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Abstract� In this paper we present an overview about the recently developed

theory of discrete moment problems� i�e�� moment problems where the supports of

the random variables involved are discrete� We look for the minimum or maximum

of a linear functional acting on an unknown probability distribution subject to a

�nite number of moment constraints� Using linear programming methodology� we

present structural theorems� in both the univariate and multivariate cases� for the

dual feasible bases and show how the relevant problems can be solved by suitable

adaptations of the dual method� The condition on the objective function is a kind

of higher order convexity� expressed in terms of divided dierences� A variant of the

above� the discrete binomial moment problem� as well as generalization for discrete

variable Chebyshev systems are also discussed� Finally� we present novel applications

to valuations of �niancial instruments�
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� Introduction

Discrete moment problems came to prominence by the discovery �Samuels and Studden
�����	
 Pr�ekopa �����
����a
b	 that the sharp Bonferroni bounds can be obtained as opti�
mum values of discrete moment problems�

The rst sharp bound for the probability of the union of n events was obtained by Daw�
son and Sanko� �����	� They assumed the knowledge of the rst two binomial moments of
the number of events which occur� Kwerel �����a
b	 reformulated and extended the prob�
lem using linear programming methodology
 where the rst three binomial moments of the
occurencies are supposed to be known� The general problems
 where there is no limitation
regarding the numbers of binomial moments have been formulated and studied by Pr�ekopa
�����
����a	�

The multiveriate discrete moment problem has been introduced and studied by Pr�ekopa
�����
����	�

By the use of the methodology of discrete moment problems a number of other known
probability bounds could be derived �see the above cited papers by Samuels and Stud�
den
Pr�ekopa
 furthermore the paper by Boros and Pr�ekopa �����		�

While Samuels and Studden follow the guidelines of the general moment problems in
their discussion
 Pr�ekopa uses linear programming methodology
 which enables him to come
up with simple algorithmic solution to the problem wherever the size of the problem prevents
us to present the bounds in closed forms�

The simplest discrete moment problem
 where power moments are used
 is closely con�
nected with divided di�erences
 higher order convex functions �dened in terms of divided
di�erences	 and Lagrange interpolation�

Let f�z	� z � Z � fz�� � � � � zng be a discrete variable function
 where z� � � � � � zn� Its
rst order divided di�erences are designated and dened as�

�zi�� zi�� f � �
f�zi�	� f�zi�	

zi� � zi�
� i� �� i�� ��	

The kth order divided di�erence is designated and dened as�

�zi�� zi�� � � � � zik��� f � �
�zi� �����zik��

�f ���zi� �����zik �f �

zik���zi�
� ��	

where zi�� zi�� � � � � zik��
are k � � distinct elements of Z� Let �z� f � � f�z	
 by denition�
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The function f is said to be �strictly	 convex of order k on Z
 if all of its kth order divided
di�erences are �positive	 nonnegative�

A su�cient condition for that is the following� f is dened in �z�� zn� and has �positive	
nonnegative kth order derivatives in �z�� zn	�

First order convexity means that the function is nondecreasing
 second order convexity
means that the function
 obtained by connecting all neighbors of the points �zi� f�zi		� i �
�� �� � � � � n by straight lines
 is convex in the classical sense�

We have the determinental formula

�zi�� zi�� � � � � zik��� f � �

�������������

� � � � � �
zi� zi� � � � zik��
���

���
���

zk��i�
zk��i�

� � � zk��ik��

f�zi�	 f�zi�	 � � � f�zik��	

��������������������������

� � � � � �
zi� zi� � � � zik��
���

���
���

zk��i�
zk��i�

� � � zk��ik��

zki� zki� � � � zkik��

�������������

� ��	

A theorem �see
 e�g�
 Pr�ekopa �����		 asserts that if all kth order divided di�erences of
f 
 corresponding to consecutive points
 are �positive	 nonnegative
 then all kth oder divided
�erences of f are �positive	 nonnegative� This fact is also a simple consequence of a general
theorem of Fekete �����	� Let I � f�� �� � � � � ng with jIj � m�� �m � n	� The Lagrange
polynomial corresponding to the set of points fzi� i � Ig is dened as

LI�z	 �
X
h�I

f�zh	LI�h�z	� ��	

where

LI�h�z	 �
Y

i�Infhg

z � zh
zi � zh

� h � I ��	

is the hth fundamental polynomial� We will need LI�z	 at the points in Z but it can be
dened for all real z values� The polynomial can be written in Newton�s form�

LI �z	 �
mX
h��

�zj� j � Ih��� f �
Y

i�Ih��

�z � zi	� ��	
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where Ih is the set of the rst h � � points in I� and
Q

i�I��
�z � zi	 � � by denition� An

important formula in Lagrange interpolation is the following�

f�z	� LI�z	 � �zj� j � I� z� f �
Y
i�I

�z � zi	� ��	

In the s�variate case rst we dene Zj � fzj�� � � � � zjnjg� zj� � � � � � zjnj � j � �� � � � � s� Let
Z � Z�� � � ��Zs and consider a function f�z	� z � Z� The divided di�erence correponding
to a subset

ZI� ���Is � fz�i� i � I�g � � � �� fzsi� i � Isg � Z�I� � � � �� � ZsIs

of the set Z can be dened in an iterative manner in such a way that rst we take k��th
order divided di�erence of f with respect to z�
 where k� � jI�j � �
 then the k��th order
divided di�erence of that with respect to z�
 where k� � jI�j � �
 etc� This can be executed
in a mixed manner
 the result will always be the same�

