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Introduction

The theory of stochastic processes, as it has been founded by Kolmogorov in 1931,
originally dealt with the mathematical treatment of random time processes. In later
years, however, there arose many practical problems which are not random time processes
but the method of solution of which was similar to those used in the theory of stochastic
processes. Such problems occur e.g. when investigating the spatial distribution of stars
or colloid particles, when counting bloodcells, when investigating the quantity of rain or
crop in a given area etc.

There is, however, an essential difference between the mathematical models of the
above mentioned problems and that of those described by random time processes. In a
time process we are generally interested only in the state of the system at the moment t,
which is characterised by a random variable ξt, when considering the random distribution
of points in the plane, however, the state of the point system will be described most
perfectly by random variables attached to sets of the plane and not by such that are
attached to the points of the plane. If A is a set of the plane, then there corresponds to
A a random variable ξ(A) which gives the number of points in the set A. Thus ξ(A) is a
random set function.

The subject of this paper is the investigation of some problems concerning such random
set functions. I introduce the notions of stochastic additive and stochastic completely addi-
tive set functions and examinate problems some of which are generalizations of problems
arising in the theory of real-valued set functions or similar to them and some of which are
of probabilistic nature.

Definition 1. Let R be a ring consisting of some subsets of a space H. Suppose
that to every element A of R there corresponds a random variable ξ(A) = ξ(ω,A) such
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that if A1, A2, . . . , Ar are disjoint sets belonging to the ring R, then the random variables
ξ(A1), ξ(A2), . . . , ξ(Ar) are independent and

(1) ξ(A) =
r∑

k=1

ξ(Ak);

in this case ξ(A) will be called a stochastic additive set function.

Definition 2. A stochastic additive set function ξ(A) defined on a ring R will be called
a stochastic completely additive set function if for every sequence A1, A2, . . . of disjoint sets
of R, for which A =

∑∞
k=1 Ak ∈ R, the equality

ξ(A) =
∞∑

k=1

ξ(Ak)

is satisfied.

For the sake of brevity, the word “stochastic” will be omitted and if an ordinary real-
valued additive (or completely additive) set function will be considered, this will be men-
tioned explicitly.

The idea of random set functions has appeared first in a paper of S. Bochner [2].
The notion introduced by him is similar to that introduced by Definition 1 but in [2] it is
not required that the random variables belonging to disjoint sets should be independent.
It is possible to make further generalizations, for instance, taking instead of the ring R
a Boolean algebra, or instead of a single random variable ξ(A) a random vector �ξ(A) =
(ξ1(A), ξ2(A), . . . , ξn(A)) etc. Some special random set functions have been considered by
H. Cramér [3] , E. Marczewski [9], C. Ryll-Nardzewski [12], further by A Blanc-

Lapierre and R. Fortet [1].

From the point of view of practical applications it is important that if e.g. H is some
finite-dimensional Euclidean space, there should correspond a random variable to any
sphere, domain, and eventually even to more complicated sets. As it will be shown in § 1
of Chapter III, by the construction of Kolmogorov ([6] § 4) we can construct stochastic
additive set functions which are defined on intervals or on finite sums of intervals but the
general problem cannot be solved by this method. In order to get further we have to deal
with the problem of the extension of stochastic set functions.

The main purpose of this paper is the extension of a stochastic completely additive set
function defined on a ring R and satisfying certain conditions, to the smallest σ-ring S(R)
which contains R.

The extension of some special stochastic set functions defined on sets of Euclidean
spaces has been considered by H. Cramér [3], E Marczewski [9] and C. Ryll-Nard-

zewski [12]. The theorems of the present paper contain as special cases the relevant
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theorems of [9] and [12]. In [3] a theorem is proved concerning the extension of a random
set function generated by the differences of an ordinary one-dimensional stochastic process.

