (τa ≤ t) = Φ

(−a + µt

σ
√

t

)
+ e

2aµ

σ2 Φ

(−a− µt

σ
√

t

)
, (3.8)

where Φ is the c.d.f. of the standard normal distribution.

Remark 2. The event τa > t is equivalent to the event sup
0≤u≤t

σB(u) + µu < a.

3.2.2 Probability distribution function of the supremum of Ȳ for some fixed
consumption rate c

Using (2.4) and the transformation t̄ = s
s+1

we obtain the following equations (see also
Remark 1):

P ( sup
0≤t̄≤1

Ȳ (t̄, λ) ≤ a)

= P


sup

0≤s



Z(

s

s + 1
, λ) +

(c− c0)

c0

√
n

1 + n−1
n+1

(1− λ)2

s

s + 1



 ≤ a

1

c0

√
n

1 + n−1
n+1

(1− λ)2




= P


sup

0≤s





W (s, λ)

s + 1
+

(c− c0)

c0

√
n

1 + n−1
n+1

(1− λ)2

s

s + 1



 ≤ a

1

c0

√
n

1 + n−1
n+1

(1− λ)2



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= P


sup

0≤s



W (s, λ) +

1

c0

√
n

1 + n−1
n+1

(1− λ)2
(c− c0 − a)s



 ≤ a

1

c0

√
n

1 + n−1
n+1

(1− λ)2


 ,

where W (s, λ) is a Brownian motion process with s ≥ 0 and σ = 1.
Let us introduce the following notations:

d
def
= c−c0−a

c0

√
n

1+n−1
n+1

(1−λ)2
and a0

def
= a

c0

√
n

1+n−1
n+1

(1−λ)2
. Then we have

P

(
sup

0≤t̄≤1

Ȳ (t̄, λ) < a

)
= P

(
sup
0≤s

(σB(s, λ) + ds) < a0

)
, (3.9)

where B(s, λ) is the standard Brownian motion process.
According to Remark 2 and (3.9) we have

P

(
sup

0≤t̄≤1

Ȳ (t̄, λ) < a

)
= lim

s0→∞
P (τa0 > s0) = 1− lim

s0→∞
P (τa0 ≤ s0). (3.10)

By (3.8) and (3.10) we obtain

P

(
sup
0≤s

(σB(s, λ) + ds) < a0

)
= 1− lim

s0→∞

[
Φ

(−a0 + ds0

σ
√

s0

)
+ e

2a0d

σ2 Φ

(−a0 − ds0

σ
√

s0

)]
.

(3.11)

=

{
1− e

2a0d

σ2 if d < 0

0 if d ≥ 0.

3.2.3 Probability distribution function of the supremum of Ỹ for a random
consumption rate c

According to (2.5) , Remark 2 and (3.11) we have the equality

P

(
sup

τ≤t≤τ+1
Ỹ (t, λ) < a

)
=

c0+a∫

−∞


1− e

2a0

(
x−c0−a

c0

√
n

1+ n−1
n+1 (1−λ)2

)
 g(x)dx, (3.12)

where g(x) is the p.d.f. of the random variable c.
Since it is assumed that c ∼ N (c0, σ

2
c ), we further derive

c0+a∫

−∞


1− e

2a0

(
x−c0−a

c0

√
n

1+ n−1
n+1 (1−λ)2

)
 g(x)dx = Φ

(
a

σc

)
−

c0+a∫

−∞

e−K e
−


x−


2σc

2 a0
c0

√
n

1+ n−1
n+1 (1−λ)2

+c0







2

2σc2

√
2πσc

dx
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= Φ

(
a

σc

)
− e−KΦ




a− 2σ2
c

a0

c0

√
n

1+n−1
n+1

(1−λ)2

σc


 ,

where

K
def
=

2a2

c2
0

(
n

1 + n−1
n+1

(1− λ)2

)(
1− σ2

c

c2
0

(
n

1 + n−1
n+1

(1− λ)2

))
.

