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ON CONVEX PROBABILISTIC PROGRAMMING
WITH DISCRETE DISTRIBUTIONS

Darinka Dentcheva Andras Prékopa Andrzej Ruszczynski

Abstract. We consider convex stochastic programming problems with probabilistic
constraints involving integer-valued random variables. The concept of a p-efficient
point of a probability distribution is used to derive various equivalent problem for-
mulations. Next we introduce the concept of r-concave discrete probability distri-
butions and analyse its relevance for problems under consideration. These notions
are used to derive lower and upper bounds for the optimal value of probabilisti-
cally constrained convex stochastic programming problems with discrete random
variables.
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1 Introduction

Let f:R™ — R and g : R™ — R™ be concave functions, and let D be a closed convex set. If
in the convex program

max f(z)
subject to g(z) > ¢,
x €D,

the vector ¢ is random, we require that g(x) > ¢ shall hold at least with some prescribed
probability p € (0,1), rather than for all possible realizations of the right hand side. This
leads to the convex programming problem with probabilistic constraints:

max f(z)
subject to P{g(z) > ¢} > p, (1)
x €D,

where the symbol PP denotes probability. Programming under probabilistic constraints was
initiated by Charnes, Cooper and Symonds in [4]. They formulated probabilistic constraints
individually for each stochastic constraint. Joint probabilistic constraints for independent
random variables were used first by Miller and Wagner in [10]. The general case was intro-
duced and first studied by the second author of the present paper in [12, 15].

Much is known about problem (1) in the case where ¢ has a continuous probability
distribution (see [17] and the references therein). However, the convex case with a discrete
distribution has not been addressed yet.

Although we concentrate on integer random variables, all our results easily extend to
other discrete distributions with non-uniform grids, under the condition that a uniform
lower bound on the distance of grid points in each coordinate can be found.We use Z and
Z ., to denote the set of integers and nonnegative integers, respectively. The inequality ‘>’
for vectors is always understood coordinate-wise.

2 p-Efficient Points

Let us define the set
Z,={yeR’: P(¢( <y) > p}. (2)

Clearly, problem (1) can be compactly rewritten as

max f(z)
subject to g(z) € Z,, (3)
zcD.

The structure of Z, needs to be analysed in more detail. Let F' denote the probability
distribution function of ¢, and F; the marginal probability distribution function ofthe :th
component ¢. By assumption, the set Z of all possible values of the random vector ¢ is
included in Z°. We shall use the concept of a p-efficient point, introduced in [16].
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Definition 2.1 Let p € [0,1]. A point v € R® is called a p-efficient point of the probability
distribution function F, if F(v) > p and there is no y < v, y # v such that F(y) > p.

Obviously, for a scalar random variable ¢ and for every p € (0,1) there is exactly one p-
efficient point: the smallest v such that F(v) > p. Since F(v) < F;(v;) for every v € R* and
t=1,...,s, we have the following result.

Lemma 2.2 Letp € (0,1) and let I; be the p-efficient point of the one-dimensional marginal

distribution F;, i =1,... ,s. Then everyv € R® such thatF (v) > p must satisfy the inequality
v>1=(l,...,1).

Rounding down to the nearest integer does not change the value of the distribution function,
so p-efficient points of a random vector with all integer components (shortly, integer random
vector) must be integer. We can thus use Lemma 2.2 to get the following fact.

Theorem 2.3 For each p € (0,1) the set of p-efficient points of an integer random vector

s nonempty and finite.

Proof. The result follows from Dickson’s Lemma [1, Cor. 4.48] and Lemma 2.2. O
Let p € (0,1) and let v?, j € J, be all p-efficient points of (. By Theorem 2.3, J is a

finite set. Let us define the cones

K;=v +R:, jel

Remark 2.4 Z, = J,.; K;.

Proof. If y € Z, then either y is p-efficient or there exists an integer v <y, v #y, v € Z,.
By Lemma 2.2, one must have I < v. Since there are only finitely many integer points
[ <v <y one of them, v;, must be p-efficient, and so y € Kj. O Thus, we obtain (for
0 < p < 1) the following disjunctive formulation of (3):

max f(z)
subject to  g(z) € U;cs K, (4)
zcD.