The problem of extension of stochastic set functions is a generalization of the con-
vergence problem of the series of independent random variables. Namely, if ξ1, ξ2, . . . is
a sequence of independent random variables and R is the ring of the finite sets of the
natural numbers, then the set function

ξ(A) =
∑
k∈A

ξk (A ∈ R)

can be extended to the σ-ring S(R) if and only if the series
∑∞

k=1 ξk converges with
probability 1 regardless of the order of summation ([4], p. 118, Corollary 1).

There is also another way to construct the theory of random set functions. The theory
of stochastic processes can be built up by considering the space of functions of a real
variable and defining a measure in this space. As it has been proved by E. Hopf [5]
the same procedure can be carried out also in the space of additive set functions defined
on a ring R. The measure thus defined is, however, only finitely additive. From several
points of view, however, it is necessary that the probability should be completely additive.
Thus the extension problem arises in another connection also here. But in this case the
fulfilment of the conditions ensuring the possibility of extension is not a simple problem
even in particular cases.

The notion of a stochastic additive set function is in some sense a generalization of
the notion of a process with independent increments. Namely, we are often interested in
the differences ξt2 − ξt1 only; these and their finite sums can, however, be regarded as a
stochastic additive set function.

I wish to express my thanks to Professors A. Rényi, B. Szőkefalvi-Nagy and
Á. Császár for their valuable remarks.

Definitions and notations

Let H be an arbitrary set and R a class of sets of some subsets of H. The class R of
sets will be called a ring if A + B ∈ R, A − B ∈ R, provided that A ∈ R, B ∈ R. If
H ∈ R, then R is called an algebra. If for an arbitrary sequence A1, A2, . . . of sets of the
ring (algebra) R we have

∑∞
k=1 Ak ∈ R, then R will be called a σ-ring (σ-algebra). If

R is a ring (σ-ring) and A ∈ R, then AR denotes the algebra (σ-algebra), the elements
of which are those subsets of A which belong to the ring R. S(R) denotes the smallest
σ-ring containing the ring R.

A real-valued, non-negative set function m(A) defined on the elements of a ring R
will be called a measure, if for every sequence A1, A2, . . . of disjoint sets of R for which
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A =
∑∞

k=1 Ak ∈ R we have

(2) m(A) =
∞∑

k=1

m(Ak).

If m(A) may have also negative values but the relation (2) holds without any restriction,
then m(A) will be called a completely additive set function.

The n-dimensional Euclidean space is denoted by Rn. If A is a Lebesgue measurable
set of the space Rn, then |A| denotes its n-dimensional Lebesgue measure.

The random variables which we consider in this paper are all supposed to be defined
on the same space of elementary events Ω. The elements of Ω are denoted by ω. We
suppose that there is a σ-algebra T consisting of some subsets of the space Ω and on the
elements of T a probability measure P is defined for which P(Ω) = 1. The measurable
functions defined on the space Ω, which are finite-valued almost everywhere, are called
random variables. If ξ and η are two random variables, then the relation ξ = η means that

P(ξ = η) = 1.

Inequalities between random variables have similar meaning. If ξ1, ξ2, . . . is a sequence of
random variables, then the relation ξk → ξ (or limk→∞ ξk = ξ) denotes that

P( lim
k→∞

ξk = ξ) = 1.

The relation ξk ⇒ ξ (or limk→∞ st ξk = ξ) denotes that for every positive ε

(3) lim
k→∞

P(|ξk − ξ| > ε) = 0.

If fk(t) and f(t) are the characteristic functions of ξk and ξ, respectively, and fk(t) → f(t)
for every value of t (or what is the same, the convergence is uniform in every finite t-
interval), then this will be expressed by

(4) fk(t) ⇒ f(t).

(4) follows from (3), and if ξ = 0, then (3) follows from (4).

If ξ is a random variable and for the real number Q(λ) the relations

P(ξ ≤ Q(λ)) ≥ λ, P(ξ ≥ Q(λ)) ≥ 1 − λ,

(where 0 < λ < 1) are satisfied, then the number Q(λ) will be called a λ-quantile of the
random variable ξ.