Let �z�i� i � I�� � � � � zsi� i � Is� f � designate this divided di�erence and call it of order
�k�� � � � � ks	� The sum k� � � � �� ks will be called the total order of the divided di�erence�

The set on which the above divided di�erence is denedis the Cartesian product of sets
on the real line� Let us term such sets rectangular� Divided di�erences on non�rectangular
sets have also been dened in the literature �see
 e�g�
 Karlin
 Micchelli and Rinott �����		�
These require
 however
 smooth functions while ours are dened on discrete sets�

A Lagarange interpolation polynomial corresponding to the points in fz�i� i � I�g� � � ��
fzsi� i � Isg is dened by the equation

LI����Is�z�� � � � � zs	

�
P

i��I�

� � �
P

is�Is

f�z�i�� � � � � zsis	LI�i��z�	 � � �LIsis�zs	�
��	

where

LIj ij�zj	 �
Y

h�Ijnfijg

zj � zjij
zjh � zjij

� j � �� � � � � s� ��	

The polynomial ��	 coincides with the function f at every point of the set ZI����Is and is of
degree m� � � �ms�

Newton�s form of the Lagarange polynomial ��	 can be given as follows�

I
�kj	
j designate the set of the rst kj � � elements of Ij� � � kj � mj� j � �� � � � � s� Then
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the required form is

LI����Is�z�� � � � � zs	

�
m�P
k���

� � �
msP
ks��

�z�h� h � I
�k�	
� � � � � � zsh� h � I�ks	s � f �

sQ
j��

Q
h�I

�kj���

j

�zj � zjh	

���	

� The Univariate Discrete Power Moment Problem

The problem is dened as the following LP�

Min �Max	
nP
i��

f�zi	xi

subject to
nP
i��

zki xi � �k� k � �� �� � � � �m

xi � �� i � �� �� � � � � n�

���	

Here known are z�� � � � � zn� f�z�	� � � � � f�zn	 and ��� � � � � �m��� � �
 by denition� The
unknowns are x�� x�� � � � � xn which form a probability distribution with support Z �
fz�� z�� � � � � zng� If X is a random variable with support Z and we know �k � E�Xk	� k �
�� � � � �m
 than the optimum values of problem ���	 provide us with sharp lower and upper
bounds for E�f�X	�� The term �sharp� refers to the fact that knowing only ��� � � � � �m
 no
better bounds can be given to E�f�X	�
 then the optimum values of problems ���	�

If we introduce the notations�

ai �

�
BBBB�

�
zi
���
zmi

�
CCCCA � fi � f�zi	� i � �� � � � � n� b �

�
BBBBBBB�

�
��
��
���
�m

�
CCCCCCCA
�
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then problem ���	 can be written in the form�

Min �Max	
nP
i��

fixi

subject to
nP
i��

aixi � b

xi � �� i � �� � � � � n�

���	

The matrix A � �a�� � � � �an	 is an �m � �	 � �n � �	 Vandermonde matrix
 hence every
collection of m� � vectors of A forms a basis in this LP�

The basis B is said to be feasible if

B��b � � ���	

and dual feasible in the minimization �maximization	 problem if

fi � fTBB
��
ai � ��	 �� i � �� � � � � n� ���	

where fB is the vector of basic components of f � �f�� f�� � � � � fn	T � An inequality in ���	
holds with equality sign if i is the subscript of a basic vector� In what follows IB designates
the set of subscripts of the basic vectors�

For xed B
 consider the m�degree polynomial

LIB �z	 � fTBB
��

�
BBBB�

�
z
���
zm

�
CCCCA � ���	

By the remark made above
 we have the relations

LIB �zi	 � fi � f�zi	� i � IB ���	

and this implies that LIB �z	 is the m�degree Lagarange polynomial corresponding to the
points fzi� i � IBg� The application of formula ��	 gives

f�z	� LIB �z	

� �zi� i � IB� z� f �
Q
i�IB

�z � zi	�
���	

Assume now that all m��st order divided di�erences of f are positive� Then
 from ���	 we
see that f�z	�LIB�z	 �� � for z �� fzi� i � IBg� Since the left hand side of ���	 is the same as
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that of ���	 for z � zi
 it follows that each inequality in ���	 holds stricktly if i �� IB� This
means that all bases in problems ���	����	 are dual non�degenerate�

If we look again at ���	
 we see that the rst factor on the right hand side is positive for
every z �� fzi� i � IBg� Thus
 the basis B is dual feasible in the minimization �maximization	
problem i� Y

i�IB

�z � zi	 � ��	 � for z �� fzi� i � IBg� ���	

This immediately implies

Theorem ���� If the function f has positive divided di�erences of order m��
 then B is
a dual feasible basis to problem ���	����	 i� the subscript set IB has the following structure�

m� � even m� �odd
min i� i� �� � � � � j� j � � �� i� i� �� � � � � j� j � �
max �� i� i� �� � � � � j� j � �� n i� i� �� � � � � j� j � �� n

If B� �B�	 is a dual feasible basis in the minimization �maximization	 problem ���	����	

then we have the inequalities

LB��z	 � f�z	 � LB��z	 z � Z ���	

and
E�LB��X	� � E�f�X	� � E�LB��X	�� ���	

Since LB��z	� LB��z	 are m�degree polynomials
 ���	 provides us with bounds for E�f�X	�

based on the knowledge of the moments ��� � � � � �m� The sharp bounds correspond to bases
B�� B� which are optimal in the linear programs ���	����	�

Remark� If the function f has only nonnegative divided di�erences of order m��
 then
only the one way assertion holds� if IB has the structure in Theorem ���
 then B is a dual
feasible basis in problem ���	����	�

