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Introduction

In the present paper we shall use the following notations. Let ξt be a stochastic process.
For the difference ξt2 − ξt1 let us introduce the notation

ξJ = ξt2 − ξt1 ,

where J means the finite time interval (t1, t2). Let further Wλ(J) denote the following
probability

Wλ(J) = Pr(ξJ = λ)

and let F (x, J) denote the probability distribution of the variable ξJ . For the characteristic
function of the distribution F (x, J) we shall write f(u, J):

f(u, J) =
∫ ∞

−∞
eiux dF (x, J).

The process on which our discussions are based will be considered in a finite, closed
time interval I in which the process satisfies the following conditions. (By J we shall
henceforth denote a subinterval of I.)

A) If J1, J2, . . . , Jn denote a subdivision of the interval I so that I = J1 +J2 + · · ·+Jn,
the corresponding variables ξJ1, ξJ2, . . . , ξJn are independent.

B) The variables ξJ can only assume the values of a countable set of real numbers
λ0 = 0, λ1, λ2, . . . which set is independent of the special selection of J .

1



It follows form condition A) that this set must be closed under addition, since for every
λk and λl it must contain a number λm such that λk + λl = λm, that is to say, it must
form a semigroup with respect to addition.

C) 1 − W0(J) = 1 − Pr (ξJ = 0) is a continuous interval function, that is,

1 − W0(J) → 0,

if J contracts to a fixed point.

It follows from condition C) that 1 − W0(J) is also uniformly continuous in I1.1 It
follows likewise form condition C) that 1 − f(u, J) is also uniformly continuous, notably,
in a manner independent of u, for

|1 − f(u, J)| ≤ 2(1 − W0(J)),

and, further, that the process ξt is weakly continuous, since

Pr(|ξJ | > ε) ≤ 1 − Pr (ξJ = 0) → 0.

In consequence of condition A) and C), ξI possesses an infinitely divisible distribution,2

and therefore log f(u, I) can be represented in the canonical form:

log f(u, I) = iγ(I)u − σ2(I)
2

u2

(1)

+
∫ 0

−∞

(
eiux − 1 − iux

1 + x2

)
dM(x, I) +

∫ ∞

0

(
eiux − 1 − iux

1 + x2

)
dN(x, I),

where γ(I) and σ(I) are constants, M(x, I) and N(x, I) are non-decreasing functions in
the intervals (−∞, 0) and (0,∞), respectively; M(−∞) = N(∞) = 0 and

∫ 0

−1
x2 dM(x, I) +

∫ 1

0
x2 dN(x, I) < ∞.

In our case the general form (1) reduces to a simpler expression in which the concrete
meaning of the functions M(x, I) and N(x, I) can be indicated more specifically.

1Let ϕ(J) be an interval function continuous in the finite closed interval I ; in this case ϕ(J) is also
uniformly continuous in I . For, in the contrary case it would be possible to find an ε0 for which no δ
exists, that is, if δn → 0, by selecting a suitable sequence Jn, we would obtain that |ϕ(Jn)| > ε0 contrary
to |Jn| ≤ δn → 0. Let d denote a point of condensation of the centres of the intervals Jn, then Jn will
have a subsequence Jkn whose centres converge to d. As the sequence of intervals Jkn contracts to a single
point, to d, it follows that ϕ(Jkn) → 0, which is a contradiction.

2see [1], pp. 161–163.

2



§ 1. The meaning of M(x, I) and N(x, I)

Theorem. If conditions A), B), C) are fulfilled, then the general form (1) can be
written in the following manner:

(2) log f(u, I) =
∞∑

k=1

Cλk
(I)(eiλku) − 1),

where

(3) Cλk
(I) =

∫
I
Wλk

(J), λk �= 0

and

(4)
∞∑

k=1

Cλk
(I) =

∫
I
(1 − W0(J)) < ∞.

In (3) and (4) the integrals in the interval I are taken in the sense of Burkill.

Proof. We first show that σ(I) = 0. In fact, the function f(u, I) in formula (1) is the
product of two characteristic functions:

f(u, I) = f1(u, I)f2(u, I),

where
f1(u, I) = e−

σ2(I)
2

u2

is the characteristic function of the normal distribution

F1(x, I) =
1√

2πσ(I)

∫ x

−∞
e
− y2

2σ2(I) dy.