Its main advantage is an insight into the nature of the non-convexity of the feasible set.
A straightforward way to solve (1) is to find all p-efficient points v/, j € J, and to process
all convex programming problems

max f(z)
subject to g(z) > v7, (5)
z €D.

Specialized bounding—pruning techniques can be used to avoid solving all of them.

For multi-dimensional random vectors ¢ the number of p-efficient points can be very large
and their straightforward enumeration — very difficult. It would be desirable, therefore, to
avoid the complete enumeration and to search for promising p-efficient points only. We shall
return to this issue in section 5.
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3 r-Concave Discrete Distribution Functions

Since the set Z, need not be convex, it is essential to analyse its properties and to find
equivalent formulations with more convenient structures. To this end we shall recall and
adapt the notion of r-concavity of a distribution function. It uses the generalized mean
function m, : Ry x Ry x [0,1] — R defined as follows:

m,(a,b,A) =0 for ab=0,

and if ¢ > 0,5 >0, 0 <X <1, then

a’bt—* if r =0,
B max{a, b} if r = oo,
mo(a,b,4) = min{a, b} if r = —o0,

(Aa” + (1 — )\)b’“)l/’“ otherwise.

Definition 3.1 A distribution function F : R* — [0,1] is called r-concave, where r €
[—O0,00], Zf

F(Az + (1= Ay) = m,(F(z). F(y), A)
for all z,y € R* and all A € [0,1],

If r = —o0o0 we call F' quasi-concave, for r = 0 1t 1s known as log-concave, and for r = 1 the
function F' is concave in the usual sense.

The concept of a log-concave probability measure (the case r = 0) was introduced and
studied in [13, 14]. The notion of r-concavity and corresponding results were given in [2, 3].
For detailed description and proofs, see [17].

By monotonicity, r-concavity of a distribution function is equivalent to the inequality

F(z) =2 m,(F(z), F(y),A)

for all z > Az 4 (1 — A)y. Clearly, distribution functions of integer random variables are
not continuous, and cannot be r-concave in the sense of the above definition. Therefore, we
relax Definition 3.1 in the following way.

Definition 3.2 A distribution function F is called r-concaveon the set A C R*® with r €
[—OO, OO], Zf

F(2) > m(P(2), Fly), )
forall z,z,y € A and X € (0,1) such that z > Az + (1 — N)y.

To illustrate the relation between the two definitions let us consider the case of integer
random vectors which are roundups of continuously distributed random vectors.
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Remark 3.3 If the distribution function of a random vector n is r-concave on R* then the
distribution function of £ = [n] is r-concave on Z°.

The last property follows from the observation that at integer points both distribution func-
tions coincide. For the relations between the r-concavity of the distribution function of  and
the r-concavity of its density the Reader is referred to [2, 3, 19]. The concept of r-concavity
on a set can be used to find an equivalent representation of the set Z, given by (2).

Theorem 3.4 Let Z be the set of all possible values of an integer random vector ¢. If the
distribution function F of { is r-concave on Z + Z7, for some r € [—o0, 00|, then for every
p € (0,1) one has

Zp:{y€R83yZZZZ)\jvj,Z)\jZI,)\jZO,ZEZS},

JjeJ JjeJ
where v7, j € J, are the p-efficient points of F.

Proof. By the monotonicity of F' we have F(y) > F(z)if y > z. It is,therefore, sufficient
to show that P(¢ < z) > p for all z € Z* such that z > ZjeJ Mol with A; >0 ) = 1.
We consider five cases with respect to r.

Case 1: 7 = oco. It follows from the definition of r-concavity that F(z) > max{F(v’),j €
J:A #£0} >p.

Case 2: 7 = —oo. Since F(v?) > p for each index j € J such that A\; # 0, the assertion
follows as in Case 1.

jeJ

Case 3: r = 0. By the definition of r-concavity,

F(z) 2 [ [P = [[pY = ».