4



I. AUXILIARY THEOREMS

§ 1. Set functions which are subadditive or of bounded vari-

ation

Definition. Let A(A,B, . . .) be a class of sets. A real-valued set function α(A) defined
on the elements of A will be called of bounded variation if there is a number K such that
for every system of sets A1, A2, . . . , Ar, consisting of disjoint sets belonging to A, the
relation

r∑
k=1

|α(Ak)| ≤ K

holds.

The smallest number K for which the preceding inequality holds, is called the variation
of α. If only sets Ak ⊆ A (k = 1, 2, . . . , r) are admitted, then the number

sup
{Ak}

r∑
k=1

|α(Ak)|

will be called the variation of the set function α in A. We denote this quantity by Varα(A).

Definition. Let A(A,B, . . .) be a class of sets and α(A) a real-valued set function
defined on the elements of A. We call the set function α subadditive (superadditive)
if for every system A1, A2, . . . , Ar, consisting of disjoint sets belonging to A, for which
A =

∑r
k=1 Ak ∈ A, the relation

α(A) ≤
r∑

k=1

α(Ak)

(
α(A) ≥

r∑
k=1

α(Ak)

)

holds.

If a set function α is both subadditive and superadditive, we say that α is an additive set
function. If in the above inequality r may be also infinite, then α will be called completely
subadditive (completely superadditive).

If α is a set function of bounded variation, then the set function Varα(A) is obviously
completely superadditive. We shall often use the following theorems which are proved in
[11].

Theorem 1.1. Let R be a ring and α a real-valued, non-negative set function defined
on R for which the following conditions are satisfied:
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a) α(A) ≤ K where K is a constant;

b) α(A) is subadditive;

c) if A1, A2, . . . is a sequence of disjoint sets of R, then
∞∑

k=1

α(Ak) < ∞.

Under these conditions α(A) is a bounded variation.

Theorem 1.2. Let R be a ring and α(A) a completely subadditive set function of
bounded variation. Then the set function Varα(A) (A ∈ R) is a bounded measure on R.

§ 2. Some inequalities

In this § we derive some inequalities which we shall use later. In advance we mention the
following elementary inequalities:

1 − sin x

x
≥ x2

8
if |x| ≤ 1,

1 − sin x

x
≥ 1 − sin ε

ε
if 0 < ε ≤ 1 and |x| ≥ ε,

1 − sin x

x
>

1
10

if |x| ≥ 1.

Let ξ be a random variable, F (x) and f(t) denote its distribution function and charac-
teristic function, respectively. If 0 < ε ≤ 1, then using the preceding inequalities we
obtain

1
2

∫ 1

−1
|1 − f(t)|dt ≥ 1

2

∣∣∣∣
∫ 1

−1
(1 − f(t)) dt

∣∣∣∣ = 1
2

∣∣∣∣
∫ 1

−1

∫ ∞

−∞
(1 − eitx) dF (x) dt

∣∣∣∣
=
∫ ∞

−∞

(
1 − sin x

x

)
dF (x) ≥ 1

8

∫
|x|≤ε

x2 dF (x) +
(

1 − sin ε

ε

)
P(|ξ| > ε).

Hence

(1.1)
1
2

∫ 1

−1
|1 − f(t)|dt ≥ min

(
1
8
, 1 − sin ε

ε

)[∫
|x|≤ε

x2 dF (x) + P(|ξ| > ε)

]
.

Let δ be an arbitrary positive number. Then analogously we obtain

1
2δ

∫ δ

−δ
|1 − f(t)|dt ≥

∫ ∞

−∞

(
1 − sin δx

δx

)
dF (x)

(1.2)

≥
∫
|x|> 1

δ

(
1 − sin δx

δx

)
dF (x) ≥ 1

10
P
(
|ξ| >

1
δ

)
.
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We shall often use the following well-known inequality: if f(t) is a characteristic func-
tion, then

(1.3) 1 − Rf(2t) ≤ 4(1 − Rf(t))1

(see e.g. [5], p. 61).