As

|F1(x + h, I) − F1(x, I)| ≤ |h|√
2πσ(I)

and F (x, I) =
∫ ∞

−∞
F1(x − y, I) dF2(y, I),

it follows that
|f(x + h, I) − F (x, I)| ≤ |h|√

2πσ(I)
.

This is, however, a contradiction, because we have supposed that F (x, I) is a step function.
(For the proof, see [3], pp. 94–95.)

f(u, I) is an almost periodic function of the variable u,

f(u, I) =
∞∑

k=0

Wλk
(I)eiλku.
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Together with f(u, I), log f(u, I) is also an almost periodic function. For the proof we
have only to show that |f(u, I)| ≥ δ > 0, because log z is continuous in the region 0 < δ ≤
|z| ≤ 1, and it is well known that any continuous function of an almost periodic function
is itself almost periodic. In fact, if the decomposition I = J1 + J2 + · · · + Jn is carried
out, where |Jk| (the length of Jk) is sufficiently small to permit that in accordance with
condition C) |f(u, Jk)| ≥ η > 0, it will follow that

|f(u, I)| =
n∏

k=1

|f(u, Jk)| ≥ ηn = δ > 0.

Let us now multiply both sides of (1) by
1

2T
and integrate in the interval (−T, T ); then

by Fubini’s theorem, first integrating with respect to u, we obtain

− 1
2T

∫ T

−T
log f(u, I) du =

∫ 0

−∞

(
1 − sin Tx

Tx

)
dM(x, I) +

∫ ∞

0

(
1 − sinTx

Tx

)
dN(x, I).

If T → ∞, then, as log f(u, I), is almost periodic, we shall obtain on the left side a finite
limit and therefore, taking into account also that

1 − sin Tx

Tx
≥ 0,

we may apply Fatou’s theorem to obtain

(5)
∫ 0

∞
dM(x, I) +

∫ ∞

0
dN(x, I) < ∞.

Accordingly, M(x, I) and N(x, I) are of bounded variation and have a finite limit at the
point x = 0. In view of (5), formula (1) may be brought to the following from:

(6) log f(u, I) = iγ′(I)u +
∫ 0

−∞
(eiux − 1) dM(x, I) +

∫ ∞

0
(eiux − 1) dN(x, I),

where

γ′(I) = γ(I) −
∫ 0

−∞

x

1 + x2
dM(x, I) −

∫ ∞

0

x

1 + x2
dN(x, I).

Here we have γ′(I) = 0, since the left side of (6) and the two last members of its right side
are bounded functions of u.

M(x, I) and N(x, I) are step functions; this fact follows at once if we take into account
that on the left side of (6) there stands an almost periodic function. For if we decompose
the functions

M(x, I) = M1(x, I) + M2(x, I), N(x, I) = N1(x, I) + N2(x, I),

4



so that on the right sides the first member is a step function, while the second member
is a continuous, non-decreasing function, then from (6), by a suitable rearrangement, we
obtain

ϕ(u, I) =
∫ 0

−∞
eiux dM(x, I) +

∫ ∞

0
eiux dN(x, I),

if the almost periodic part is denoted by ϕ(u, I). The right hand side can, however, be
almost periodic only if M(x, I) ≡ const. and N(x, I) ≡ const. Indeed, this is readily seen
if we form the expression3 M(ϕ(u, I)e−iλu) and prove that this vanishes for all λ’s, owing
to the continuity of M2(x, I) and N2(x, I).

We shall now show that log f(u, I) possesses the same exponents as f(u, I), and further,
that the other assertions of the theorem are also valid. For the proof we need a lemma.

Lemma. If a stochastic process satisfies conditions A), B), and C), then

(7) log f(u, I) =
∫

I
(f(u, J) − 1),

and the sequence in the definition of the Burkill integral will uniformly converge with
respect to u to log f(u, I), or, more precisely,∣∣∣∣∣log f(u, I) −

n∑
k=1

(f(u, Jk) − 1)

∣∣∣∣∣ ≤ K max(1 − W0(Jk)) → 0(8)

if max |Jk| → 0.

