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RRR 34-2007, December 2007

aRUTCOR, Rutgers Center for Operations Research 640 Bartholomew
Road, Piscataway, NJ 08854–8003



Rutcor Research Report

RRR 34-2007, December 2007

Conditional Mean-Conditional Variance
Portfolio Selection Model

András Prékopa

Abstract. Markowitz’s mean-variance model (1952, 1959) is one of the most widely
used model for portfolio selection, even today. Kataoka (1963) gave another formu-
lation for the same problem. The introduction of the risk measure: Value at Risk
or VaR and the formulation of a corresponding portfolio selection model essentially
rephrases Kataoka’s ideas. Conditional Value at Risk or CVaR is another popu-
lar risk measure, typically used jointly with VaR, providing us with a probabilistic
constrained-conditional expectation model. The purpose of the present paper is
to introduce the conditional mean-conditional variance or CVaR-CVAR model that
takes us back to Markowitz’s ideas in a modified form. The optimization problems
are presented and their mathematical properties are explored.
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1 Introduction

Consider n assets with random returns on unit investments R1, . . . , Rn, investment amounts
x1, . . . , xn and introduce the notations:

R = (R1, . . . , Rn)T , x = (x1, . . . , xn)T

E(Ri) = mi, i = 1, . . . , n, m = (m1, . . . , mn)T

X = RT x, C = E[(R−m)(R−m)T ].

With these notations we have the equations:

E(X) = mT x, Var (X) = xT Cx.

Markowitz’s mean-variance model (1952, 1959) is usually formulated in three different
ways:

Model I. maximize mT x

subject to

xT Cx ≤ V
n∑

i=1

xi = 1

x ≥ 0,

(1.1)

Model II. minimize xT Cx

subject to

mT x ≤ M
n∑

i=1

xi = 1

x ≥ 0,

(1.2)

Model III. maximize {mT x− βxT Cx}
subject to

n∑
i=1

xi = 1

x ≥ 0,

(1.3)

where M , V are some constant upper bounds, for the expectation and variance, respectively,
of the total return and β > 0 is a constant. Sometimes lower and upper bounds are imposed
individually on the variables xi, i = 1, . . . , n.
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Kataoka’s (1963) model is similar to Model III. We can state it as follows:

maximize v

subject to

P (RT x ≥ v) ≥ p
n∑

i=1

xi = 1

x ≥ 0,

(1.4)

where p ∈ (0, 1) is a fixed probability chosen by ourselves.
If R1, . . . , Rn have a normal joint distribution, then, no matter if it is degenerate or

nondegenerate, problem (1.4) can be rewritten in the following form:

maximize
{

mT x + Φ−1(1− p)
√

xT Cx
}

subject to
n∑

i=1

xi = 1

x ≥ 0.

(1.5)

In what follows ϕ, Φ designate the standard normal density and distribution functions,
respectively.

If p ≥ 1/2, then Φ−1(1− p) ≤ 0 and thus problem (1.5) is a linearly constrained convex
optimization problem.

The advantage of problem (1.5) over problem (1.3) is that we combine the standard de-
viation, rather than the variance of the total return with its expectation and both terms
in the objective function have the same dimension. Problem (1.3), on the other hand, is
computationally more tractable because it is a linearly constrained convex quadratic pro-
gramming problem widely studied in the literature. The objective function in problem (1.5)
is the p-quantile of the probability distribution of RT x. The quantile recently acquired other
name in the financial literature: Value at Risk.

The term Value at Risk was proposed by Till Guldimann at J.P. Morgan in the late
1980’s. The Group of Thirty which had a representative from J.P. Morgan had a discussion
on best risk management practices. The term VaR found its way through the G–30 report
published in 1993.

The definition of Value at Risk is not unique in the literature. In this paper we use the
following

Definition 1 Value at risk of confidence level 100 p% is defined as the optimum value of
the optimization problem:

maximize v

subject to

P (X ≥ v) ≥ p,

(1.6)
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where X is a random variable and p ∈ (0, 1) is a constant. Let VaRp(X) designate this value.
Sometimes we simply write VaR.

Another definition (see Pflug, 2000) takes it as the optimum value of the problem (0 <
α < 1):

inf v

subject to

P (X ≤ v) > α.