Finally we conclude

P

(
sup

τ≤t≤τ+1
Ỹ (t, λ) < a

)

= Φ

(
a

σc

)
− e−KΦ

(
a

σc

(
1− 2σ2

c

c2
0

(
n

1 + n−1
n+1

(1− λ)2

)))
. (3.13)

3.3 Formulation of the Multi-item Stochastic Programming Model

Let r be the number of items. We want to determine the initial (or safety) inventory levels
M (1), . . . ,M (r). Assume that the delivery and consumption processes corresponding to the
different items are independent. The constants and variables associated with item l will be
given the superscript l.

Let λ(l) = δ(l)n(l)/c
(l)
0 and designate by X

(l)
n (t, λ(l)) the amount of item l delivered in the

time interval (τ (l), t) where τ (l) ≤ t ≤ τ (l) + 1.

Let Y (l)(t, λ(l))
def
= c(l)(t − τ (l)) − X

(l)
n (t, λ(l)) and c

(l)
0

def
= E(c(l)). Similarly to (2.4) the

stochastic process Y (l)(t, λ(l)) is approximated as follows:

Y (l)(t, λ(l)) ≈ Ỹ (l)(t, λ(l))
def
= Z(t− τ (l), λ(l))c

(l)
0

√
1 + n(l)−1

n(l)+1
(1− λ(l))2

n(l)
+ (c(l) − c

(l)
0 )(t− τ (l)).

(3.14)
Let us introduce the notation

P̃l(M
(l))

def
= P

(
sup

τ (l)≤t≤τ (l)+1

Ỹ (l)(t, λ(l)) ≤ M (l)

)
.

By the use of (3.13) we obtain the formula

P̃l(M
(l)) = Φ

(
M (l)

σ
(l)
c

)
− e−K(l)

Φ

(
M (l)

σ
(l)
c

(
1− 2(σ

(l)
c )2

(c
(l)
0 )2

(
n(l)

1 + n(l)−1
n(l)+1

(1− λ(l))2

)))
, (3.15)

where

K(l) def
=

2(M (l))2

(c
(l)
0 )2

(
n(l)

1 + n(l)−1
n(l)+1

(1− λ(l))2

)(
1− (σ

(l)
c )2

(c
(l)
0 )2

(
n(l)

1 + n(l)−1
n(l)+1

(1− λ(l))2

))
.
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The approximate expected cost in connection with item l can be written as:

q−(l)

∫ τ (l)+1

τ (l)

E

([
Ỹ (l)(t, λ(l))−M (l)

]
+

)
+ q+(l)

∫ τ (l)+1

τ (l)

E

([
M (l) − Ỹ (l)(t, λ(l))

]
+

)
.

Let F̃ (l)(y, s) designate the c.d.f. of the random variable Ỹ (l)(s, λ(l)). In view of (3.5),

F̃ (l)(y, s) = Φ




y√
(s− τ (l))(1 + τ (l) − s)(c

(l)
0 )2

(
1+n(l)−1

n(l)+1
(1−λ(l))2

)

n
+ σ2

c (s− τ (l))2


 . (3.16)

The next step is to formulate the stochastic programming problem, where we have terms
similar to those in Section 3.1 and Section 3.2 (instead of a single item now we have r items)
and additional terms that are costs of storage capacities. Assume that these cost functions
are linear. Then our problem is:

min

{
r∑

l=1

[
a(l)M (l) + q−(l)

∫ τ (l)+1

τ (l)

E

([
Ỹ (l)(t, λ(l))−M (l)

]
+

)

+q+(l)

∫ τ (l)+1

τ (l)

E

([
M (l) − Ỹ (l)(t, λ(l))

]
+

)]}

subject to
(3.17)

r∏

l=1

P̃l(M
(l)) ≥ 1− ε

(M (1), . . . ,M (r)) ∈ E,

where E is some convex subset of Rr and a(l), l = 1, . . . , r are some nonnegative constants
that can be interpreted as prices of establishing unit inventory capacities.