Proof. We know that |f(u, J)|2, together with f(u, J), is an almost periodic char-
acteristic function, and that, owing to |f(u, J)|2 ≥ δ2 > 0, the function log |f(u, J)|2
is likewise almost periodic. Let us denote in the distribution defined by |f(u, J)|2 the
probability of the value 0 by W ∗

0 (J), then

(9) W ∗
0 (J) =

∞∑
k=0

W 2
λk

(J) = M(|f(u, J)|2).

From (9) we have

W ∗
0 (J) − 1 ≤ W 2

0 (J) + 1 − W0(J) − 1 = W0(J)(W0(J) − 1)

and therefore, if |J | is so small that W0(J) >
1
2
, then

(10) 1 − W0(J) < 2(1 − W0(J)).

3M(ϕ(u, I)e−iλu) = lim
T→∞

1

2T

� T

−T

ϕ(u, I)e−iλu du.
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We shall now show that 1 − W0(J) is of bounded variation.

n∑
k=1

(1 − W0(Jk)) ≤ 2
n∑

k=1

(1 − W ∗
0 (Jk)) = 2M

(
n∑

k=1

(1 − |f(u, Jk)|2)
)

(11)

≤ −2M

(
n∑

k=1

log |f(u, Jk)|2
)

= −2M(log |f(u, I)|2) = K,

where use has been made of the inequality 1 − x ≤ − log x (0 < x ≤ 1). Thus (8) can be
established in the following manner:∣∣∣∣∣log f(u, I) −

n∑
k=1

(f(u, Jk) − 1)

∣∣∣∣∣ ≤
n∑

k=1

| log f(u, Jk) − (f(u, Jk) − 1)|

≤
n∑

k=1

∞∑
l=2

1
l
|f(u, Jk) − 1|l ≤ 1

2

n∑
k=1

|f(u, Jk) − 1|
1 − |f(u, Jk) − 1|

≤
n∑

k=1

|f(u, Jk) − 1|2 ≤
n∑

k=1

(1 − W0(Jk))2 ≤ K max(1 − W0(Jk)) → 0.

As the sequence figuring in the expression (8) converges uniformly to log f(u, I), it
follows that

M

(
n∑

k=1

(f(u, Jk) − 1)e−iλu

)
→ M(log f(u, I)e−iλu),

that is, if the Fourier coefficients of log f(u, I) are denoted by Cλk
(I), then

(12)

⎧⎪⎪⎨
⎪⎪⎩

Cλk
(l) =

∫
I
Wλk

(J), λk �= 0

C0(l) =
∫

I
(W0(J) − 1),

and, in view of (6), we have

(12a) −C0(l) =
∞∑

k=1

Cλk
(l) < ∞.

Consequently, the theorem is proved. �
It may happen that in the formula (2) Cλk

(l) belonging to a certain λk is equal to 0.
A sufficient condition for this is that in every point of the interval we have

Wλk
(J)

|J | → 0
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during J contracts to the point in question. For, in this case, we have

(13)
∫

I
Wλk

(J) = 0.

The proof is very simple. As the interval function
Wλk

(J)
|J | is continuous in the closed

interval I, it is therefore also uniformly continuous. In other words, if ε > 0 is arbitrary

and max |Jl| < δ, it follows that
Wλk

(Jl)
|Jl| < ε and therefore

n∑
l=1

Wλk
(Jl) < ε|l|, whence

(13) follows.

§ 2. A direct proof

For the theorem we have just proved, we can also give a direct proof,4 if we make use of
a theorem known in the theory of almost periodic functions.

Thus in this case we do not make use of formula (1), but we require the lemma. For by
the lemma, as is seen from (12), the Fourier coefficients of the function log f(u, I)−C0(I)
are Cλk

(l) ≥ 0 (λk �= 0). It is known that if all Fourier coefficients of an almost periodic
function are non-negative, then their sum is convergent:5

(14)
∞∑

k=1

Cλk
(I) < ∞.

It follows from (14) that the Fourier series of f(u, I)−C0(I) converges uniformly, and
therefore

(15) log f(u, I) − C0(I) =
∞∑

k=1

Cλk
(I)eiλku.