(1.7)

The two definitions provide us with the same optimum value if α = 1 − p. However, the
practical use of the two definitions are different. We use (1.6) if X means revenue or return
and use (1.7) if X means loss. Both p and α are chosen large, in practice, because we want to
impose lower bound on revenue, or return, and upper bound on loss, by large probabilities.

Note that the c.d.f. of a random variable X, i.e., the function F (v) = P (X ≤ v),
−∞ < v < ∞, is right continuous. If we define its inverse by the equation:

F−1(v) = inf {z | F (z) > v}, −∞ < v < ∞,

then the optimum value of problem (1.7) is F−1(α) and we have the equality VaRp(X) =
F−1(1− p).

If X = RT X, where R has normal distribution with E(R) = m and covariance matrix
C, then we easily derive the equation:

VaRp(X) = mT x + Φ−1(1− p)
√

xT Cx.

The definition of the Conditional Value at Risk depends on the definition of the Value
at Risk. Since VaR is defined by (1.6), we use the following

Definition 2 (Rockafellar, Uryasev, 2002) Conditional Value at Risk is the value

E(X | X ≤ v), v = VaRp(X). (1.8)

We designate it by CVaRp(X), or simply by CVaR, if it is clear what X and p we are dealing
with.

If VaR were defined by (1.7), then we would define CVaR as

E(X | X ≥ v), (1.9)

where v is the optimum value of problem (1.7).

Under the condition of a normally distributed R we have the formula:

CVaRp(X) = mT x− ϕ(Φ−1(1− p))

1− p

√
xT Cx. (1.10)
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Note that Φ−1(1− p) = −Φ−1(p) which implies ϕ(Φ−1(1− p)) = ϕ(Φ−1(p)).
CVaR is closely connected with risk measures introduced earlier in stochastic optimiza-

tion. If in the underlying problem we have a constraint

Tx ≥ ξ,

where T is an r×n matrix and ξ is an r-component random vector, then in the probabilistic
constrained formulation we prescribe that the constraint

P (Tx ≥ ξ) ≥ p (1.11)

should be satisfied for every x that we consider feasible. As a relaxation of the constraint
(1.11) Prékopa (1973b) introduced the conditional expectation constraints:

E(ξi − Tix | ξi − Tix > 0) ≤ di, i = 1, . . . , r, (1.12)

where Ti is the ith row of T and ξi is the ith component of ξ. Prékopa (1973b) has also shown
that if each ξi has continuous probability distribution with logarithmically concave p.d.f.,
then the constraints (1.12) are linear. In fact, it is shown in the above-mentioned paper that
if (dropping the subscript i) any ξ ∈ R1 has continuous distribution with logarithmically
concave p.d.f., then

g(u) = E(ξ − u | ξ − u > 0), −∞ < u < ∞
is a decreasing function of u. Thus, returning to ξ = (ξ1, . . . , ξn)T , the constraints (1.12) can
be written as

Tix ≥ g−1
i (di), i = 1, . . . , r.

Note that it is also reasonable to use both constraints (1.11) and (1.12) in one model (see
Prékopa, 1973b). Constraint (1.11) ensures that Tx ≥ ξ occurs with a large probability while
constraints (1.12) imposes upper bounds on the expectations of the unfavorable deviations,
given that they occur.

A related constraint type, called integrated chance constraint, was introduced by Klein
Haneveld (1986). As applied to our case, and as another relaxation of the single probabilistic
constraint (1.11), we write

E([ξi − Tix]+) ≤ di, i = 1, . . . , r. (1.13)

The constraining functions are linear in x, without any limitation regarding the probability
distributions of the ξi, i = 1, . . . , r.

Definition 3 The functions of the variable v (−∞ < v < ∞):

E(X | X ≥ v) (1.14)

E(X | X ≤ v) (1.15)

will be called conditional expectation functions.
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In the next definition new risk measures are introduced.

Definition 4 The functions of the variable v (−∞ < v < ∞):

E(X2 | X ≥ v)− E2(X | X ≥ v) (1.16)

E(X2 | X ≤ v)− E2(X | X ≤ v) (1.17)

will be called conditional variance or CVAR functions.

The definitions of VaR and CVaR are motivated by the intention to characterize the
return of an investment by two risk measures. One is of probability type (VaR) that we
want to make large, it expresses the probability that the return is above a lower bound. The
other one (CVaR) is of expectation type in which an average is taken of the small (mostly
negative, in practice) return values. We want to make the absolute value of the latter small.
Thus, Varp(X) and CVaRp(X) are connected in this way.