The following theorem is a straightforward generalization of a lemma in [4], p. 113.

Theorem 1.3. Let ξ be a random variable and denote Q(λ) a λ-quantile of ξ. Let z be
an arbitrary real number and s(x) a non-negative function such that if x ≥ z, then s(x)
is non-decreasing and if x ≤ z, it is non-increasing. We suppose further that M [s(ξ − η)]
exists where η is a random variable having the same distribution as ξ and independent of
ξ. Under these conditions M [s(ξ − Q(λ))] also exists and the following inequality holds:

(1.4) M [s(ξ − η)] ≥ min(λ, 1 − λ)M [s(ξ − Q(λ))].

Proof. Let ξ1 = ξ − Q(λ), η1 = η − Q(λ). Then the value 0 is a λ-quantile of ξ1.
Denote F1(x) the common distribution function of ξ1 and η1. Then we have

M [s(ξ − η)] = M [s(ξ1 − η1)] =
∫ ∞

−∞

∫ ∞

−∞
s(x − y) dF1(x) dF1(y)

≥
∫

x≥z

∫
y≤0

s(x − y) dF1(x) dF1(y) +
∫

x<z

∫
y≥0

s(x − y) dF1(x) dF1(y)

≥
∫

y≤0
dF1(y)

∫
x≥z

s(x) dF1(x) +
∫

y≥0
dF1(y)

∫
x<z

s(x) dF1(x)

≥ min(λ, 1 − λ)
∫ ∞

−∞
s(x) dF1(x) = min(λ, 1 − λ)M [s(ξ − Q(λ))].

�
Corollary. If s(x) is the function defined by

s(x) =
{

0 if |x| ≤ ε,
1 if |x| > ε

(ε > 0),

then the inequality (1.4) gives

(1.5) P(|ξ − η| > ε) ≥ min(λ, 1 − λ)P(|ξ − Q(λ)| > ε).

From the inequalities (1.2) and (1.5) it follows that

1
2δ

∫ δ

−δ
(1 − |f(t)|2) dt >

1
10

P
(
|ξ − η| >

1
δ

)
(1.6)

≥ min(λ, 1 − λ)
10

P
(
|ξ − Q(λ)| >

1
δ

)
.

1Rz denotes the real part of the complex number z.
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§ 3. Boundedness of sets of quantiles

Let Z be an arbitrary set and ξz (z ∈ Z) a family of random variables. Denote by Q(λ, z)
a λ-quantile of the variable ξz. If for every z we choose a Q(λ, z), then we obtain a set:
{Q(λ, z), z ∈ Z} (this set is uniquely determined or not according to whether the quantiles
Q(λ, z) for every z being uniquely determined or not).

Let us define the following quantities:

μ1 = lim
ε→∞ sup

z∈Z
P(ξz < −ε), μ2 = lim

ε→∞ sup
z∈Z

P(ξz > ε).

The connection between the variables ξz and the quantities μ1, μ2 is shown by the following

Theorem 1.4. If the quantiles Q(λ, z) can be chosen in such a way that the set {Q(λ, z),
z ∈ Z} is bounded from below (from above), then we have

(1.7) μ1 ≤ λ (μ2 ≤ 1 − λ).

If the quantiles Q(λ, z) can be chosen in such a way that the set {Q(λ, z), z ∈ Z} is not
bounded from below (from above), then

(1.8) μ1 ≥ λ (μ2 ≥ 1 − λ).

Proof. Let us first prove the first half of the inequalities (1.7) and (1.8). The proof of
the statements in the brackets proceeds in a similar way. Suppose that there is a number
K(λ) for which the inequality Q(λ, z) ≥ K(λ) (z ∈ Z) holds with a convenient choice of
the quantiles Q(λ, z), and suppose that μ1 > λ. Then, for every ε, the relation

sup
z∈Z

P(ξz < −ε) > λ

will be fulfilled. Let ε0 be a number such that −ε0 ≤ K(λ) and let us choose a z0 for
which

P(ξz0 < −ε0) > λ.