By the use of equations (3.7) and (3.15) we obtain the following approximate problem:

min

{
r∑

l=1

[
a(l)M (l) + q+(l)M (l)

+
(
q+(l) + q−(l)

)
(∫ ∞

M(l)

(
1−

∫ τ (l)+1

τ (l)

F̃ (l)(y, s)ds

)
dy

)]}

subject to
(3.18)

r∏

l=1

[
Φ

(
M (l)

σ
(l)
c

)
− e−K(l)

Φ

(
M (l)

σ
(l)
c

(
1− 2(σ

(l)
c )2

(c
(l)
0 )2

(
n(l)

1 + n(l)−1
n(l)+1

(1− λ(l))2

)))]
≥ 1− ε

(M (1), . . . ,M (r)) ∈ E,
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where F̃ (l)(y, s) and K(l) are given by (3.16) and (3.15), respectively; c
(l)
0 and (σ

(l)
c )2 are the

mean and variance of the random consumption rate c(l) for item l, l = 1, . . . , r.

Theorem 2. For every l = 1, . . . , r the probability P̃l(M
(l)) is a logconcave point function

of M (l).

Proof. By definition

P̃l(M
(l)) = P

(
sup

τ (l)≤t≤τ (l)+1

Ỹ (l)(t, λ(l)) ≤ M (l)

)
.

The process Ỹ (l)(t, λ(l)) is assumed to have continuous sample functions (see Doob, 1953).
Hence if we take a sequence tm, m = 1, 2, . . . , dense in the interval [τ (l), τ (l) + 1], then the
following relation holds true:

P̃l(M
(l)) = lim

N→∞
P

(
c(l)(tm − τ (l))−X(l)

n (tm, λ(l)) ≤ M (l),m = 1, . . . , N
)
. (3.19)

Since the multivariate normal probability distribution function is logconcave (see Prékopa,
1995) and logconcavity is preserved while passing to the limit, the assertion follows from
(3.19).

Theorem 2 implies that the set of
(
M (1), . . . ,M (r)

)
satisfying the probabilistic con-

straints in problem (3.18) is convex. Since (in view of Section 3.1) the objective function is
also convex, it follows that (3.18) is a convex nonlinear programming problem.

4 A Two-stage Model

In this section we consider a group of r items and an inventory process that has been going
on since infinitely long time. Orders are placed at times 0,±T,±2T, . . .. If at time kT an
order is placed for item l, the ordered amount is delivered at n(l) discrete time epochs during
the time interval (kT + τ (l), (k + 1)T + τ (l)).

The demand for item l is based on a forecast of the total consumption in the time interval
(kT + τ (l), (k + 1)T + τ (l)). As in Prékopa (2004) the demand is an r-component random
vector D = (D(1), . . . , D(r)) which is assumed to be discrete with support {Du, u ∈ U} where
U is a finite set. Let pu be the probability corresponding to Du.

As in Prékopa (2004) the consumption is also assumed to be a random vector, denoted
by C = (C(1), . . . , C(r)) and we introduce the following notations:

c(l)
u = (C(l)|D(l) = D(l)

u ), u ∈ U, l = 1, . . . , r,

c
(l)
0u

def
= E(C(l)|D(l) = D(l)

u ), u ∈ U, l = 1, . . . , r.
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Unlike in Prékopa (2004) at time kT we place orders equal to the expected consumptions

for the r items. Thus in our model we have c
(l)
0u = D

(l)
u .

Let Y
(l)
u (t, λ(l))

def
= c

(l)
u (t − τ (l)) −X

(l)
n (t, λ(l)). Suppose that the safety stock of item l at

the beginning of the delivery period (τ (l), τ (l) + T ) is m(l). Then we adjust the safety stock

by an additional amount m
(l)
u to satisfy the probabilistic constraint

P

(
sup

τ (l)≤t≤τ (l)+T

Ỹ (l)
u (t, λ(l)) ≤ m(l) + m(l)

u

)
≥ 1− ε.