In the above-mentioned model of Prékopa (1973b) as well as in the models of Pflug (2000)
and Rockafellar and Uryasev (2002) the probability of the favorable outcome of the “exper-
iment” is ensured to be large, and, given that it is violated, the conditional expectations of
the opposite deviations are prescribed to be small. In the latter two papers this means, in
our setting, that function (1.14) is used, either in the objective function or in the constraints,
with v = VaRp(X).

In the models presented in this paper, however, we combine the functions (1.14) and
(1.16) and impose a constraint on VaRp(X), in the same model, for the case of a v = v0. We
look at revenues or returns. Similar models can be formulated for the case of losses in which
case the functions (1.15) and (1.17) have to be used, together with a separate constraint for
the Value at Risk.

The objective of the paper is to formulate counterparts of Markowitz’s mean-variance
models, using conditional expectation and conditional variance functions. This is enabled by
nice properties of those functions, especially the decreasing property of the function (1.16)
under the condition of logconcavity of the probability distribution of the return random
variable.

In Section 2 we derive some mathematical properties for the functions (1.16), (1.17).
In Section 3 the case of a normally distributed random variable is considered and formulas
are derived for all functions in (1.14), (1.15), (1.16) and (1.17). In Section 4 we formulate
our portfolio selection models with the conditional expectation and conditional variance
functions. Finally, in Section 5 the conclusions are summarized.

2 Mathematical Properties of the Conditional

Variance Functions

The most important theorem in connection with CVAR is the following
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Theorem 2.1 If the random variable X has continuous distribution and logconcave p.d.f.,
then

E(X2 | X > v)− (E(X | X > v))2, −∞ < v < ∞
is a decreasing function of the variable v.

Proof. Let g, G designate the p.d.f. and c.d.f. of X, respectively. If for a v we have
G(v) = 1, then, by definition, both terms in the CVAR are zero. Hence, we may restrict
ourselves to the maximal open interval, where G(v) < 1.

We also remark that the existence of the first two moments of X implies that

lim
v→−∞

vkG(v) = 0, lim
v→∞

vk(1−G(v)) = 0

for k = 1, 2 and
∫ ∞

v

(t− v)g(t) dt =

∫ ∞

v

[1−G(t)] dt,

∫ ∞

v

(t− v)2g(t) dt = 2

∫ ∞

v

∫ ∞

t

[1−G(x)] dx dt.

We have the relations

E(X2 | X ≥ v)− (E(X | X ≥ v))2

= E((X − v)2 | X ≥ v)− (E(X − v | X ≥ v))2

=

∫ ∞

v

(t− v)2g(t) dt

1−G(v)
−




∫ ∞

v

(t− v)g(t) dt

1−G(v)




2

=

2

∫ ∞

v

∫ ∞

t

[1−G(x)] dx dt

1−G(v)
−




∫ ∞

v

[1−G(t)] dt

1−G(v)




2

.

Hence it follows that

d

dv
(E(X2 | X ≥ v)− E2(X | X ≥ v))

=

−2

∫ ∞

v

[1−G(t)] dt [1−G(v)] + 2g(v)

∫ ∞

v

∫ ∞

t

[1−G(x)] dx dt

[1−G(v)]2

−2

∫ ∞

v

[1−G(t)] dt

1−G(v)

−[1−G(v)]2 + g(v)

∫ ∞

v

[1−G(t)] dt

[1−G(v)]2

=
2g(v)

[1−G(v)]3

(
[1−G(v)]

∫ ∞

v

∫ ∞

t

[1−G(x)] dx dt−
(∫ ∞

v

[1−G(t)] dt

)2
)

.
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By Theorem 2 in Prékopa (1973a), the logconcavity of g implies the logconcavity of

∫ ∞

v

[1−G(x)] dx

and, in turn, the logconcavity of

h(v) =

∫ ∞

v

∫ ∞

t

[1−G(x)] dx dt.

This implies that

[1−G(v)]

∫ ∞

v

∫ ∞

t

[1−G(x)] dx dt−
(∫ ∞

v

[1−G(t)] dt

)2

= h′′(v)h(v)− (h′(v))2 ≤ 0

and the theorem is proved. ¤
Similar is the proof of the following

Theorem 2.2 If the random variable X has continuous distribution and logconcave p.d.f.,
then

E(X2 | X ≤ v)− (E(X | X ≤ v))2, −∞ < v < ∞
is an increasing function of the variable v.