JjeJ JjeJ
Case 4: r € (—00,0). By the definition of r-concavity,

[F()] <Y NFE@) <Y Aph=p"

JjeJ JjeJ

Since 7 < 0, we obtain F(z) > p.
Case 57 € (0,00). By the definition of r-concavity,

[F()]" = Y NFE@) =Y Aph ="

JjeJ JjeJ
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O Under the conditions of Theorem 3.4, problem (4) can be formulated in the following
equivalent way:

max () (6)
subject to =z € D, (7)
g9(x) = z, (8)
ze 4’ (9)
z > Z Ao, (10)
jeJ
doa=1, (11)
jeJ
A; > 0,5 € (12)

So, the probabilistic constraint has been replaced by linear equations and inequalites, to-
gether with the integrality requirement (9).This condition cannot be dropped, in general. If ¢
takes values on a non-uniform grid, condition (9) should be replaced by the requirement that
z 1s a grid point. The difficulty comes from the implicitly given p-efficient points v;, 5 € J.
Our objective will be to avoid their enumeration and to develop an approach that generates
them only when needed. An obvious question arises: which distributions are r-concave in
our sense? We devote the remaining part of this section to some useful observations on this
topic.
Directly from the definition and Holder’s inequality we obtain the following property.

Remark 3.5 If a distribution function F' is r-concave on the set A C R* with some r €
[—00,00], then it is p-concave on A for all p € [—o0,7r].

For binary random vectors we have the strongest possible property.

Proposition 3.6 FEvery distribution function of an s-dimensional binary random vector is
r-concave on Z’ for all r € [—oo, c0].

Proof. Letz,y € Z:, A € (0,1) and let z > Az+(1—X)y. By projecting z and y on {0,1}”
we get some ¢’ and y’ such that F'(z') = F(z), F(y') = F(y) and z > Az’ + (1 — A)y’. Since
z is integer and «’ and y’ binary, then z > @’ and z > y'. Thus F(z) > max(F(z'), F(y')) =
max(F(z), F(y)). Consequently, F' is co-concave and the result follows from Remark 3.5. O
For scalar integer random variables our definition of r-concavity is related to log-concavity
of sequences. A sequence py, k= ...,—1,0,1,...,1s called log-concave, if p; > p_1pr41 for
all k. By [6] (see also [17, Thm. 4.7.2]) and Remark 3.5, we have the following property.

Proposition 3.7 Suppose that for a scalar integer random variable & the probabilities p, =
P{E=k}, k=...,-1,0,1,..., form a log-concave sequence. Then the distribution function
of & is r-concave on Z for every r € [—o0,0].
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Many well-known one-dimensional discrete distributions satisty the conditions of Proposition
3.7: the Poisson distribution, the geometrical distribution, the binomial distribution [17, p.
109].

We end this section with sufficient conditions for the r-concavity of the joint distribution
function in the case of integer-valued independent subvectors. Our assertion, presented in
the next proposition is the discrete version of an observation from [11]. The same proof,
using Holder’s inequality, works in our case as well.

Proposition 3.8 Assume that ¢ = (£,... ¢L), where the s;-dimensional subvectors ¢,
v = 1,...,L, are independent (Zle s = 8). Furthermore, let the marginal distribution
functions Fy: R*" — [0,1] be r;-concave on sets Ay C Z*.

(t) If g >0,1=1,...,L, then F is r-concave on A= Ay x --- x Apwith
—1
L _
r= <Zl:1 T 1> ’
(it) Ifry=0,1=1,...,L, then F is log-concave on A= Ay x --- x Ay,

4 Lagrangian Relaxation

Let us split variables in problem (3):

max f(z)

9(z) = =z, (13)
x €D,
z € Z,.