Hence it follows that for every λ-quantile Q(λ, z0) of the variable ξz0 the relation

Q(λ, z0) < −ε0 ≤ K(λ)

holds which is a contradiction. Consequently, the first half of (1.7) is true.

Now suppose that the set {Q(λ, z), z ∈ Z} is not bounded from below with a convenient
choice of the quantiles Q(λ, z). Then, for every ε, we can find a zε such that

P(ξzε < −ε) ≥ λ.
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It follows that for every ε the relation

sup
z∈Z

P(ξz < −ε) ≥ λ

holds, hence
μ1 = lim

ε→∞ sup
z∈Z

P(ξz < −ε) ≥ λ.

Thus we have proved also the first half of (1.8). �

Corollary. It follows from the inequalities (1.7) and (1.8) that, for every fixed value
of λ (0 < λ < 1), the sets2 {Q(λ, z), z ∈ Z} will be bounded from below (from above) if
and only if μ1 = 0 (μ2 = 0). Let us define the quantity

μ3 = lim
ε→∞ sup

z∈Z
P(|ξz | > ε).

Clearly we have
μ1 ≤ μ3, μ2 ≤ μ3, μ3 ≤ μ1 + μ2.

Hence it follows that for every fixed value of λ (0 < λ < 1) the sets {Q(λ, z), z ∈ Z} will
be bounded if and only if μ3 = 0.

Similarly, from the inequalities (1.7) and (1.8) we obtain also the following statements:

For every fixed value of λ the sets {Q(λ, z), z ∈ Z} (0 < λ < 1) are not bounded from
below (from above) if and only if μ1 = 1 (μ2 = 1).

For every fixed value of λ the sets {Q(λ, z), z ∈ Z} (0 < λ < 1) are bounded if and
only if μ3 = 1.

§ 4. Compactness of sets of distribution functions

Denote by F the set of one-dimensional distribution functions. P. Lévy has introduced
the notion of the distance of two distribution functions. The distance of the distribution
functions F1(x) and F2(x) is defined as the lower bound of those values h for which the
following inequality holds:

F1(x − h) − h ≤ F2(x) ≤ F1(x + h) + h (−∞ < x < +∞).

Let us denote this number by L(F1, F2). Clearly L(F1, F2) ≤ 1. It is known that this
distance satisfies the axioms of metric spaces, i.e.

2If we speak about the boundedness (unboundedness) of the sets {Q(λ, z), z ∈ Z} for every fixed λ
(0 < λ < 1), the special choice of the quantiles Q(λ, z) does not matter as in this case the boundedness
(unboundedness) of the sets {Q(λ, z), z ∈ Z} with a special choice of the quantiles Q(λ, z) implies the
boundedness of the sets {Q(λ, z), z ∈ Z} with every choice of the quantiles. In this case we may interpret
{Q(λ, z), z ∈ Z} as the set of all the λ-quantiles of all the variables ξz, too.
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a) L(F1, F2) = 0 if and only if F1 ≡ F2;

b) L(F1, F2) = L(F2, F1);

c) L(F1, F3) ≤ L(F1, F2) + L(F2, F3).

It is also known that the space F is complete with respect to the distance of Lévi ([5],
p. 42, Theorem 2). Consequently, F is a bounded and complete but non-compact metric
space. In what follows we shall deal with the question, under what condition a subset F ′

of the space F will be compact.

Theorem 1.5. A subset F ′ = {F (x, z), z ∈ Z} of the space F is compact if and only
if the set {Q(λ, z), z ∈ Z} (0 < λ < 1) is bounded for every λ.