Note that in the above theorems the condition X > v can be replaced by X ≥ v and the
condition X ≤ v can be replaced by X < v, the values of the functions are unchanged. Not
as trivial is

Theorem 2.3 If the p.d.f. of X is strictly logconcave in the entire real line, then the function
in Theorem 2.1 is strictly decreasing and the function in Theorem 2.2 is strictly increasing
in the entire real line.

Proof. If we use the same proofs what we have used in connection with Theorems 2.1
and 2.2 and refer to Theorem 5, rather than to Theorem 2, in Prékopa (1973a), then the
assertion follows. ¤

Burridge (1982) stated Theorem 2.1 without proof with the remark that it can be derived
from Prékopa’s (1971, 1973a) logconcavity results. In this section we have proved and
sharpened the theorem: the function is strictly decreasing if strict logconcavity holds for the
p.d.f.
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3 The Case of the Normal Distribution

In this section we look at the case, where the random variable has nondegenerate normal
distribution. We derive special formulas for the CVAR functions. Let g, G designate the
p.d.f. and the c.d.f. of X, respectively. Then

g(v) =
1

σ
ϕ

(
v − µ

σ

)
and G(v) = Φ

(
v − µ

σ

)
.

Theorem 3.1 Let X be a normally distributed random variable with expectation µ and
variance σ2 > 0. Then for every real v we have the equations

E(X | X ≥ v) = µ +

ϕ

(
v − µ

σ

)

1− Φ

(
v − µ

σ

)σ (3.1)

and

E(X | X ≤ v) = µ−
ϕ

(
v − µ

σ

)

Φ

(
v − µ

σ

)σ. (3.2)

Proof. We derive (3.1), the derivation of (3.2) is similar. We have the equations:

E(X | X ≥ v) =

∫ ∞

v

tg(t) dt

1−G(v)
=

∫ ∞

v

t
1

σ
ϕ

(
t− µ

σ

)
dt

1− Φ

(
v − µ

σ

) =

∫ ∞

v−µ
σ

(µ + zσ)ϕ(z) dz

1− Φ

(
v − µ

σ

)

=

[
1− Φ

(
v − µ

σ

)]
µ + ϕ

(
v − µ

σ

)
σ

1− Φ

(
v − µ

σ

) = µ +

ϕ

(
v − µ

σ

)

1− Φ

(
v − µ

σ

)σ. ¤

Theorem 3.2 Let X be a normally distributed random variable with expectation µ and
variance σ2 > 0. Then for every real v we have the equations:

E(X2 | X ≥ v)− E2(X | X ≥ v)

= σ2


1 +

ϕ

(
v − µ

σ

)

1− Φ

(
v − µ

σ

) v − µ

σ
−




ϕ

(
v − µ

σ

)

1− Φ

(
v − µ

σ

)




2

 (3.3)

and
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E(X2 | X ≤ v)− E2(X | X ≤ v)

= σ2


1−

ϕ

(
v − µ

σ

)

Φ

(
v − µ

σ

) v − µ

σ
−




ϕ

(
v − µ

σ

)

Φ

(
v − µ

σ

)




2

 . (3.4)

Proof. We present the proof of (3.3), the proof of (3.4) is similar. We have the equations:

E(X2 | X ≥ v)− E2(X | X ≥ v)

=

∫ ∞

v

t2g(t) dt

1−G(v)
−


µ +

ϕ

(
v − µ

σ

)

1− Φ

(
v − µ

σ

)σ




2

=

∫ ∞

v−µ
σ

(µ + zσ)2ϕ(z) dz

1− Φ

(
v − µ

σ

) −


µ +

ϕ

(
v − µ

σ

)

1− Φ

(
v − µ

σ

)σ




2

=
1

1− Φ

(
v − µ

σ

)
(

µ2

[
1− Φ

(
v − µ

σ

)]
+ 2µσϕ

(
v − µ

σ

)

+
v − µ

σ
ϕ

(
v − µ

σ

)
σ2 +

[
1− Φ

(
v − µ

σ

)]
σ2

)

−


µ +

ϕ

(
v − µ

σ

)

1− Φ

(
v − µ

σ

)σ




2

= σ2


1 +

ϕ

(
v − µ

σ

)

