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On Convex Probabilistic Programming

with Discrete Distributions

Darinka Dentcheva Andr�as Pr�ekopa Andrzej Ruszczy�nski

Abstract� We consider convex stochastic programming problems with probabilistic
constraints involving integer�valued random variables
 The concept of a p�e�cient
point of a probability distribution is used to derive various equivalent problem for�
mulations
 Next we introduce the concept of r�concave discrete probability distri�
butions and analyse its relevance for problems under consideration
 These notions
are used to derive lower and upper bounds for the optimal value of probabilisti�
cally constrained convex stochastic programming problems with discrete random
variables
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� Introduction

Let f � Rn � R and g � Rn � R
m be concave functions� and let D be a closed convex set� If

in the convex program

max f	x

subject to g	x
 � ��

x � D�

the vector � is random� we require that g	x
 � � shall hold at least with some prescribed
probability p � 	�� �
� rather than for all possible realizations of the right hand side� This
leads to the convex programming problem with probabilistic constraints�

max f	x

subject to Pfg	x
� �g � p�

x � D�
	�


where the symbol P denotes probability� Programming under probabilistic constraints was
initiated by Charnes� Cooper and Symonds in ��
� They formulated probabilistic constraints
individually for each stochastic constraint� Joint probabilistic constraints for independent
random variables were used �rst by Miller and Wagner in ���
� The general case was intro�
duced and �rst studied by the second author of the present paper in ���� ��
�

Much is known about problem 	�
 in the case where � has a continuous probability
distribution 	see ���
 and the references therein
� However� the convex case with a discrete
distribution has not been addressed yet�

Although we concentrate on integer random variables� all our results easily extend to
other discrete distributions with non�uniform grids� under the condition that a uniform
lower bound on the distance of grid points in each coordinate can be found�We use ZZ and
ZZ� to denote the set of integers and nonnegative integers� respectively� The inequality ���
for vectors is always understood coordinate�wise�

� p�E�cient Points

Let us de�ne the set

Zp � fy � Rs � P	� � y
 � pg� 	�


Clearly� problem 	�
 can be compactly rewritten as

max f	x

subject to g	x
 � Zp�

x � D�
	�


The structure of Zp needs to be analysed in more detail� Let F denote the probability
distribution function of �� and Fi the marginal probability distribution function ofthe ith
component �i� By assumption� the set Z of all possible values of the random vector � is
included in ZZ

s� We shall use the concept of a p�e�cient point� introduced in ���
�
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De�nition ��� Let p � ��� �
� A point v � Rs is called a p�e�cient point of the probability
distribution function F � if F 	v
 � p and there is no y � v� y �� v such that F 	y
 � p�

Obviously� for a scalar random variable � and for every p � 	�� �
 there is exactly one p�
e�cient point� the smallest v such that F 	v
 � p� Since F 	v
 � Fi	vi
 for every v � Rs and
i � �� � � � � s� we have the following result�

Lemma ��� Let p � 	�� �
 and let li be the p�e�cient point of the one�dimensional marginal
distribution Fi� i � �� � � � � s� Then every v � Rs such thatF 	v
 � p must satisfy the inequality
v � l � 	l�� � � � � ls
�

Rounding down to the nearest integer does not change the value of the distribution function�
so p�e�cient points of a random vector with all integer components 	shortly� integer random
vector
 must be integer� We can thus use Lemma ��� to get the following fact�

Theorem ��� For each p � 	�� �
 the set of p�e�cient points of an integer random vector
is nonempty and �nite�

Proof� The result follows from Dickson�s Lemma ��� Cor� ����
 and Lemma ���� �

Let p � 	�� �
 and let vj� j � J � be all p�e�cient points of �� By Theorem ���� J is a
�nite set� Let us de�ne the cones