Proof. According to the Corollary to Theorem 1.4 the sets {Q(λ, z), z ∈ Z} will be
bounded for every fixed value of λ if and only if

lim
ε→∞ sup

z∈Z
[F (−ε, z) + 1 − F (ε + 0, z)] = 0.

This is equivalent with

sup
z∈Z

F (−ε, z) → 0, inf
z∈Z

F (ε, z) → 1 if ε → ∞.

Consequently, if F (x, z1), F (x, z2), . . . is a sequence of distribution functions belonging to
F ′ and a subsequence F (x, znk

) of this sequence converges3 to a non-decreasing function
F (x), which is continuous on the left, at every point of continuity of the latter, then
F (−∞) = 0 and F (+∞) = 1. �

Theorem 1.6. A set F ′ = {F (x, z), z ∈ Z} of the space F is compact if and only if
μ3 = 0.

Proof. The theorem is a straightforward consequence of Theorem 1.5 and of the
Corollary of Theorem 1.4. �

Theorem 1.7. A set F ′ = {F (x, z), z ∈ Z} of the space F is compact if and only if
the characteristic functions f(t, z) (z ∈ Z) are equally continuous at the point t = 0, i.e.
to every positive ε there belongs a δ > 0 such that

(1.9) |1 − f(t, z)| < ε if |t| < δ.

Proof. Suppose the set F ′ to be compact. Hence if c is sufficiently large,

sup
z∈Z

P(|ξz | > c) <
ε

4
.

3The existence of such a sequence is assured by well-known Theorem of Helly.
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Since

|1 − f(t, z)| =
∣∣∣∣
∫ ∞

−∞
(1 − eitx) dF (x, z)

∣∣∣∣ ≤ |t|
∫
|x|≤c

|x|dF (x, z)

+ 2P(|ξz | > c) ≤ |t|c +
ε

2
,

the inequality (1.9) will be satisfied whenever |t| <
ε

2c
= δ.

Now suppose that the inequality (1.9) is satisfied. Then from the inequality (1.2) we
obtain μ3 < 10ε, but this can be valid for every positive ε only if μ3 = 0. �

Theorem 1.8. Suppose that for the set F = {F (x, z), z ∈ Z} the following two
conditions are satisfied:

1. There exists a measurable function which is continuous at the point t = 0 and for
which 0 ≤ g(t) ≤ 1, g(0) = 1, and

|f(t, z)| ≥ g(t) (z ∈ Z).

2. There exists a number λ1 (0 < λ1 < 1) such that with a convenient choice of the
quantiles Q(λ1, z), the set {Q(λ1, z), z ∈ Z} is bounded from below (from above).

In this case the set {Q(λ, z), z ∈ Z} will be bounded from below (from above) for every
λ (0 < λ < 1).

Proof. Let us prove that under the mentioned conditions the sets {Q(λ, z), z ∈ Z}
will be bounded from below. The boundedness from above can be proved similarly. Let
Q(λ1, z) ≥ K1 (z ∈ Z). By means of the inequality (1.6) we get that if δ > 0, then

1
2δ

∫ δ

−δ
(1 − g2(t)) dt ≥ 1

2δ

∫ δ

−δ
(1 − |f(t, z)|2) dt

≥ min(λ1, 1 − λ1)
10

P
(
|ξz − Q(λ, z)| >

1
δ

)
≥ min(λ1, 1 − λ1)

10
P
(

ξz < K1 −
1
δ

)
,

consequently

min(λ1, 1 − λ1)
10

sup
z∈Z

P
(

ξz < K1 −
1
δ

)
≤ 1

2δ

∫ δ

−δ
(1 − g2(t)) dt.