Associating Lagrange multipliers « € R’ with constraints (13) we obtain the Lagrangian
function:

L(s, 2 u) = f(2) + 47 (g(z) - 2).
The dual functional has the form

U(u)= sup L(z,z,u) = h(u) —d(u),

(z,2)EDxZ,
where
M) = supdf(s) +uTg(e) | € D}, (14)
du) = inf{u’z|zc Z,}. (15)

For any u € R’ the value of ¥(u) is a upper bound on the optimal value F* of the
original problem. This is true irrespectively whether the distribution function of ¢ is or is
not r-concave.
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The best Lagrangian upper bound will be given by

D* = inf ¥(u). (16)

u>0

By Remark 2.4, for v > 0 the minimization in (15) may be restricted to finitely many p-
efficient points v/, j € J. For w # 0 one has d(u) = —oo. Therefore, d(-) is concave and
polyhedral. We also have

d(u) = inf{uTz | z € co Z,}. (17)

Let us consider the convexr hull problem:

max f(z) (18)
9(z) = z, (19)
zeD, (20)
z € co Z,. (21)

We shall make the following assumption.

Constraint Qualification Condition. There exist points z° € 11 D and 2° € co Z, such
that g(z°) > 2°.

If the Constraint Qualification Condition is satisfied, from the duality theory in convex
programming [9, Sec.1.1.2] we know that there exists & > 0 at which the maximum in (16)
is attained, and D* = ¥(a) is the optimal value of the convex hull problem (18)—(21).

We now study in detail the structure of the dual functional ¥. Properties of d(-) can be
analysed in a more explicit way. Define

V(u)={v € R™: ulv = d(u) and v is a p-efficient point}, (22)
Cluy={deRi:di=0ifu; >0, 3i=1,...,s}. (23)

Lemma 4.1 For every u > 0 the solution set of (15) is nonempty and has the following
form: Z(u) = V(u) + C(u).

Proof. The result follows from Remark 2.4. Let us at first consider the case u > 0. Suppose
that a solution z to (15) is not a p-efficient point. Then there is a p-efficient v € Z, such that

Ty < uTz, a contradiction. Thus, for all w > 0 all solutions to (15) are p-efficient.
T

v < 2,80 U
In the general case v > 0, if a solution z is not p-efficient, we must have uTv = uTz for all
p-efficient v < z. This is equivalent to z € {v} + C(u), as required. O The last result allows

us to calculate the subdifferential of d in a closed form.

Lemma 4.2 For every u > 0 one has dd(u) = V(u) + C(u).
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Proof. From (15) it follows that d(u) = —5§P(—u), where 5§P(-) is the support function
of Z, and, consequently, of coZ,. This fact follows from the structure of Z, (Remark
2.4) by virtue of Corolarry 16.5.1 in [20]. By [20, Thm 23.5], g € 96% (—u) if and only if
5§P(—u) +bc0z,(9) = —gTu, where bco2,(+) is the indicator function of co Z,. It follows that

g € coZ, and 63 (—u) = —gTu. Thus, g is a convex combination of solutions to (15) and
the result follows from Lemma 4.1. O
Let us turn now to the function h(-). Define the set of maximizers in (14),

X(u) = {o € D: f(2) +u"gla) = h(u)}.

Lemma 4.3 Assume that the set D is compact. Then the function h is conver on R™ and
for every uw € R™,

Oh(u) = co{g(x) : x € X(u)}.

Therefore the following necessary and sufficient optimality conditions for problem (16)
can be formulated.

Theorem 4.4 Assume that the Constraint Qualification Condition is satisfied and the set
D is compact. A vector w > 0 is an optimal solution of (16) if and only if there exists a
point © € X (u), points v*,... o™t € V(u) and scalars By ..., Bus1 > 0 with E;n:-lil B; =1,
such that

m+1

o) = 3 B’ € Cla). (24)

where C(u) is given by (23).

Proof. Since —C(u)is the normal cone to the positive orthant at « > 0, the necessary and
sufficient condition for (16) has the form

OF(u)NC(u)#£0
(cf. [9, Sec.1.1.2]). Using Lemma 4.2 and Lemma 4.3, we conclude that there exist

p-efficient points v/ € V(u), j=1,....,m+1,

m+1

/BjZO, j:]-v"'vm—l_]-v Z/Bj:]-v
7=1

e X(wu), j=1,....m+1, (25)
m+1



RRR 49-2000 PAGE 9

such that

S asgle?) = Y B0’ € Clw) (20)

Let us define

We have
flz)+ Zu@gl(w) = f(:BJ) + Zuigi(wj), j=1....m+1. (27)

Indeed, the inequality > above follows from the concavity of f and g;, and the inequality <
is implied by (25).
. m+1
By the concavity, g;(z) > Ej:-li

gi(z) = Z’;Z'il a;gi(x?), since the strict inequality contradicts (27). It follows that

a;gi(z?). Suppose that w; > 0. Then we must have

m+1

o) = 3 ajgla’) € Cla).