In the two-stage inventory control problem there are first and second stage decision
variables; we give a subscript u to each second stage variable. The first stage variables are
W (l), l = 1, . . . , r and the second stage variables are m

(l)
u , u ∈ U , l = 1, . . . , r.

In the first stage we decide the values W (l), l = 1, . . . , r which can be interpreted as storage
capacities corresponding to the r items. The s(l)(x), l = 1, . . . , r are the cost functions of
storage capacities W (l), l = 1, . . . , r and we assume that they are convex. The second stage
problem comes up after the demand values D = (D(1), . . . , D(r)), l = 1, . . . , r have been
observed. We prescribe that no disruption occurs in any of the r consumptions in the time
intervals (kT + τ (l), (k + 1)T + τ (l)), l = 1, . . . , r, with probability 1− ε. The optimal values

of the second stage variables m
(l)
u , u ∈ U , l = 1, . . . , r, which are the adjustment values of

the safety stocks to make the probabilistic constraints feasible, are determined immediately
before the time intervals (τ (l), τ (l)+T ), l = 1, . . . , r. If at time kT +τ (l) the safety stock levels

are m(l), l = 1, . . . , r the obtained new stock levels are m(l) + m
(l)
u , l = 1, . . . , r, u ∈ U . The

adjustments incur some costs; the adjustment cost function of item l is denoted by f (l)(x),
l = 1, . . . , r. We assume that these functions are convex. Thus the total adjustment cost is
r∑

l=1

f (l)(m
(l)
u ) if the observed value of D is Du. Finally, the objective function is the sum of

the costs of the capacities plus the long term average inventory holding and shortage costs
for the r items.

Even though in practice the values of the second stage variables are determined at time
kT , by solving the second stage problem the discrete nature of the random vector D allows
us to formulate both the first and second stage problems by the use of a single optimiza-
tion problem. Thus we have the following nonlinear two-stage programming problem under
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uncertainty:

min

{
r∑

l=1

(
s(l)(W (l)) +

∑
u∈U

pu

[
q+(l)m(l)

u

+
(
q+(l) + q−(l)

)
(∫ ∞

m(l)+m
(l)
u

(
1−

∫ τ (l)+1

τ (l)

F̃ (l)(y, s)ds

)
dy

)
+ f (l)(m(l)

u )

])}

subject to
(4.1)

r∏

l=1

P

(
sup

τ (l)≤t≤τ (l)+T

Ỹ (l)
u (t, λ(l)) ≤ m(l) + m(l)

u

)
≥ 1− ε, u ∈ U

m(l) + m(l)
u ≤ W (l),m(l)

u ≥ 0 u ∈ U, l = 1, . . . , r
r∑

l=1

a(l)W (l) ≤ W.

The q+(l) , q−(l) are given proportionality factors for the inventory holding and shortage
costs, respectively, while W , a(l) (l = 1, . . . , r), and ε are given positive constants. Note that
a(l), l = 1, . . . , r can be interpreted as unit sizes, whereas W is the total capacity of the
storage space.

If we rewrite the problem (4.1) by using the results obtained in Section 3 then we have:

min

{
r∑

l=1

(
s(l)(W (l)) +

∑
u∈U

pu

[
q+(l)m(l)

u

+
(
q+(l) + q−(l)

)
(∫ ∞

m(l)+m
(l)
u

(
1−

∫ τ (l)+1

τ (l)

F̃ (l)(y, s)ds

)
dy

)
+ f (l)(m(l)

u )

])}

subject to
(4.2)

r∏

l=1

[
Φ

(
m(l) + m

(l)
u

σ
(l)
cu

)

−e−K
(l)
u Φ

(
m(l) + m

(l)
u

σ
(l)
cu

(
1− 2(σ

(l)
cu )2

(c
(l)
0u)

2

(
n(l)

1 + n(l)−1
n(l)+1

(1− λ(l))2

)))]
≥ 1− ε, u ∈ U

m(l) + m(l)
u ≤ W (l),m(l)

u ≥ 0, u ∈ U, l = 1, . . . , r
r∑

l=1

a(l)W (l) ≤ W.