When δ → 0, it follows that μ1 = 0, i.e. according to the Corollary to Theorem 1.4, the
set {Q(λ, z), z ∈ Z} is bounded for every fixed λ. This completes the proof. �

Theorem 1.9. The subset F ′ = {F (x, z), z ∈ Z} of the space F is compact if and only
if the Condition 1 in Theorem 1.8 is satisfied and there is a number λ1 (0 < λ1 < 1) such
that the set {Q(λ1, z), z ∈ Z} is bounded by a convenient choice of the quantiles Q(λ1, z).
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Proof. Suppose the condition of our theorem to be satisfied. Then by Theorem 1.8
the set {Q(λ, z), z ∈ Z} is bounded for every fixed λ. Hence, according to Theorem 1.5,
the set F ′ is compact.

Now let us suppose that the set F ′ is compact. Then, according to Theorem 1.5, the
set {Q(λ, z), z ∈ Z} will be bounded for every λ. Thus we have to show the existence of
the function g(t) only. For this purpose it clearly suffices to prove that the function

inf
z∈Z

|f(t, z)| = g1(t)

is continuous at the point t = 0. In contradiction to the statement let us suppose that
there is a number q < 1 and two sequences tk and zk such that tk → 0 if k → ∞ and

|f(tk, zk)| ≤ q < 1 (k = 1, 2, . . .).

Since the set F ′ is compact, it follows that the sequence F (x, zk) contains a subsequence
which converges to a distribution function F (x). Without restricting the generality we can
assume that the sequence F (x, zk) itself has this property. If f(t) denotes the characteristic
function of F (x), then, according to what has been said, the sequence f(t, zk) converges
uniformly to the limiting function f(t) in every finite interval. But this is a contradiction
because f(t) is a continuous function and f(0) = 1. �

§ 5. Some theorems concerning the convergence of a series

of independent random variables

In this paragraph we mention two theorems, the proofs of which are given in [10].

The theorems deal with the question that if ξ1, ξ2, . . . are independent random variables,
under what conditions will the series

(1.10)
∞∑

k=1

ξk

converge with probability 1 regardless of the order of summation.

Let us introduce the following notations: Denote by R the set of finite subsets of the
set of natural numbers and by S the set of all subsets of the set of natural numbers. Let
us put

(1.11) ξ(A) =
∑
k∈A

ξk if A ∈ R or A ∈ S

assuming that the sum on the right hand side converges with probability 1 regardless of
the order of summation. Denote by F (x,A) the distribution function and by Q(λ,A) an
arbitrary λ-quantile of ξ(A).
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Theorem 1.10. If the set {F (x,A), A ∈ R} is compact, then the series (1.10) con-
verges with probability 1 regardless of the order of summation.

Conversely, if the series (1.10) converges with probability 1 regardless of the order of
summation, then the set {F (x, a), A ∈ S} is compact.

Theorem 1.11. If there exists a pair of numbers λ1, λ2 (0 < λ1 < λ2 < 1) such
that by a convenient choice of the quantiles Q(λ1, A), Q(λ2, A) the sets {Q(λ1, A), A ∈
R}, {Q(λ2, A), A ∈ R} are bounded, then the series (1.11) converges with probability
1 regardless of the order of summation. Conversely, if the series (1.10) converges with
probability 1 regardless of the order of summation, then the sets {Q(λ,A), A ∈ S} are
bounded for every fixed value of λ.

Corollary 1. Let the distributions of the random variables ξ1, ξ2 . . . be symmetric

with respect to the point 0. If there exists a λ 
= 1
2

(0 < λ < 1) such that by a convenient

choice of the quantiles Q(λ,A) the set {Q(λ,A), A ∈ R} is bounded, then the series (1.10)
converges with probability 1 regardless of the order of summation.

Corollary 2. Let the random variables ξ1, ξ2, . . . be non-negative. If there is a λ (0 <
λ < 1) such that by a convenient choice of the quantiles Q(λ,A) the set {Q(λ,A), A ∈ R}
is bounded, then the series (1.10) converges with probability 1.