One can immediately derive bounding formulas for the cases where the number of utilized
moments is small� If we only konw ��
 then any dual feasible basis in the minimization
problem has subscripts j� j�� and the only dual feasible basis in the maximization problem
has subscripts �� n� The latter one is optimal in the maximization problem since any LP
that has feasible solution and nite optimum
 has at least one primal�dual feasible basis�
The former one is optimal in the minimization problem if the basis is also primal feasible

the condition for which is� zj � � � zj
�� With this j we have

zj�����
zj���zj

f�zj	 �
���zj
zj���zj

f�zj
�	

� E�f�X	�
� zn���

zn�z�
f�z�	 �

���z�
zn�z�

f�zn	�

���	
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Note that if f�z	 is dened and is convex in the entire interval �z�� zn� and the random
variable may take any value in this interval
 then for E�f�X	� we have Jensen�s inequality

as a lower bound and the Edmundson�Madansky inequality as an upper bound� The latter
one coincides with the upper bound in ���	 while the former one is equal to f���	 which is
di�erent from the lower bound in ���	� In fact
 it is a weaker bound than the one in ���	�

One may formulate the general statment that for a discrete random variable X the
discrete moment bounds are always better than the general moment bounds
 i�e�
 the bounds
that we can obtain as optimum values of the problems

Min �Max	
R zn
z�

f�z	dF �z	

subject toR zn
z�

zkdF �z	 � �k� k � �� � � � �m�
���	

where F �z	 is a probability distribution function with support �z�� zn��

Bounding formulas for the cases when ��� �� or ��� ��� �� are known
 are presented in
section ��� of Pr�ekopa �����	
 for the cases of nonnegative integer valued random variables�
An upper bound can be obtained �along the lines the upper bound in section ����� of the
same book is obtained	 if ��� ��� ��� �� are known
 otherwise we have to use algorithms to
solve the problems�

� Dual algorithm for the solution of problem ����

We adapt the dual algorithm of Lemke �����	 to solve the problem� Assume that f has
positive divided di�erences of order m� ��

The algorithm starts by picking a dual feasible basis� After that
 at each iteration
 one
vector leaves the basis and another one enters
 while the dual feasibility is always preserved�

In the simplex algorithm rst we determine the incoming vector and then the outgoing
vector� In the dual algorithm it is the other way around� Once the outgoing vector has been
determined
 the determination of the incoming vector is very simple� In fact
 if we remove a
vector from the basis
 then
 by Theorem ���
 there is one and only one way to restore dual
feasibility
 by an incoming vector
 and it can be found by a simple search procedure� In view
of this
 we have to concentrate on the problem of identifying an outgoing vector�

Let IB � fi�� i�� � � � � img
 where i� � i� � � � � � im� If

�B��b	k � � ���	
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then aik may be an outgoing vector� Since we have that

b � E

�
�����

�
BBBB�

�
X
���
Xm

�
CCCCA

�
				


B��b � E

�
�����B��

�
BBBB�

�
X
���
Xm

�
CCCCA

�
				


LI�z	 � fTBB
��

�
BBBB�

�
z
���
zm

�
CCCCA �

it follows that
�B��b	k � E�LI�k�X	�� ���	

where LI�k�z	 is the kth Lagrange fundamental polynomial

LI�k�z	 �
Y

j�Infikg

z � zik
zij � zik

� ���	

The sign of the denominator in ���	 equals ���	m�k� Thus
 to determine the sign of ���	 we
have to look at the polynomial Y

j�Infikg

�z � zij	�

replace X for z and take expectation� The obtained value equals

�m �
�P

j�Infikg zij
�
�m��

� � � �� ���	m
Q

j�Infikg zij �

���	

If the value in ���	
 multiplied by ���	m�k
 is negative
 then the kth vector of the basis can
be chosen as the outgoing vector�

The algorithm to solve problem ���	 can be summarized as follows�

Step �� Pick any dual feasible basis in agreement with Theorem ���� Let I � fi�� i�� � � � � img
designate the set of subscripts of the basis vectors�

Determination of the outgoing vector�
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Step �� Take any element ik � I and compute the coe�cients of �m� �m��� � � � � �� in ���	�

Step �� Compute the value in ���	 and multply it by ���	m�ik � If it is negative
 then
aik may be an outgoing vector� Otherwise take another element of I� Repeat until an
outgoing vector is identied� Otherwise go to step ��

Determination of the incoming vector�

Step �� If the outgoing vector is identied
 then nd that vector which restores dual fea�
sibility of the basis� Choose it as the incoming vector� Go to Step ��

Step �� Stop
 we have B��b � 	
 hence the basis is primal feasible too
 i�e�
 it is optimal�
The value fTBB

��b is a lower or upper bound for E�f�X	�
 depending on which type
of dual feasible bases have been used in the algorithm�

Since all bases are dual non�degenerate
 it follows that cycling cannot occur and the
algorithm terminates in a nite number of steps�

Discrete �as well as general	 moment problems are frequently solved for large m�n values

e�g�
 m � �� and n is several hundred or even larger� Since large size Vandermonde matrices
are numerically unstable
 problem���	 cannot always be solved by general purpose LP pack�
ages� This is the reason why we need the above described algorithm to e�ciently solve the
problem� In this algorithm we work with �m� �	 � �m� �	 matrices
 at each iteration and
the calculation of the values ���	 can be carried out in a stable manner
 in a reasonable time

if m 	 ��
 say� At the nal step
 however
 when we compute the optimal value� fTBB

��b

�and not only check the signs of some values	
 special care has to be taken and the use of
special algorithms to solve Vandermonde systems of equations �see
 e�g�
 Chun and Kailath
�����	 and the references there	 are advisable�

If the divided di�erences of order m�� of the function f are only nonnegative
 then the
above described algorithm needs some modication� as long as the dual feasible bases are
dual non�degenerate we do the same as before but whenever dual degeneracy occurs
 some
anti�cycling rule should be applied �see
e�g�
 Pr�ekopa �����	
 Chapter �	�
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� Discrete Binomial Moment Problems and the Use of

Chebyshev Systems

The discrete binomial moment problem can be stated as

Min �Max	
nP
i��

f�zi	xi

subject to
nP
i��

�
zi
k

�
xi � Sk� k � �� � � � �m

xi � �� i � �� � � � � n�

���	

where

Sk � E

�
X

k

��
���	

is the kth binomial moment of the random variable with support set fz�� z��
� � � � zng� We have the relations� S� � ��� S� �

�
�
��� � ��	� S� �

�

��� � ��� � ���	 etc� In

view of these and similar relations between the binomial coe�cients and powers
 the equality
constraints of problem ���	 can be transformed into those of problem ���	 �ansd vice versa	
by simple linear transformation� This implies that if the m � �st order divided di�erences
of the function f are positive
 then Theorem ��� holds true
 further
 B is dual �primal	 fea�
sible in problem ���	 i� it enjoys the same property in problem ���	� Thus
 we can nd an
optimal basis to problem ���	 by nding one to problem ���	� However
 there are important
problems of the type ���	
 where the above condition
 for the function f 
 does not hold�

The binomial moment problems are connected with n events A�� � � � � An and the random
variable

X � X� � � � ��Xn�

where

Xi �

�
�� if Ai occurs
�� otherwise� i � �� � � � � n�

A frequently asked question is� what is the probability that at least one out of the n events
occur� One answer to this question is given by the inclusion�exclusion formula�

P �A� 
 � � � 
 An	

�
nP

k��
���	k��

P
��i������ik�n

P �Ai� � � � � � Aik	�
���	
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However
 terms corresponding to large k values are freqently impossible to compute and in
such cases we have to be satised with bounds� We make use of the following�

Theorem ���� The following equations hold true�

Sk � E
h�

X

k

�i
�

P
��i������ik�n

P �Ai� � � � � � Aik	�
���	

To obtain bounds for the probability of the union A� 
 � � � 
 An we may proceed in the
following way� We formulate the linear programs

Min �Max	
nP
i��

xi

subject to
nP
i��

�
i

k

�
xi � Sk� k � �� � � � �m

xi � �� i � �� � � � � n�

���	

If we compare problems ���	 and ���	
 where in problem ���	 we have zi � i� f�i	 � �� i �
�� � � � � n� f��	 � �
 we see that the di�erence is that in problem ���	 the constraint of S� and
the variable x� are missing� On the other hand
 we can establish relationships between the
optimum values of the two problems�

Let Vmin�Vmax	 designate the optimum value of the minimization �maximization	 problem
in ���	� It is easy to see that the optimum value of the minimization problem���	 is the
same Vmin
 while the optimum value of the maximization problem ���	 is min�Vmax� �	� In
view of this relationship we work with problem ���	 rather than with problem ���	� The
sharp bounds for the union are given by the inequalities�

Vmin � P �A� 
 � � � 
 An	 � min�Vmax� �	� ���	

Discrete moment problems
 more general than the power or binomial moment problems
can be formulated by the use of the concept of a discrete Chebyshev system�

De
nition� We say that the functions g��z	� g��z	� � � � � gk�z	� z � Z form a �discrete
variable	 Chebyshev system if for every z� � z� � � � � � zk we have����������

g��z�	 g��z�	 � � � g��zk	
g��z�	 g��z�	 � � � g��zk	

���
���

���
gk�z�	 gk�z�	 � � � gk�zk	

����������
� �� ���	

If only the � sign holds in ���	
 then we call it a weak Chebyshev system� For more details
about Chebyshev systems the reader is referred to Karlin� Studden �����	 or Krein� Nudel�
man �����	�



Page �� RRR �������

De
nition� Let g��z	� g��z	� � � � � gk���z	� z � Z be a Chebyshev system� We say that
the function f�z	� z � Z is convex of order k with respect to this Chebyshev system if for
every zi� � zi� � � � � � zik we have�������������

g��zi�	 g��zi�	 � � � g��zik	
g��zi�	 g��zi�	 � � � g��zik	

���
���

���
gk���zi�	 gk���zi�	 � � � gk���zik	
f�zi�	 f�zi�	 � � � f�zik	

�������������
� �� ���	

If always the strict inequality holds
 then f is said to be strictly convex of order k with
respect to the system g��z	� g��z	� � � � � gk���z	�

Now we formulate the discrete moment problem�

Min �Max	
nP
i��

f�zi	xi

subject to
nP
i��

gk�zi	xi � �k� k � �� �� � � � �m

xi � �� i � �� �� � � � � n�

���	

where g��z	� g��z	� � � � � gm�z	� z � Z form a Chebyshev system and the function ���	m
�f�z	�
z � Z is strictly convex of order m � � with respect to this system� This means that if in
���	
 written up for k � m � �
 we put f�zi�	� f�zi�	� � � � � f�zim	 in the rst row
 then the
resulting determinant is always strictly positive�

A dual feasible basis structure theorem
 similar to Theorem ���
 can be derived for prob�
lem ���	� We will enunciate it at the end of the derivation�

In what follows
 we use problem ���	 as another form of problem ���	� Let B be a basis
in problem ���	� In view of the formula