Here F̃ (y, s) is given by (3.16),

K(l)
u

def
=

2(m(l) + m
(l)
u )2

(c
(l)
0u)

2

(
n(l)

1 + n(l)−1
n(l)+1

(1− λ(l))2

)(
1− (σ

(l)
cu )2

(c
(l)
0u)

2

(
n(l)

1 + n(l)−1
n(l)+1

(1− λ(l))2

))
,
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c
(l)
0u and (σ

(l)
cu )2 are the mean and variance of the random consumption rate for item l, l =

1, . . . , r, if the observed value of D is Du.
The solution of problem (4.2) provides the optimal solutions of the first stage problem

and the optimal solutions of all possible second stage problems simultaneously. Similarly to
(3.18), Problem (4.2) can also be shown to be a convex nonlinear programming problem.

5 Computational Aspects

The two-stage model (4.2) is a convex nonlinear programming problem with r(|U | + 1)
variables, r|U |+ 1 linear constraints and |U | nonlinear constraints, where r is the number of
different items while U is the set of demand scenarios.

There are a number of methods available to solve this type of problem, for an overview see
Prékopa (2003). Here we have used a MATLAB implementation of a nonlinear optimization
algorithm based on the Sequential Quadratic Programming (SQP) method (Powell, 1983).
In this method a general nonlinear problem is solved by constructing a sequence of quadratic
subproblems, i.e., optimization problems with a quadratic objective function and linear con-
straints. An estimate of the Hessian of the Lagrangian is updated at each iteration using the
BFGS formula (see Shanno, 1970). A line search is performed using a merit function similar
to that proposed in Han (1977) and Powell (1978a, b). The QP subproblem is solved using
an active set strategy similar to that described in Coleman and Li (1996). To calculate the
objective function values we used a recursive adaptive Simpson quadrature technique.

For problems with a large number of items and/or scenarios large scale nonlinear opti-
mization techniques are needed; for a comprehensive list of references see Boggs et al. (1994),
Conn et al. (1994), Gould and Toint (2000).

5.1 Approximating the solution by using pLEPs

A variety of techniques, such as proximal-type algorithms (e.g. Auslender and Haddon, 1995)
and reduced gradient methods exist to solve linearly constrained convex nonlinear problems.
Using the concept of p-level efficient points (pLEPs), introduced in Prékopa (1990), we can
formulate an approximate (discretized) version of our problem in this form.

Definition 1. Let p ∈ [0, 1]. A point v ∈ Zs is called a p-level efficient point of the probability
distribution function F , if F (v) ≥ p and there is no y ≤ v,y 6= v such that F (y) ≥ p.

Consider a problem of the form

min f(x)
s.t. P (Tx ≥ ξ) ≥ p

Ax = b, x ≥ 0
(5.3)

where the random vector ξ has discrete distribution with the distribution function F .
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Let z(1), . . . , z(N) designate the p-level efficient points of the distribution function F (an
algorithm for enumerating all pLEPs is described in Prékopa, (2003)). Problem (5.3) is a
disjunctive programming problem:

min f(x)
s.t. Tx ≥ z(i) for at least one i = 1, . . . , N

Ax = b, x ≥ 0
(5.4)

Problem (5.4) is relaxed as the linearly constrained problem:

min f(x)

s.t. Tx ≥ ∑N
i λiz

(i)

Ax = b, x ≥ 0∑N
i λi = 1, λ ≥ 0

(5.5)

In order to be able to apply this approach to our model (4.2) we approximate the random

variable ζ
(l)
u

def
= sup

τ≤t≤τ+T
Ỹ

(l)
u (t, λ) by a discrete random variable ξ

(l)
u with possible values

z
(l)
u1 < z

(l)
u2 < . . . < z

(l)
uN and distribution function

F
ξ
(l)
u

(z
(l)
ui )

def
=

{
F

ζ
(l)
u

(z
(l)
ui ) for i = 1, . . . , N − 1

1 for i = N.
.