1− Φ

(
v − µ

σ

) v − µ

σ
−




ϕ

(
v − µ

σ

)

1− Φ

(
v − µ

σ

)




2

 ,

where we have used the relation: ϕ′(z) = −zϕ(z). ¤
If µ = 0 and σ = 1, then equation (3.3) specializes to the equation:

E(X2 | X ≥ v)− E2(X | X ≥ v) = 1− h′(v), (3.5)

where h(v) is the hazard rate function:

h(v) =
ϕ(v)

1− Φ(v)
. (3.6)
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Similarly, equation (3.4) specializes to the equation:

E(X2 | X ≤ v)− E2(X | X ≤ v) = 1 + k′(v), (3.7)

where

k(v) =
ϕ(v)

Φ(v)
= h(−v). (3.8)

For functions h and k we have

Theorem 3.3 Both h′ and k′ are strictly increasing functions on the entire real line, further,
for any real v

0 < h′(v) < 1, −1 < k′(v) < 0,

finally,

lim
v→−∞

h′(v) = 0, lim
v→∞

h′(v) = 1

lim
v→−∞

k′(v) = −1, lim
v→∞

k′(v) = 0.

Proof. Since ϕ is strictly logconcave on the entire real line, Theorem 2.3 implies the strict
monotonicity of h′(v) and k′(v) on R′. The other assertions follow from this fact and relations
(3.5)–(3.8).

The inequality h′(v) > 0 implies that

ϕ(v)

1− Φ(v)
< v, −∞ < v < ∞. (3.9)

The latter inequality has an important consequence for VaR and CVaR of the total return
X = RT x of a portfolio, where R has normal distribution with expectation µ = mT x and
variance σ2 = xT Cx. Assuming xT Cx > 0, by (3.2) and the expression for Varp(X) we have:

CVaRp(X) = mT x− ϕ(Φ−1(1− p))

1− p

√
xT Cx

= mT x− ϕ(Φ−1(p))

1− Φ(Φ−1(p))

√
xT Cx

> mT x− Φ−1(p)
√

xT Cx

= mT x + Φ−1(1− p)
√

xT Cx = VaRp(X).

(3.10)

If v is equal to VaR, i.e., v = µ + Φ−1(1 − p)σ, then (3.3) and (3.4) specialize in the
following way:

E(X2 | X ≥ v)− E2(X | X ≥ v)

= σ2

(
1 +

1

p
ϕ(Φ−1(1− p))Φ−1(1− p)− 1

p2
ϕ2(Φ−1(1− p))

)
(3.11)

and
E(X2 | X ≤ v)− E2(X | X ≤ v)

= σ2

(
1− 1

1− p
ϕ(Φ−1(1− p))Φ−1(1− p)− 1

(1− p)2
ϕ2(Φ−1(1− p))

)
. (3.12)
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4 Conditional Mean-Conditional Variance Portfolio

Selection Models

If X = RT x and R has normal distribution with E(R) = m and covariance matrix C, then
E(X) = mT x, Var (X) = xT Cx. If we replace mT x for µ and xT Cx for σ2 in (3.1), (3.2),
(3.3) and (3.4), then we obtain the formulas:

E(X | X ≥ v)

= mT x +

ϕ

(
v −mT x√

xT Cx

)

1− Φ

(
v −mT x√

xT Cx

)
√

xT Cx (4.1)

E(X | X ≤ v)

= mT x−
ϕ

(
v −mT x√

xT Cx

)

Φ

(
v −mT x√

xT Cx

)
√

xT Cx (4.2)

E(X2 | X ≥ v)− E2(X | X ≥ v)

= xT Cx


1 +

ϕ

(
v −mT x√

xT Cx

)

1− Φ

(
v −mT x√

xT Cx

) v −mT x√
xT Cx

−




ϕ

(
v −mT x√

xT Cx

)

1− Φ

(
v −mT x√

xT Cx

)




2

 (4.3)

E(X2 | X ≤ v)− E2(X | X ≤ v)

= xT Cx


1−

ϕ

(
v −mT x√

xT Cx

)

Φ

(
v −mT x√

xT Cx

) v −mT x√
xT Cx

−




ϕ

(
v −mT x√

xT Cx

)

Φ

(
v −mT x√

xT Cx

)




2

 . (4.4)

If v = VaRp(X) = mT x + Φ−1(1 − p)
√

xT Cx, then the above formulas specialize in the
following way:

E(X | X ≥ v)

= mT x +
1

p
ϕ

(
Φ−1(1− p)

)√
xT Cx, (4.5)

E(X | X ≤ v)

= mT x− 1

1− p
ϕ

(
Φ−1(1− p)

)√
xT Cx, (4.6)
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E(X2 | X ≥ v)− E2(X | X ≥ v)

= xT Cx

(
1 +

1

p
ϕ(Φ−1(1− p))Φ−1(1− p)− 1

p2
ϕ2(Φ−1(1− p))

)
, (4.7)

E(X2 | X ≤ v)− E2(X | X ≤ v)

= xT Cx

(
1− 1

1− p
ϕ(Φ−1(1− p))Φ−1(1− p)− 1

(1− p)2
ϕ2(Φ−1(1− p))

)
. (4.8)

In this section we formulate models that provide us with more favorable solutions than
Markowitz’s models. We achieve it in such a way that we use conditional expectation and
conditional variance, rather than absolute expectation and absolute variance in the models.
We take X as the random return, or revenue and work with the formulas (4.1) (4.3).

Given that X ≥ v0, for some v0, the conditional expectation of X is larger and the
conditional variance of X is smaller than the corresponding unconditional expectation and
variance, respectively. This is a favorable fact from the point of view of the portfolio selection
problem and its optimal solution.

In practice, however, the above advantage is realized only if we ensure that the event
X ≥ v0 occurs by a large probability. In order to achieve this goal we include the inequality
Varp(X) ≥ v0 among the constraints of the portfolio selection problem(s). If the random
return R has normal distribution, then this constraint takes the form: mT x + Φ−1(1 −
p)
√

xT Cx ≥ v0, where p is a large probability.
Our models are the following:

Model I. maximize E(X | X ≥ v0)

subject to

E(X2 | X ≥ v0)− E2(X | X ≥ v0) ≤ V

VaRp(X) ≥ v0
n∑

i=1

xi = 1

x ≥ 0,

(4.9)

Model II. minimize {E(X2 | X ≥ v0)− E2(X | X ≥ v0)}
subject to

E(X | X ≥ v0) ≥ M

VaRp(X) ≥ v0
n∑

i=1

xi = 1

x ≥ 0,

(4.10)
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Model III. maximize {E(X | X ≥ v0)− β[E(X2 | X ≥ v0)− E2(X | X ≥ v0)]}
subject to

VaRp(X) ≥ v0
n∑

i=1

xi = 1

x ≥ 0,

(4.11)

where β > 0 is some constant. In Model III. we may replace the conditional variance by its
square root. In the general case the above models are nonconvex optimization problems but
using suitable relaxation we can obtain problems the solutions of which are easier.

4.1 Discussion of Model I.

The detailed form of Model I. is obtained by replacing the function in (4.1) for the objective
function of problem (4.9) and the function (4.3) for the constraining function in the first
constraint of the same problem, writing v = v0.

If v0 = VaRp(X), then the function (4.1) reduces to the function (4.5) and Model I.
reduces to the following:

Model I. (a) maximize

{
mT x +

1

p
ϕ(Φ−1(1− p))

√
xT Cx

}

subject to

xT Cx

(
1 +

1

p
ϕ(φ−1(1− p))Φ−1(1− p)− 1

p2
ϕ2(Φ−1(1− p))

)
≤ V

mT x + Φ−1(1− p)
√

xT Cx ≥ v0
n∑

i=1

xi = 1

x ≥ 0.

(4.12)

The constant that multiplies xT Cx in the first constraint of problem (4.12) is positive, for
any p. If p ≥ 1/2, then the constant that multiplies

√
xT Cx in the second constraint is

nonpositive. Since xT Cx and
√

xT Cx are convex functions, the set of feasible solutions is
convex. However, the objective function that is to be maximized is convex, hence (4.12) is
not a convex problem.