If 0 is substituted for u, we obtain

−C0(I) =
∞∑

k=1

Cλk
(l),(16)

therefore

log f(u, I) =
∞∑

k=1

Cλk
(I)(eiλku − 1)

4A direct proof of formula (2) is discussed in the first section of [3] for the case when the totality of the
numbers λk is identical with the set of non-negative integers.

5See [1], p. 62.
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which exactly proves (2), whilst (12), (14) and (16) are proving (3) and (4).

The proof of (14) can simply be carried out in case the totality of the numbers λk is
identical with the totality of integers. In fact, in this case log f(u, I) is a periodic function
with period 2π. As f(u, I) = f(−u, I), the real part of log f(u, I) is an even function,
whilst its imaginary part is an odd function. Consequently,

1
2π

∫ 2π

0
(log |f(u, I)| − C0(I)) cos kudu =

⎧⎨
⎩

Ck(I) + C−k(I)
2

if k �= 0,

0 if k = 0.

The integrand is a continuous even function and its Fourier coefficients are non-negative,
whence6 ∑

k �=0

(Ck(I) + C−k(I)) < ∞.

§ 3. The explicit form of Wk(I)

Let us consider the case in which the values λk are integers. Then (2) can be written in
the following manner:

(17) log f(u, I) =
∑
k �=0

Ck(I)(eiλku − 1).

Let us now express the probabilities Wk(I) with the aid of the interval functions Ck(I). It
follows from (17) that the variable ξI which will now be denoted by ξ(I), can be represented
as follows:

(18) ξ(I) =
∞∑

k=−∞
kξk(I), or ξ(I) =

∞∑
k=1

k(ξk(I) − ξ−k(I)),

where the variables ξk(I) are independent and have a Poisson distribution with a mean
value Ck(I). Let us now consider the second expression of (18). Here the differences of
variables of Poisson distribution are standing. In general, if ξ and η are two independent
variables of Poisson distribution with mean values λ and μ, the difference

ζ = ξ − η

6A special case of Paley’s theorem which can easily be proved is the following: if the Fourier coefficients
of an even and continuous function are non-negative, then their sum will converge. As a matter of fact,

1

2
Sn(0) ≤ n + 1

2n + 1
Sn(0) ≤ 1

2n + 1

2n�
k=n

Sk(0) ≤ σ2n(0)

where σn denotes the n-th Fejér mean.

8



can assume arbitrary integral values and

Pr(ζ = n) = λne−(λ+μ)
∞∑

k=0

(λμ)k

k!(k + n)!
(n = 0, 1, 2, . . .)

and

Pr(ζ = −n) = μne−(λ+μ)
∞∑

k=0

(λμ)k

k!(k + n)!
(n = 0, 1, 2, . . .).

These probabilities can be expressed with the aid of the Bessel function of n-th order

Jn(x) =
(x

2

)n
∞∑

k=0

(−1)k
(x

2

)2k

k!(k + n)!

in the following manner:

Pr(ζ = n) =

(
1
i

√
λ

μ

)n

e−(λ+μ)Jn(2i
√

λμ)

(n = 0, 1, 2, . . .)

Pr(ζ = −n) =
(

1
i

√
μ

λ

)n

e−(λ+μ)Jn(2i
√

λμ),

or, with a uniform method of writing:

(19) Pr(ζ = n) =
(

1
i

)|n|(λ

μ

)n
2

e−(λ+μ)J|n|(2i
√

λμ).

By making use of (19) and on the basis of (18) we obtain

Wk(I) = e−λ(I)
∑∏
�

nrn=k

(
1
i

)|rn|( Cn(I)
C−n(I)

) rn
2

J|rn|(2i
√

Cn(I)C−n(I)),

(20)
k = 0,±1,±2, . . . (n = 1, 2, . . . ; rn is an integer),

where the product is extended over all finite systems of values rn for which
∑

nrn = k,
whilst the summation relates to all such systems, and

λ(I) =
∑
n �=0

Cn(I).

Finally, I express my sincere thanks to Alfred Rényi for his valuable remarks.
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