The values z
(l)
u1 , . . . , z

(l)
uN can be chosen to be equidistant on some interval [0, B

(l)
u ], where

F
ζ
(l)
u

(B
(l)
u ) ≥ 1− ε̄ for some prescribed small tolerance ε̄.

For the base case of our multi-item examples (see Section 6.2) we have found that by
setting ε̄ = 0.01 and N = 100 the above method approximates the optimal objective function
value of (4.2) within an error of 0.2% and the optimal solution within an error of 4% using
about 28 pLEPs for each scenario.

However, for high-dimensional random vectors ξ the number of p-efficient points can
be very large and enumerating all of them does not provide us with an efficient method.
Therefore if we have a large number of different items and/or scenarios a different approach
not requiring the enumeration of all pLEPs, similar to the cone generation method described
in Dentcheva et al. (1999), is recommended.

6 Numerical Examples

We present two small numerical examples for problem (4.2), one is single item, the other
one is two-item. The running time of our MATLAB implementation is 5 seconds (wallclock
time) for the single item case and 15 seconds (wallclock time) for the two-item case on a 2.40
GHz Pentium 4 PC.
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6.1 Single-item problem

First we establish a base case, then change various parameters in it and observe the behavior
of the model.

6.1.1 Parameters for the base case

We want to ensure consumption without disruption with probability 1− ε, where ε = 0.2.
The number of deliveries in the time interval is n = 10. The parameter λ, defined in

Section 2, is equal to 0.6.
The safety stock of the item at the beginning of the delivery period is m = 1.9.
The total storage capacity is W = 20 and the unit size of the item is a = 1.
The inventory holding cost and the shortage cost factors are q+ = 0.1 and q− = 100,

respectively.
Let f(x) = 2x be the cost of adjusting the safety stock by an amount of x and s(y) = y

be the cost of storage capacity y.
The demand that equals the expected total consumption is a discrete random variable

with possible values c01 = 3.2, c02 = 3.4, c03 = 3.6, c04 = 3.8, c05 = 4, c06 = 4.2 and
corresponding probabilities p1 = 0.1257, p2 = 0.1724, p3 = 0.2019, p4 = 0.2019, p5 = 0.1724,
p6 = 0.1257 (these values have been obtained from a truncated and discretized normal
distribution). The standard deviation of the consumption rate in first three cases and in last
three cases is given by σcu = 0.375c0u and σcu = 0.45c0u, respectively.

6.1.2 Numerical Results

The results for the base case are given in Table 1.

Given initial stock 1.9 1.9 1.9 1.9 1.9 1.9 

Optimal additional 
stock amount 

 
m1 =0 

 

 
m2 =0.0025 

 

 
m3 =0.1144 

 

 
m4 =0.2074 

 

 
m5 =0.2074 

 

 
m6 =0.2074 

 

Total initial safety 
stock 1.9 1.9025 2.0144 2.1074 2.1074 2.1074 

Total expected 
consumption 3.2 3.4 3.6 3.8 4 4.2 

Proportion of initial 
safety stock to total 

expected 
consumption 

59.38% 55.96% 55.96% 55.46% 52.69% 50.18% 

Probability of 
ensuring continuous 

production 
0.901 0.8811 0.8811 0.837 0.8133 0.8 

 The optimal objective function value is 4.2014 

 

Table 1
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In the following examples every parameter value is the same as in the base case, except
where mentioned.

Additional Safety Stock Level vs Lambda

0
0.1
0.2
0.3
0.4
0.5

0 0.2 0.4 0.6 0.8 1 1.2

Lambda

m2 m6

Figure 1

Cost vs Lambda

4.1

4.2

4.3

4.4

4.5

4.6

4.7

0 0.2 0.4 0.6 0.8 1 1.2

Lambda

Figure 2

Figure 1 shows the additional safety stock levels in scenarios 2 and 6 for various values of
the parameter λ while Figure 2 shows the corresponding optimal objective function values.