We can create a more tractable problem from the general problem (4.9) if we choose some
fixed v = v0 and prescribe that

E(X2 | X ≥ v0)− E2(X | X ≥ v0) ≤ dxT Cx, (4.13)

where d is some constant, chosen by ourselves in such a way that 0 < d < 1. Let h1(v) =
1− h′(v). Then the constraint (4.13) can be written in the form

xT Cxh1

(
v0 −mT x√

xT Cx

)
≤ dxT Cx
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and since h1 is a decreasing function, the constraint can be given another form:

mT x + h−1
1 (d)

√
xT Cx ≥ v0. (4.14)

Since h1 is a decreasing function and h1(−∞) = 1, h(∞) = 0, h(0) =
2

π
, it follows that

h−1
1 (d) < 0, if d >

2

π
. Assuming this to be the case, the constraining function in (4.14) is

concave and the inequality determines a convex set of x vectors. Our new problem is:

Model I. (b) maximize





mT x +

ϕ

(
v0 −mT x√

xT Cx

)

1− Φ

(
v0 −mT x√

xT Cx

)
√

xT Cx





subject to

mT x + h−1
1 (d)

√
xT Cx ≥ v0

mT x + Φ−1(1− p)
√

xT Cx ≥ v0
n∑

i=1

xi = 1

x ≥ 0.

The problem is still nonconvex because the objective function is not concave in x, in general.

4.2 Discussion of Model II.

If we interchange the objective function and the constraining function in the first constraint
in Models I. (a), (b), then we obtain the new versions of Model II. We may disregard the
constant factor of xT Cx in problem (4.12). Thus, our new problems are the following:

Model II. (a) minimize xT Cx

subject to

mT x +
1

p
ϕ(Φ−1(1− p))

√
xT Cx ≥ M

mT x + Φ−1(1− p)
√

xT Cx ≥ v0
n∑

i=1

xi = 1

x ≥ 0

and
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Model II. (b) maximize {mT x + h−1
1 (d)

√
xT Cx}

subject to

mT x +

ϕ

(
v0 −mT x√

xT Cx

)

1− Φ

(
v0 −mT x√

xT Cx

)
√

xT Cx ≥ M

mT x + Φ−1(1− p)
√

xT Cx ≥ v0
n∑

i=1

xi = 1

x ≥ 0.

None of the above problems is convex. If, however, we remove the first constraints from
both problems, then they become convex.

4.3 Discussion of Model III.

If we take into account (4.1) and (4.3), then we can write Model III. as follows:

Model III. maximize





mT x +

ϕ

(
v0 −mT x√

xT Cx

)

1− Φ

(
v0 −mT x√

xT Cx

)
√

xT Cx

−βxT Cx


1 +

ϕ

(
v0 −mT x√

xT Cx

)

1− Φ

(
v0 −mT x√

xT Cx

) v0 −mT x√
xT Cx

−




ϕ

(
v0 −mT x√

xT Cx

)

1− Φ

(
v0 −mT x√

xT Cx

)




2







subject to

mT x + Φ−1(1− p)
√

xT Cx ≥ v0
n∑

i=1

xi = 1

x ≥ 0,
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where β is some positive constant. Another model is obtained if we take the square root of
the factor that multiplies β in the objective function. The problem is nonconvex.

If we take v0 = VaRp(X), then the model specializes as follows:

Model III. (a) maximize

{
mT x +

1

p
ϕ(Φ−1(1− p))

√
xT Cx

−βxT Cx

(
1 +

1

p
ϕ(Φ−1(1− p))Φ−1(1− p)− 1

p2
ϕ2(Φ−1(1− p))

)}

subject to
n∑

i=1

xi = 1

x ≥ 0,

where β is some positive constant. Model III. (a) is not a convex optimization problem
because

√
xT Cx is a convex function of the variable x.

The value of p should be chosen large, e.g., 0.9, 0.95, 0.99. The constraints (4.13) and
(4.14) when included into the models, as described above may produce infeasibility. In that
case we decrease v0 or p or both to achieve feasibility.

Efficient frontiers, based on Models I. and II. can be constructed in a similar way as
suggested by Markowitz (1952, 1959).

5 Conclusions

We have formulated new portfolio selection models, where instead of the expectation and
variance of the return conditional expectation and conditional variance are used, given that
the return is greater than or equal to some fixed value. The new models are counterparts of
Markowitz’s models. A lower bound on the Value at Risk, that we include among the con-
straints, ensures the fulfilment of the condition. Since the conditional expectation is greater
than or equal to the unconditional expectation and the conditional variance is smaller than
or equal to the unconditional variance, the new models offer more favourable optimal solu-
tions than Markowitz’s original models. Most of the new problems are, however, nonconvex
and therefore difficult to solve. New numerical solution techniques have to be developed.
Research in this respect is underway.
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