Therefore relation (26) can be simplified as (24), as required. O
Since the set of p-efficient points is not known, we need a numerical method for solving

the convex hull problem (18)—(21) or its dual (16).

5 The cone generation method

The idea of a numerical method for calculating Lagrangian bounds is embedded in the
convex hull formulation(18)—(21). We shall develop for it a new specialized method, which
separates the generation of p-efficient points and the solution of the approximation of the
original problem using these points. It is related to column generation methods, which have
been known since the classical work [7] as extremely useful tools of large scale linear and
integer programming.

The Method

Step 0: Select a p-efficient point v°. Set Jo = {0}, k = 0.
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Step 1: Solve the master problem

max f(z) (28)
g(z) > Z )‘jvjv (29)
dox=1, (30)
;eek D, A > 0. (31)

Let u* be the vector of simplex multipliers associated with the constraint (29).
Step 2: Calculate d(u*) = minje s, (u*)Tv7.

Step 3: Find a p-efficient solution v**! of the subproblem: minzegp(uk)Tz and calculate
d(u) = (VM) Tyt

Step 4: If d(u*) = d(u*) then stop; otherwise set Jyy; = Jp U {k + 1}, increase k by one
and go to Step 1.

A few comments are in order. The first p-efficient point v° can be found by solving the
subproblem at Step 3 for an arbitrary « > 0. All master problems will be solvable, if the
first one is solvable, i.e., if the set {z € D : g(z) > v°} is nonempty. If not, adding a penalty
term M17t to the objective, and replacing (29) by

g(:l?) +t2> Z )‘jvjv

JEJIL

with ¢ > 0 and a very large M, is the usual remedy (17 = [11 ... 1]). The calculation of the
upper bound at Step 2 is easy, because one can simply select g, € Ji, with A;, > 0 and set
d(u*) = (uF)Tvi. At Step 3 one may search for p-efficient solutions only, due to Lemma 4.1.
The algorithm is finite. Indeed, the set J; cannot grow indefinitely, because there are finitely
many p-efficient points (Theorem 2.3). If the stopping test of Step 4 is satisfied, optimality
conditions of Theorem 4.4 are satisfied. Moreover Jj, = {5 € Jp: (07 u) =d(u*)} C j(u)

6 Primal feasible solution and upper bounds

Let us consider the optimal solution z'°% of the convex hull problem (18)-(21) and the
corresponding multipliers ;. Define J°¥ = {j € J: \; > 0}.

If J*% contains only one element, the point z!°7 is feasible and therefore optimal for the
disjunctive formulation (4). If, however, there are more positive A’s, we need to generate a
feasible point. A natural possibility is to consider the restricted disjunctive formulation:

max f(z)
subject to  g(z) € U, com Kj. (32)
z €D.
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It can be solved by simple enumeration of all cases for j € J°":

max f(z)
subject to g(z) > v7, (33)
z €D.

An alternative strategy would be to solve the corresponding upper bounding problem (33)
every time a new p-efficient point is generated. If U; denotes the optimal value of (33), the
upper bound at iteration k is

U* = min U;. (34)

0<j<k

If the distribution function of ¢ is r-concave on the set of possible values of ¢, Theorem
3.4 provides an alternative formulation of the upper bound problem (32):

max  f(z)

subject to =z € D,

g(z) 2 =,
z € X’ (35)
z > Z Ajv7,
JEJIL
dox=1,
JEJIL
)\] >0, j e Jy

Problem (35) is more accurate than the bound (34), because the set of integer z dominated
by convex combinations of p-efficient points in Jj, 1s not smaller than Ji. In fact, we need to
solve this problem only at the end, with J; replaced by J*".
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