Page 18 RRR 34-2004

Additional Safety Stock Level vs Epsilon
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Figure 3

Cost vs Epsilon
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Figure 4

Similarly, Figure 3 and Figure 4 depict the changes in additional safety stock levels (for
scenarios 2 and 6) and in the cost when modifying ε, where 1−ε is the prescribed probability
of consumption without disruption.
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Additional Safety Stock Level vs n
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Figure 5

Figure 5 illustrates the effect of changing the number of deliveries on the additional
safety stock levels, again for scenarios 2 and 6. Whereas Figure 6 illustrates the effect of
changing the number of deliveries on the optimal objective function value.

Cost vs n
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Figure 6

Finally, Figure 7 shows the changes in additional safety stock levels for the above sce-
narios when adjusting the shortage cost factor q−.
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Additional Safety Stock Level vs q-
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Figure 7

6.2 Two-item problem

As an example we consider a product whose production involves two items. We assume that
two delivery processes are stochastically independent (in practice it is assured if, e.g., there
are two different suppliers). Otherwise we have the same assumptions and cost functions as
in the single-item case.

6.2.1 Parameters for the base case

The number of deliveries in the time interval is n(1) = 10 for item 1 and n(2) = 10 for item
2. The parameters λ(1) and λ(2) are equal to 0.6.

m(1) = 2 and m(2) = 1.9 are the safety stock amounts of items 1 and 2 at the beginning
of the delivery period, respectively.

The unit size of item 1 is a(1) = 1 and the unit size of item 2 is a(2) = 1.2.
Let s(1)(x) = x and s(2)(x) = 1.2x be the cost functions of storage capacities correspond-

ing to item 1 and item 2, respectively.
The demand that equals the expected total consumption is a discrete random variable

with possible values c01 = (3.2, 2.4), c02 = (3.4, 2.8), c03 = (3.6, 3.2), c04 = (3.8, 3.6), c05 =

(4, 4), c06 = (4.2, 4.4)}, where c0u = (c
(1)
0u , c

(2)
0u ). In all scenarios the standard deviation of

the consumption rate is assumed to be σ
(1)
cu = 0.375c

(1)
0u for item 1 and σ

(2)
cu = 0.4c

(2)
0u for item

2.
The probabilities of the various scenarios are p1 = 0.04982, p2 = 0.16095, p3 = 0.28923, p4 =

0.28923, p5 = 0.16095, p6 = 0.04982.
The proportionality factors for the inventory holding and the shortage costs are q+(1) =

1.2, q+(2) = 1, q−(1) = 120 and q−(2) = 100.
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6.2.2 Numerical Results

The results for the base case are given in Table 2.

 
Item1 

0.9167 0.8980 0.8951 0.8961 0.8970 0.9097 Probability of 
ensuring continuous 

production of Item2 0.9615 0.9271 0.8937 0.8927 0.8919 0.8794 

 

 u=1 u=2 u=3 u=4 u=5 u=6 

Item1 2 2 2 2 2 2 
Given initial stock 

Item2 1.9 1.9 1.9 1.9 1.9 1.9 

Item1 0 0 0.0993 0.2225 0.3455 0.5640 Optimal additional 
stock amount Item2 0 0 0.0381 0.2738 0.5091 0.6522 

Item1 2 2 2.0993 2.2225 2.3455 2.564 Total initial safety 
stock Item2 1.9 1.9 1.9381 2.1738 2.4091 2.5522 

Item1 3.2 3.4 3.6 3.8 4 4.2 Total expected 
consumption Item2 2.4 2.8 3.2 3.6 4 4.4 

 
Item1 

62.5% 58.82% 58.31% 58.49% 58.64% 61.05% Proportion of initial 
safety stock to total 
exp. consumption Item2 79.17% 67.86% 60.57% 60.38% 60.23% 58.00% 

Probability of ensuring 
continuous production 

0.8815 0.8325 0.80 0.80 0.80 0.80 

 
 

The optimal objective function value is 8.674 

Table 2

In our first example we multiply the expectation and standard deviation of the consump-
tion rate of item 1 in each scenario by a factor represented on the horizontal axis and observe
the changes in additional safety stock levels for both items 1 and 2. The results for scenario
6 can be seen in Figure 8.