Kj � vj �Rs
�� j � J�

Remark ��� Zp �
S

j�J Kj �

Proof� If y � Zp then either y is p�e�cient or there exists an integer v � y� v �� y� v � Zp�
By Lemma ���� one must have l � v� Since there are only �nitely many integer points
l � v � y one of them� vj� must be p�e�cient� and so y � Kj � � Thus� we obtain 	for
� � p � �
 the following disjunctive formulation of 	�
�

max f	x

subject to g	x
 �

S
j�J Kj �

x � D�
	�


Its main advantage is an insight into the nature of the non�convexity of the feasible set�
A straightforward way to solve 	�
 is to �nd all p�e�cient points vj� j � J � and to process

all convex programming problems

max f	x

subject to g	x
 � vj�

x � D�
	�


Specialized bounding�pruning techniques can be used to avoid solving all of them�
For multi�dimensional random vectors � the number of p�e�cient points can be very large

and their straightforward enumeration � very di�cult� It would be desirable� therefore� to
avoid the complete enumeration and to search for promising p�e�cient points only� We shall
return to this issue in section ��
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� r�Concave Discrete Distribution Functions

Since the set Zp need not be convex� it is essential to analyse its properties and to �nd
equivalent formulations with more convenient structures� To this end we shall recall and
adapt the notion of r�concavity of a distribution function� It uses the generalized mean
function mr � R��R�� ��� �
� R de�ned as follows�

mr	a� b� �
 � � for ab � ��

and if a � �� b � �� � � � � �� then

mr	a� b� �
 �

����
���

a�b��� if r � ��
maxfa� bg if r ���

minfa� bg if r � ���

	�ar � 	�� �
br
��r otherwise�

De�nition ��� A distribution function F � Rs � ��� �
 is called r�concave� where r �
�����
� if

F 	�x� 	�� �
y
 � mr	F 	x
� F 	y
� �


for all x� y � Rs and all � � ��� �
�

If r � �� we call F quasi�concave� for r � � it is known as log�concave� and for r � � the
function F is concave in the usual sense�

The concept of a log�concave probability measure 	the case r � �
 was introduced and
studied in ���� ��
� The notion of r�concavity and corresponding results were given in ��� �
�
For detailed description and proofs� see ���
�

By monotonicity� r�concavity of a distribution function is equivalent to the inequality

F 	z
 � mr	F 	x
� F 	y
� �


for all z � �x � 	� � �
y� Clearly� distribution functions of integer random variables are
not continuous� and cannot be r�concave in the sense of the above de�nition� Therefore� we
relax De�nition ��� in the following way�

De�nition ��� A distribution function F is called r�concaveon the set A 	 R
s with r �

�����
� if

F 	z
 � mr	F 	x
� F 	y
� �


for all z� x� y � A and � � 	�� �
 such that z � �x � 	�� �
y�

To illustrate the relation between the two de�nitions let us consider the case of integer
random vectors which are roundups of continuously distributed random vectors�
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Remark ��� If the distribution function of a random vector � is r�concave on Rs then the
distribution function of � � d�e is r�concave on ZZ

s�

The last property follows from the observation that at integer points both distribution func�
tions coincide� For the relations between the r�concavity of the distribution function of � and
the r�concavity of its density the Reader is referred to ��� �� ��
� The concept of r�concavity
on a set can be used to �nd an equivalent representation of the set Zp given by 	�
�

Theorem ��� Let Z be the set of all possible values of an integer random vector �� If the
distribution function F of � is r�concave on Z � ZZ

s
�� for some r � �����
� then for every

p � 	�� �
 one has

Zp � fy � Rs � y � z �
X
j�J

�jv
j�
X
j�J

�j � �� �j � �� z � ZZ
sg�

where vj� j � J � are the p�e�cient points of F �

Proof� By the monotonicity of F we have F 	y
 � F 	z
 if y � z� It is�therefore� su�cient
to show that P	� � z
 � p for all z � ZZ

s such that z �
P

j�J �jv
j with �j � ��

P
j�J �j � ��

We consider �ve cases with respect to r�

Case �� r � �� It follows from the de�nition of r�concavity that F 	z
 � maxfF 	vj
� j �
J � �j �� �g � p�

Case 	� r � ��� Since F 	vj
 � p for each index j � J such that �j �� �� the assertion
follows as in Case ��

Case 
� r � �� By the de�nition of r�concavity�

F 	z
 �
Y
j�J

�F 	vj

�j �
Y
j�J

p�j � p�

Case �� r � 	��� �
� By the de�nition of r�concavity�

�F 	z

r �
X
j�J

�j �F 	v
j

r �

X
j�J

�jp
r � pr�

Since r � �� we obtain F 	z
 � p�

Case ��r � 	���
� By the de�nition of r�concavity�

�F 	z

r �
X
j�J

�j �F 	v
j

r �

X
j�J

�jp
r � pr�
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� Under the conditions of Theorem ���� problem 	�
 can be formulated in the following
equivalent way�

max f	x
 	�


subject to x � D� 	�


g	x
 � z� 	�


z � ZZ
s� 	�


z �
X
j�J

�jv
j� 	��


X
j�J

�j � �� 	��


�j � �� j � J� 	��


So� the probabilistic constraint has been replaced by linear equations and inequalites� to�
gether with the integrality requirement 	�
�This condition cannot be dropped� in general� If �
takes values on a non�uniform grid� condition 	�
 should be replaced by the requirement that
z is a grid point� The di�culty comes from the implicitly given p�e�cient points vj� j � J �
Our objective will be to avoid their enumeration and to develop an approach that generates
them only when needed� An obvious question arises� which distributions are r�concave in
our sense� We devote the remaining part of this section to some useful observations on this
topic�

Directly from the de�nition and H�older�s inequality we obtain the following property�

Remark ��� If a distribution function F is r�concave on the set A 	 R
s with some r �

�����
� then it is 	�concave on A for all 	 � ���� r
�

For binary random vectors we have the strongest possible property�

Proposition ��	 Every distribution function of an s�dimensional binary random vector is
r�concave on ZZ

s
� for all r � �����
�

Proof� Let x� y � ZZ
s
�� � � 	�� �
 and let z � �x�	���
y� By projecting x and y on f�� �gs

we get some x� and y� such that F 	x�
 � F 	x
� F 	y�
 � F 	y
 and z � �x� � 	�� �
y�� Since
z is integer and x� and y� binary� then z � x� and z � y�� Thus F 	z
 � max	F 	x�
� F 	y�

 �
max	F 	x
� F 	y

� Consequently� F is ��concave and the result follows from Remark ���� �
For scalar integer random variables our de�nition of r�concavity is related to log�concavity
of sequences� A sequence pk� k � � � � ���� �� �� � � � � is called log�concave� if p�k � pk��pk�� for
all k� By ��
 	see also ���� Thm� �����

 and Remark ���� we have the following property�

Proposition ��
 Suppose that for a scalar integer random variable � the probabilities pk �
Pf� � kg� k � � � � ���� �� �� � � � � form a log�concave sequence� Then the distribution function
of � is r�concave on ZZ for every r � ���� �
�
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Many well�known one�dimensional discrete distributions satisfy the conditions of Proposition
���� the Poisson distribution� the geometrical distribution� the binomial distribution ���� p�
���
�

We end this section with su�cient conditions for the r�concavity of the joint distribution
function in the case of integer�valued independent subvectors� Our assertion� presented in
the next proposition is the discrete version of an observation from ���
� The same proof�
using H�older�s inequality� works in our case as well�

Proposition ��� Assume that � � 	��� � � � � �L
� where the sl�dimensional subvectors �l�
i � l� � � � � L� are independent 


PL
l�� sl � s�� Furthermore� let the marginal distribution

functions Fl � Rsl � ��� �
 be rl�concave on sets Al 	 ZZ
sl �


i� If rl � �� l � �� � � � � L� then F is r�concave on A � A� � 
 
 
 � ALwith

r �
�PL

l�� r
��
l

���
�


ii� If rl � �� l � �� � � � � L� then F is log�concave on A � A� � 
 
 
 � AL�

� Lagrangian Relaxation

Let us split variables in problem 	�
�

max f	x


g	x
 � z� 	��


x � D�

z � Zp�

Associating Lagrange multipliers u � Rs
� with constraints 	��
 we obtain the Lagrangian

function�

L	x� z� u
 � f	x
 � uT 	g	x
� z
�

The dual functional has the form


	u
 � sup
�x�z��D�Zp

L	x� z� u
 � h	u
� d	u
�

where

h	u
 � supff	x
 � uT g	x
 j x � Dg� 	��


d	u
 � inffuTz j z � Zpg� 	��


For any u � R
s
� the value of 
	u
 is a upper bound on the optimal value F � of the

original problem� This is true irrespectively whether the distribution function of � is or is
not r�concave�
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The best Lagrangian upper bound will be given by