�
� fTB
� B

���

�

�
� �fTBB

��

� B��

�
�

we may write �
� fTB
� B

��� �
fi
ai

�
�

�
fi � fTBB

��
ai

B��
ai

�
�

or

�
� fTB
� B

��
fi � fTBB

��
ai

B��
ai

�
�

�
fi
ai

�
�
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If we use Cramer�s rule
 we obtain the relation for fi � fTBB
��
ai
 the rst component of the

solution of the above system of linear equations�

fi � fTBB
��
ai �

�

jBj

����� fi fTB
ai B

����� � ���	

where jBj designates the determinant of the matrix B�

Let IB designate the subscript set of the basic vectors� If i � IB
 then the value in ���	 is
�� If i �� IB
 then
 by assumption
 jBj � � and since the columns of the second determinant
are columns of a positive determinant
 if suitably rearranged
 it follows that the right hand
side of ���	 is di�erent from �
 and thus
 all bases are dual nondegenerate�

If we look at a minimization problem
 then B is dual feasible i� ���	 is positive for every
i �� IB� This immediately implies that if m � � is even
 then the basic vectors form con�
secutive pairs and if m is odd
 then any basis consists of consecutive pairs and an� Similar
statement holds for the maximization problem� Both cases are summarized in the following

Theorem ���� The basis B is dual feasible in problem ���	 i� the subcript set IB of the
basic vectors has the following structure�

m� � even m� �odd
min i� i� �� � � � � j� j � � �� i� i� �� � � � � j� j � �
max �� i� i� �� � � � � j� j � �� n i� i� �� � � � � j� j � �� n

Before presenting the application of this theorem
 we state another one on binomial co�
e�cients�

Theorem ��� �Gessel and Viennot �����	
 Pr�ekopa �����		� Consider the matrix

D �

�
BBBBBBBBBBB�

� � � � � � � � �
� � � � � � � n

�
�
�
�

� �
�
�

�
� � �

�
n

�

�
�

�
�
�

�
� � �

�
n

�

�
� � � �

n

n

�

�
CCCCCCCCCCCA
� ���	

All minors �determinants of square submatrices	 of D that have all positive entries in the
main diagonal
 are positive�

Corollary� Consider the following submatrix of D�



Page �	 RRR �������

E �

�
BBBBBBB�

� � � � � � � � � � � � �
� � � � � � � m m� � � � � n

�
�
�
�

� �
�
�

�
� � �

�
m

�

� �
m

�

�
� � �

�
n

�

�
� � � � � � � � � � � �

�
�
m
�
m

�
� � �

�
n

m

�

�
CCCCCCCA
�

Theorem ��� implies that all minors of order m� � from E and all minors of order m from
the last m rows of E are positive�

The above Corollary can be applied to discover the collection of dual feasible bases of
problems ���	� In fact
 the Corollary implies that if Z � f�� �� � � � � ng
 then the functions

gk�i	 �
�
i

k

�
� i � Z� k � �� � � � �m form a Chebyshev system and the constant function ���	m

is strictly convex of order m with respect to this system� Thus 
 Theorem ��� implies

Theorem ���� The basis B is dual feasible in problem ���	 i� the subscript set IB has
the structure in Theorem ���
 where m� � is replaced by m and � is replaced by ��

As special cases we can easily derive the classical bounding formulas for the probability
of the union
 if m � �� In the minimization problem any dual feasible basis consists of two
consicutive vectors� In order tond out which one of them is primal feasible
 i�e�
 optimal

we have to look for that i
 for which the solution of the equations�

ixi � �i� �	xi
� � S��
i

�

�
xi �

�
i� �

�

�
xi
� � S�

satises xi � �� xi
� � �� It turns out that this i equals

i � � �
�
�S�

S�

�
� ���	

The lower bound
 i�e�
 the sum of x� and x� is

�

i� �
S� �

�

i�i� �	
S�� ���	

This result was rst established by Dawson and Sanko� �����	�
As regards the maximization problem
 there is just one dual feasible basis and it corre�

sponds to the subscript set f�� ng� If we solve the equation

x� � nxn � S��
n

�

�
xn � S�
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and add x� and x�
 then we obtain the upper bound for the union�

S� �
�

n
S�� ���	

It is interesting to remark that the classical Bonferroni inequalities

P �A� 
 � � � 
An	 � S� � S� � � � �� Sm�� � Sm ���	

if m is even and

P �A� 
 � � � 
 An	 � S� � S� � � � �� Sm�� � Sm�� � Sm � ���	

if m is odd
 can also be derived from problems ���	� In fact
 the basis corresponding to
IB � f�� �� � � � �mg is dual feasible in the minimization problem
 if m is even and dual fea�
sible in the maximization problem
 if m is odd and the right hand side values in ���	 and
���	 are the corresponding objective function values�

For further closed form inequalities
 derived from problem ���	
 see Kwerel �����a
 b	

Boros and Pr�ekopa �����	
 Pr�ekopa �����	�

If we look for the probability that at least r or exactly r out of n events occur
 then to
obtain bounds for them we have to use problem ���	 or ���	
 for the cases of Z � f�� �� � � � � ng
and the functions

f�i	 �

�
�� if i � r
�� if i � r

���	

and

f�i	 �

�
�� if i � r
�� if i �� r�

���	

However
 these functions do not have all positive or all negative divided di�erences on Z

hence the above theory cannot directly be applied to these cases� Still
 the collection of dual
feasible bases is known in these cases too and dual methods for the solution of the relevant
moment problems have been developed �see Pr�ekopa �����a
b
����		�

� Multivariate Discrete Moment Problems

Let X�� � � � �Xs be random variables with supports Z�� � � � � Zs
 respectively
 and introduce
the notations

xi����is � P �X� � z�i�� � � � �Xs � zsis	
� � ij � nj � j � �� � � � � s

���	

�������s �
n�X
i���

� � �
nsX
is��

z���i� � � � z
�s
sis
xi����is� ���	
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where ��� � � � � �s are nonnegative integers� The number �������s is called the ���� � � � � �s	�
order moment of the random vector �X�� � � � �Xs	 and �� � � � � � �s the total order of the
moment�

We are looking for lower and upper bounds on

E �f�X�� � � � �Xs	� � ���	

where f is some function dened on the discrete set Z� In most cases f is supposed to be
some multivariate higher order convex function or one of the following types�

f�z�� � � � � zs	 �

�
�� if zi � zri� i � �� � � � � s
�� if otherwise

���	

and

f�z�� � � � � zs	 �

�
�� if zi � zri
�� if otherwise�

���	

The choice of the function ���	 enables us to create bounds for P �X� � zr�� � � � �Xs � zrs	

while the function ���	 is used for bounding P �X� � zr�� � � � �Xs � zrs	�

We formulate two variants for the multivariate discrete power moment problem� For the
sake of simplicity we introduce the notation fi����is � f�z�i�� � � � � zsis	� The rst problem is

Min �Max	
n�P
i���

� � �
nsP
is��

fi����isxi����is

subject to
n�P
i���

� � �
nsP
is��

z���i� � � � z
�s
sis
xi����is � �������s

for � � �j � mj� j � �� � � � � s
xi����is � �� all i�� � � � � is�

���	

The second problem is

Min �Max	
n�P
i���

� � �
nsP
is��

fi����isxi����is

subject to
n�P
i���

� � �
nsP
is��

z���i� � � � z
�s
sis
xi����is � �������s

for �j � �� j � �� � � � � s� �� � � � ��s � m
xi����is � �� all i�� � � � � is�

���	
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In these problems the moments �������s are supposed to be known and the decision vari�
ables are the unknown probabilities xi����is� The two problems di�er only in the assumptions
regarding ��� � � � � �s� The assumption in problem ���	 is more natural than the one in ���	�
In fact
 if
 e�g�
 s � �
 then it is natural to assume that we know all moments up to the
second order� E�X�	� E�X�	� E�X

�
� 	� E�X

�
� 	� E�X�X�	
 as required in problem ���	
 rather

than the collection of moments that appears in problem ���	 for m� � ��m� � ��

However
 it is much easier to create dual feasible bases for problem ���	
 than for prob�
lem ���	� The reason is that we can easily create bases for problem ���	 by forming the
tensor product of univariate bases and if the function f is the product of s suitably dened
univariate functions
 then we may derive dual feasible basis structure theorems
 by the use of
the univariate counterparts� Bases of problem ���	 which are tensor products of univariate
bases will be called rectangular�

Assume now that the function f is of the form

f�z�� � � � � zs	 � f��z�	 � � � fs�zs	� ���	

Under this assumption the following two theorems �see Pr�ekopa �����		 provide us with
simple methods to construct lower and upper bounds for the value���	� Before formulating
the statments we write up the univariate discrete moment problems corresponding to the
components of the random vector �X�� � � � �Xs	�

Min �Max	
njP
i��

fj�zji	xi

subject to
njP
i��

z�jixi � ��j	� � � � �� �� � � � �mj

xi � �� i � �� �� � � � � nj�

���	

where ��j	� � E�X�
j 	� � � �� �� � � � �mj� j � �� � � � � s�

Theorem ���� Suppose that fj�z	 � � for all z � Zj � j � �� � � � � s� If for each
j �� � j � s	 we are given a Bj that is dual feasible relative to the maximization prob�
lem ���	
 then their tensor product B � B�� � � � �Bs is a dual feasible basis relative to the
maximization problem ���	�

Moreover
 if Ij is the set of subscripts of Bj and LIj �z	 is the corresponding Lagrange
polinomial
 then we have the inequality

E�f�X�� � � � �Xs	� � E�LI��X�	 � � �LIs�Xs	� ���	
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Theorem ���� If we replace the assumptions fj�z	 � �� z � Zj by the assumptions
LIj �z	 � �� z � Zj 
 in Theorem ���
 and write minimization instead of maximization
 then
the assertion of the theorem holds true with reversed inequality in ���	�

For the cases of problem ���	 we have only a few types of dual feasible bases� We brie�y
mention what are these but disregard their detailed presentation� The interested reader may
consult with the paper Pr�ekopa �����	�

If we write up problem ���	 in a more compact form
 then each column of the matrix of
the equality constraints can be represented by a subscript vector �i�� � � � � is	� Let I designate
the subscript set of a basis�

Assumption� All divided di�erences of f�z�� � � � � zs	� �z�� � � � � zs	 � Z��� � ��Zs of total
order m� � are nonnegative and all moments �������s of total order m are known�

Under this assumption we have the following dual feasible basis sreucture�

I � f�i�� � � � � is	jij � �� j � �� � � � � s� i� � � � � � is � mg

is a dual feasible basis subscript set for minimization problem���	�

I � f�i�� � � � � is	j� � ij � nj � j � �� � � � � s� n�i� � � � �� ns � is � mg

is a dual feasible basis subscript set in the minimization �maximization	 problem ���	
 if
m� � is even �odd	�

If we write up the Lagrange polynomial corresponding to the points

�z�i�� � � � � zsis	� �i�� � � � � is	 � I�

replace Xj for zj� j � �� � � � � s and take expectation
 then we obtain a lower �upper	 bound
for the value ���	 if I corresponds to a minimization �maximization	 problem�

The bounds
 corresponding to these bases
 are not sharp
 however� The sharp bounds
can be obtained if we carry out the dual method starting form these bases� An algorithm

similar to that presented in Section �
 can be designed for these cases too� More dual feasible
bases are presented in Nagy and Pr�ekopa �����	
 for the bivariate case�

We can combine the two problems ���	
 ���	 in such a way that we rely on the simpler
problem ���	 to nd good dual feasible bases but we use moments of total order m� We
illustrate the procedure in case of s � �
 for the sake of simplicity� We assume that all
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divided di�erences of f�z�� z�	
 of total order at most m� �
 are nonnegative�

First we pick some functions f��z�	� f��z�	� � � � � fm�z�	� g��z�	� g��z�	� � � � � gm�z�	
 where
we assume that fi�z�	 and gi�z�	 have nonnegative divided di�erences of order i � �
 as
single�variable functions� We may choose these functions
 e�g�
 in such a way that we pick
m�� values for z� � z��� z��� � � � � z�m and form fi�z�	 � f�z�� z�i	� i � �� �� � � � �m� and do the
same with the rst variable to obtain gi�z�	 � f�z�i� z�	� i � �� �� � � � �m�

Assume that all functions fi�z�	gm�i�z�	 and their lower bounding polynomials are non�
negative�

The next step is to write up the linear programming problem

Min
mP
i��

E�fi�X�	gm�i�X�	�yi

subject to
mP
i��

fi�z�	gm�i�z�	yi � f�z�� z�	� �z�� z�	 � Z� � Z�

mP
i��

yi � �

yi � �� i � �� �� � � � �m�

���	

if we want to nd upper bound for E�f�X��X�	� or

Max
mP
i��

E�fi�X�	gm�i�X�	�yi

subject to
mP
i��

fi�z�	gm�i�z�	yi � f�z�� z�	� �z�� z�	 � Z� � Z�

mP
i��

yi � �

yi � �� i � �� �� � � � �m�

���	

if we want to nd lower bound�

Each term fi�z�	gm�i�z�	 in problems ���	
���	 can be bounded from above �below	 by
the product of two polynomials with degrees i and m � i
 respectively� If we replace the
terms fi�z�	gm�i�z�	 by the upper bounding polynomials in the constraints and lower bound�
ing polynomials in the objective function and then solve problem ���	
 then the optimum
value is a lower bound for E�f�X��X�	�� An upper bound for E�f�X��X�	� can be obtained
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from Problem ���	 in a similar way�

The multivariate binomial moment problems are very similar to problems ���	
 ���	
 we

only have to replace z�kkik by
�
zkik
�k

�
� In the simplest case we take Zi � f�� �� � � � � nig� These

problems are suitabale to create bounds for Boolean functions of nite sequences of events
Ai�� � � � � Aini� i � �� � � � � s�

We can improve on the univariate discrete moment bounds
 that can be obtained for a
single sequence of events A�� � � � � An
 in such a way that we subdivide these sequence into s
subsequences and create the multivariate bounds� If each subsequence consists of one sin�
gle event�
 then we obtain the Boolean probability bounding scheme �see Pr�ekopa
 Vizv�ari

Reg�os �����		�

� Applications

Probability bounds based on discrete moment problems have been applied to a large number
of practical problems� Among these which use LP formulation and higher order moments we
mention the reliability bounds for transportation systems�Pr�ekopa and Boros �����		
 com�
munication systems �Pr�ekopa
 Boros and Lih �����		
 PERT problem �Pr�ekopa and Long
�����		 and the use of probability bounds for probabilistic constrained stochastic program�
ming problems �Pr�ekopa �����		� In this section we present some applications in economics
and nance�

A utility function u�z	 usually indicates a function with the property that u��z	 � �
and u���z	 � �� Some authors �see
 e�g�
 Ingersoll �����		 argue
 however
 that in a stan�
dard situation the higher order derivatives of the function u�z	 also satisfy u�k	 � � for k
odd and u�k	 � � for k even� Having this property and a discrete random variable X
 we
can create lower and upper bounds for E�u�X	� for any number m for which the moments
�k � E�Xk	� k � �� � � � �m are known� For an odd m we use the discrete moment expectation
bounds in their original form while for an even m we create the bounds for E��u�X	� and
then take the negatives of the bounds� If m � �
 then we can present the formulas in closed
forms
 otherwise we obtain them by executing the algorithm presented in Section ��

An interesting
 new eld of application is the valuation of nancial instruments
 e�g�

options�

Bounding option prices �values	 has a past history� Without aiming completeness
 we
mention the papers by Ritchken �����	
 Lo �����	
 Grundy �����	
 Zhang �����	
 and Dul�a
�����	� The bounds
 presented in these papers
 are based on continuous moment problems

where mostly the knowledge of the rst two moments is assumed� The paper by Dul�a uses
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multivariate distribution and assumes the knoeledge of the expectations and the covariance
matrix� The paper by Grundy �����	 presents results where higher order moment is used
but it is the nth moment alone the knowledge of which is assumed�

Bounding option prices is important because the assumption that the price of the asset
follows geometric Brownian motion proves to be invalid in some cases and no other analytic
form may be available to replace it� However
 from past history data we may obtain moment
information and
 working with discrete random variables
 we can obtain quite good bounds

even if the number of utilized moments is small�

We illustrate the moment bound construction on the European call option� Let us intro�
duce the notations�

t � time now
T � future time
 expiration of option
S�t	 � price of underlying asset now
S�T 	 � random future price of asset
K � striking price
r � rate of interest
 we assume continuous compounding
c � price of the option�

If we use �risk neutral valuation�
 then the price of the option is given by the equation�

c � e�r�T�t	E��S�T 	�K�
jS�t	 � s	� ���	

The Black�Scholes formula gives the value of c for the case where S�� 	� � � � has the
form

S�� 	 � S��	e�Z��	
�� � ���	

where Z�� 	� � � � is the standard Brownion motion process
 i�e�
 �a	 Z��	 � �
 �b	 the
process has independent increments
 �c	 Z�� 	 has the distribution N��� � 	 and 	 � �� � are
constants �see Black and Scholes �����		� The process ���	 is called multiplicative Brownion
motion process�

Now we drop the assumption that S�� 	� � � � is a multiplicative Brownion motion
process� Let t � �
 for the sake of simplicity and assume that S�T 	 has the form

S�T 	 � e�Z
	� ���	

where Z is a random variable with support f���� ��� � � � � n�g with � � �� We also assume
that there exists an h such that

e�h�
	 �K � �� ���	

Thus
 the payo� is �
 if Z � h� and is e�k� �K
 if Z � k � h� We present two methods
for bounding the option price c�
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In the rst method we assume that the rst m conditional moments of Z
 given that
e�Z
	 � K
 are known� Let 
�� � � � � 
m designate them� Here too
 
� � �
 by denition�
Since we have the equation

c � e�rTE��S�T 	�K�
	
� e�rTE�e�Z
	 �Kje�Z
	 � K	P �e�Z
	 � K	�

���	

we derive lower and upper bounds for the factors in the second line of ���	
 for c� The bounds
for E�e�Z
	 �Kje�Z
	 � K	 are the optimum values of the LP�s�

Min �Max	
nP
i�h

�e�i�
	 �K	xi

subject to
nP
i�h

�i�	kxi � 
k� k � �� �� � � � �m

xi � �� i � h� � � � � n�

���	

Note that the function

f�i	 � e�i�
	 �K� i � h� � � � � n

has positive divided di�erences of all orders that can be dened on the support set fh� � � � � ng�
Thus 
 there is no limitation
 from this point of view
 regarding the number of moments that
we can use in the bounding LP�

The lower and upper bounds for

P �e�i�
	 � K	 � P �
�

�
Z � h� �	

can be based on the moments

�k �
�

�k
E�Zk	� k � �� �� � � � �m�

using the discrete moment problems ���	 with the function ���	 and r � h� ��

The bounds
 obtained this way for the option price c
 may not be tight enough because we
get them as products of bounds obtained by the use of two separate optimization problems�

In the second method we assume that we know the rst m moments of Z� ��� � � � � �m�
To obtain bounds for c we solve the LP�s�

Min �Max	
nP
i��

�e�i�
	 �K�
xi

subject to
nP
i��

�i�	kxi � �k� k � �� �� � � � �m

xi � �� i � �� �� � � � � n�

���	
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Our discrete moment problem methodology
 however
 requires that the coe�cients in
the objective function of problem ���	 should have positive or at least nonnegative divided
di�erences of order m � �� We will prove that
 under some condition
 this function has
nonnegative divided di�erences of order m� ��

We keep the assumption
 mentioned in the rst method
 that for some positive integer
h �� � h � n	 we have the equality e�h�
	 � K�

Theorem ���� The function

f�i�	 � �e�i�
	 �K�
� i � �� �� � � � � n ���	

has positive divided di�erences of order up to m
 if

� �
lnm

�
�

Proof� Since the support set f���� ��� � � � � n�g has equidistant points
 it is enough to
show the nonnegativity of the di�erences �rather than the divided di�erences	 of order up
to m� In addition
 we may look at the function

g�i	 � e�	f�i�	� i � �� �� � � � � n�

instead of the function ���	
 and prove the assertion for this
 where the suport set is
f�� �� � � � � ng�

It is well�known that the kth order di�erences of any function g �dened on integers	

corresponding to the points x� x� �� ���� x� k
 is given by the formula

�kg�x	 �
kX
i��

���	k
�
k

i

�
g�x� k � i	� ���	

Using ���	 we can derive the following results for our function g� If x � h
 then g�i	 �
e�i� � e�h�� i � x� x � �� � � � � x � k
 hence we have �kg�x	 � �� If
 on the other hand

x� k � h
 then trivially �kg�x	 � �� if x � h and x� k � h
 then

�kg�x	 �
x
k�hP
i��

���	i
�
k

i

�
g�x� k � i	

�
x
k�hP
i��

���	i
�
k

i

� �
e��x
k�i	� � e�h�

�

� e�h�
x
k�hP
i��

���	i
�
k

i

� �
e��x
k�h�i	� � �

�
�

���	
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The last term in the above sum is zero but we keep it
 if x� k�h is odd
 otherwise we drop
it� It is well�known that

�
jX

i��

���	i
�
k

i

�
� �

for any odd j � k� This implies that if x� k � h is odd then

�kg�x	 � e�h�
x
k�hX
i��

���	i
�
k

i

�
e��x
k�h�i	��

and if x� k � h is even
 then

�kg�x	 � e�h�
x
k�h��X

i��

���	i
�
k

i

�
e��x
k�h�i	��

In both cases we combine each term
 corresponding to an even i
 with the next term� Any
combined terms are nonnegative if

k � i

i� �
� e��� ���	

Since �k � i	��i� �	 is decreasing in i
 its greatest value corresponds to i � �
 it follows
that the di�erence ���	 is positive
 if

� �
ln k

�
� ���	

Since we have assumed ���	 to hold for k � m
 it follows that it holds for every k � m�
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