Additional Safety Stock Level (scenario 6)
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item 1 item 2

Figure 8
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Figure 9 and Figure 10 show the effects of changing the inventory holding cost of item
1 (represented on the horizontal axis) on the additional safety stock levels of items 1 and 2
for scenarios 4 and 6, respectively.

Additional Safety Stock Level (scenario 4)
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Figure 9

Additional Safety Stock Level (scenario 6)
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Figure 10

Finally we vary the initial safety stock level of item 1; the changes in additional safety
stock levels of items 1 and 2 are shown in Figure 11 for scenario 6.
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Additional Safety Stock Level (scenario 6)
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Figure 11

7 Conclusion

In the Hungarian inventory control model both the deliveries of the ordered amounts and/or
consumption take place in intervals, according to some random processes, rather than at dis-
crete time epochs. Inventory control models of this type have been introduced by Prékopa
(1965) and Ziermann (1964). It seems to us that in many practical applications one encoun-
ters similar situations (see Morris et al., 1987 and Segal, 1997) and thus we think that the
Hungarian inventory models deserve more attention than that has been paid to these models
in the literature so far. The original Hungarian inventory control model is about to calculate
an initial safety stock for one period with a prescribed service (reliability) level. No costs are
taken into consideration. Since then, however, a few dynamic variants of it have appeared
which, in addition, included cost parameters as well. In a recent paper by Prékopa (2004) a
class of dynamic type Hungarian inventory models has been introduced where high service
level is ensured by probabilistic constraint and various costs are taken into account. The
problems in these models are, however, difficult to solve because we need the calculation of
the multivariate Dirichlet type c.d.f values along with nonlinear programming algorithm.

In this paper we keep some of the main characteristics of the new models in Prékopa
(2004) but introduce simplifying assumptions: we assume that the consumption process is
linear with random, normally distributed slope and the expectation of total consumption
minus the delivery process is approximated by a Brownian bridge. The Brownian bridge is
then transformed into a Brownian motion process, of which the probability distribution of
the maximum functional is available in closed form (see Bachelier, 1900 and Takács, 1967).
In our setting this formula provides us with the c.d.f. of the supremum of consumption minus
delivery process. First we formulated a static type probabilistically constrained multi-item
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inventory control model. Then we obtained two-stage type stochastic programming model
which is supplemented by probabilistic constraints on the solvability of the second stage
problem.

The numerical solutions for our problems are convex nonlinear programming problems like
in Prékopa (2004). However, under our simplifying assumptions the ’Hungarian inventory
control model’ becomes computationally tractable. We have used a MATLAB implementa-
tion of a nonlinear optimization algorithm based on the Sequential Quadratic Programming
(SQP) method and we are able to efficiently solve problems of moderate-size. For example,
it takes 15 minutes (wallclock time) to solve a problem with 30 items and 10 scenarios on
a PC with Pentium 4 2.40 GHz. We have also applied sensitivity analysis by changing the
parameters in the numerical examples and demonstrated that the results produced by the
model are consistent with the expected behavior of an inventory control system.

Acknowledgement. The authors are grateful to Gábor Rudolf for his assistance with the
computational work.
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[30] Takács, L., 1967, Combinatorial methods in the theory of stochastic processes, Wiley
(New York).

[31] Ziermann, M., 1964, Application of Smirnov’s theorems for an inventory control prob-
lem, Publications of the Mathematical Institute of the Hungarian Academy of Science
Series B 8, 509–518 (in Hungarian).