D� � inf
u��


	u
� 	��


By Remark ���� for u � � the minimization in 	��
 may be restricted to �nitely many p�
e�cient points vj� j � J � For u �� � one has d	u
 � ��� Therefore� d	

 is concave and
polyhedral� We also have

d	u
 � inffuTz j z � coZpg� 	��


Let us consider the convex hull problem�

max f	x
 	��


g	x
 � z� 	��


x � D� 	��


z � coZp� 	��


We shall make the following assumption�

Constraint Quali�cation Condition� There exist points x� � ri D and z� � coZp such
that g	x�
 � z��

If the Constraint Quali�cation Condition is satis�ed� from the duality theory in convex
programming ��� Sec������
 we know that there exists �u � � at which the maximum in 	��

is attained� and D� � 
	�u
 is the optimal value of the convex hull problem 	��
�	��
�

We now study in detail the structure of the dual functional 
 � Properties of d	

 can be
analysed in a more explicit way� De�ne

V 	u
 � fv � Rm � uTv � d	u
 and v is a p�e�cient pointg� 	��


C	u
 � fd � Rs
� � di � � if ui � �� i � �� � � � � sg� 	��


Lemma ��� For every u � � the solution set of 
��� is nonempty and has the following
form� �Z	u
 � V 	u
 � C	u
�

Proof� The result follows from Remark ���� Let us at �rst consider the case u � �� Suppose
that a solution z to 	��
 is not a p�e�cient point� Then there is a p�e�cient v � Zp such that
v � z� so uTv � uT z� a contradiction� Thus� for all u � � all solutions to 	��
 are p�e�cient�
In the general case u � �� if a solution z is not p�e�cient� we must have uTv � uTz for all
p�e�cient v � z� This is equivalent to z � fvg�C	u
� as required� � The last result allows
us to calculate the subdi�erential of d in a closed form�

Lemma ��� For every u � � one has �d	u
 � V 	u
 � C	u
�
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Proof� From 	��
 it follows that d	u
 � ���Zp
	�u
� where ��Zp

	

 is the support function
of Zp and� consequently� of coZp� This fact follows from the structure of Zp 	Remark
���
 by virtue of Corolarry ������ in ���
� By ���� Thm ����
� g � ���Zp

	�u
 if and only if

��Zp
	�u
 � �coZp	g
 � �gTu� where �coZp	

 is the indicator function of coZp� It follows that

g � coZp and ��Zp
	�u
 � �gTu� Thus� g is a convex combination of solutions to 	��
 and

the result follows from Lemma ���� �

Let us turn now to the function h	

� De�ne the set of maximizers in 	��
�

X	u
 � fx � D � f	x
 � uTg	x
 � h	u
g�

Lemma ��� Assume that the set D is compact� Then the function h is convex on Rm and
for every u � Rm�

�h	u
 � co fg	x
 � x � X	u
g�

Therefore the following necessary and su�cient optimality conditions for problem 	��

can be formulated�

Theorem ��� Assume that the Constraint Quali�cation Condition is satis�ed and the set
D is compact� A vector u � � is an optimal solution of 
��� if and only if there exists a
point x � X	u
� points v�� � � � � vm�� � V 	u
 and scalars 
� � � � � 
m�� � � with

Pm��
j�� 
j � ��

such that

g	x
�
m��X
j��


jv
j � C	u
� 	��


where C	u
 is given by 
	
��

Proof� Since �C	u
 is the normal cone to the positive orthant at u � �� the necessary and
su�cient condition for 	��
 has the form

�
	u
 � C	u
 �� �

	cf� ��� Sec������

� Using Lemma ��� and Lemma ���� we conclude that there exist

p�e�cient points vj � V 	u
� j � �� � � � �m� ��


j � �� j � �� � � � �m� ��
m��X
j��


j � ��

xj � X	u
� j � �� � � � �m� �� 	��


�j � �� j � �� � � � �m� ��
m��X
j��

�j � ��
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such that

m��X
j��

�jg	x
j
�

m��X
j��


jv
j � C	u
� 	��


Let us de�ne

x �
m��X
j��

�jx
j�

We have

f	x
 �
mX
i��

uigi	x
 � f	xj
 �
mX
i��

uigi	x
j
� j � �� � � � �m� �� 	��


Indeed� the inequality � above follows from the concavity of f and gj� and the inequality �
is implied by 	��
�

By the concavity� gi	x
 �
Pm��

j�� �jgi	xj
� Suppose that ui � �� Then we must have

gi	x
 �
Pm��

j�� �jgi	xj
� since the strict inequality contradicts 	��
� It follows that

g	x
�
m��X
j��

�jg	x
j
 � C	u
�

Therefore relation 	��
 can be simpli�ed as 	��
� as required� �

Since the set of p�e�cient points is not known� we need a numerical method for solving
the convex hull problem 	��
�	��
 or its dual 	��
�

� The cone generation method

The idea of a numerical method for calculating Lagrangian bounds is embedded in the
convex hull formulation	��
�	��
� We shall develop for it a new specialized method� which
separates the generation of p�e�cient points and the solution of the approximation of the
original problem using these points� It is related to column generation methods� which have
been known since the classical work ��
 as extremely useful tools of large scale linear and
integer programming�

The Method

Step �
 Select a p�e�cient point v�� Set J� � f�g� k � ��
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Step �
 Solve the master problem

max f	x
 	��


g	x
 �
X
j�Jk

�jv
j� 	��


X
j�Jk

�j � �� 	��


x � D� � � �� 	��


Let uk be the vector of simplex multipliers associated with the constraint 	��
�

Step �
 Calculate d	uk
 � minj�Jk	u
k
Tvj�

Step �
 Find a p�e�cient solution vk�� of the subproblem� minz�Zp	u
k
T z and calculate

d	uk
 � 	vk��
Tuk�

Step �
 If d	uk
 � d	uk
 then stop� otherwise set Jk�� � Jk 
 fk � �g� increase k by one
and go to Step ��

A few comments are in order� The �rst p�e�cient point v� can be found by solving the
subproblem at Step � for an arbitrary u � �� All master problems will be solvable� if the
�rst one is solvable� i�e�� if the set fx � D � g	x
 � v�g is nonempty� If not� adding a penalty
term M�lT t to the objective� and replacing 	��
 by

g	x
 � t �
X
j�Jk

�jv
j�

with t � � and a very large M � is the usual remedy 	�lT � �� � � � � �

� The calculation of the
upper bound at Step � is easy� because one can simply select jk � Jk with �jk � � and set
d	uk
 � 	uk
Tvjk� At Step � one may search for p�e�cient solutions only� due to Lemma ����
The algorithm is �nite� Indeed� the set Jk cannot grow inde�nitely� because there are �nitely
many p�e�cient points 	Theorem ���
� If the stopping test of Step � is satis�ed� optimality
conditions of Theorem ��� are satis�ed� Moreover �Jk � fj � Jk � hv

j� uki � d	uk
g � �J	u
�

� Primal feasible solution and upper bounds

Let us consider the optimal solution xlow of the convex hull problem 	��
�	��
 and the
corresponding multipliers �j � De�ne J low � fj � J � �j � �g�

If J low contains only one element� the point xlow is feasible and therefore optimal for the
disjunctive formulation 	�
� If� however� there are more positive ��s� we need to generate a
feasible point� A natural possibility is to consider the restricted disjunctive formulation�

max f	x

subject to g	x
 �

S
j�J low Kj �

x � D�
	��
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It can be solved by simple enumeration of all cases for j � J low�

max f	x

subject to g	x
 � vj�

x � D�
	��


An alternative strategy would be to solve the corresponding upper bounding problem 	��

every time a new p�e�cient point is generated� If Uj denotes the optimal value of 	��
� the
upper bound at iteration k is

�Uk � min
��j�k

Uj � 	��


If the distribution function of � is r�concave on the set of possible values of �� Theorem
��� provides an alternative formulation of the upper bound problem 	��
�

max f	x


subject to x � D�

g	x
 � z�

z � ZZ
s� 	��


z �
X
j�Jk

�jv
j�

X
j�Jk

�j � ��

�j � �� j � Jk�

Problem 	��
 is more accurate than the bound 	��
� because the set of integer z dominated
by convex combinations of p�e�cient points in Jk is not smaller than Jk� In fact� we need to
solve this problem only at the end� with Jk replaced by J low�
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