II. ADDITIVE SET FUNCTIONS DEFINED ON RINGS AND
ALGEBRAS

In this chapter we shall analyse the properties of an additive set function ξ(A) defined
on the elements of a ring or algebra R, consisting of some subsets of a set H. These
investigations will help us to find out under which conditions we can extend the set function
ξ(A) to the smallest σ-ring containing the ring (or algebra) R. It is clear that one of the
conditions necessary for this is the complete additiveness of ξ(A) over R. Therefore we
have to find first a condition that ensures that an additive set function should be completely
additive. This question will be answered by

Theorem 2.1. In order that an additive set function ξ(A) defined on the elements
of the ring R should be completely additive it is necessary and sufficient that for every
non-decreasing sequence of sets B1, B2, . . . with Bk ∈ R (k = 1, 2, . . .)

∏∞
k=1 Bk = 0, the

following condition holds:

(2.1) P(|ξ(Bk)| > ε) → 0 if k → ∞,

where ε is an arbitrary positive number.

Proof. Suppose that the condition (2.1) is satisfied. Let A1, A2, . . . be a sequence of
disjoint sets of the ring R. Let A =

∑∞
k=1 Ak, Bn =

∑∞
k=n Ak.

13



Since ξ(A) is an additive set function, it follows that

ξ(A) =
n−1∑
k=1

ξ(Ak) + ξ(Bn) (n = 2, 3, . . .).

Hence

ξ(A) −
n−1∑
k=1

ξ(Ak) = ξ(Bn) ⇒ 0 if n → ∞,

consequently ([4], p. 119, Corollary 2)

ξ(A) =
∞∑

k=1

ξ(Ak).

Now let us suppose that ξ(A) is completely additive. If B1, B2, . . . is a sequence of sets
having the properties mentioned in Theorem 2.1 and An = Bn −Bn+1 (n = 1, 2, . . .), then
AiAk = 0 if i 
= k and

B1 =
∞∑

k=1

Ak,

hence, by the complete additiveness of ξ(A), it follows that

ξ(B1) =
∞∑

k=1

ξ(Ak).

Thus we obtain that the following relation holds:

ξ(Bn) =
∞∑

k=n

ξ(Ak) → 0 if n → ∞,

consequently, it is also true that if ε > 0, then

P(|ξ(Bn)| > ε) → 0.

�

Corollary. Let ξ(A) be an additive set function defined on the ring R. If there
exists a positive number T such that for every non-increasing sequence B1, B2, . . . of sets
belonging to R for which limk→∞ Bk = 0, we have

lim
k→∞

f(t, Bk) = 1 if |t| ≤ T,

then the set function ξ(A) is completely additive.

14



Proof. From the inequality (1.3), valid for every characteristic function, it follows
that the relation

lim
k→∞

f(T,Bk) = 1

holds for every t, i.e.
ξ(Ak) ⇒ 0 if k → ∞.

The statement then follows from Theorem 2.1. �
In what follows some theorems concerning the quantiles Q(λ,A) of the random variables

ξ(A) will be proved. We shall make use of the results of the preceding chapter.

Theorem 2.2. Let ξ(A) be an additive set function defined on an algebra R. Suppose
that there is a number λ1 such that by a convenient choice of the quantiles Q(λ1, A) the
set {Q(λ1, A), A ∈ R} is bounded form below (from above). Then, for every λ, the set
{Q(λ,A), A ∈ R} is bounded from below (from above). If the set {Q(λ1, A) A ∈ R} is
bounded from both sides, then the set {F (x,A), A ∈ R} is compact.

Proof. If A ∈ R, then, by assumption, A ∈ R and H = A + A ∈ R. Hence it follows
that

ξ(H) = ξ(A) + ξ(A), f(t,H) = f(t, A)f(t, A).

Since |f(t, A)| ≤ 1, it follows that

(2.2) |f(t, A)| ≥ |f(t,H)| (A ∈ R).

f(t,H) is a characteristic function; consequently f(t,H) is continuous, and f(0,H) = 1.
Hence, if

g(t) = |f(t,H)|,

we obtain that Condition 1 of Theorem 1.8 is satisfied. As the fulfilment of Condition 2
has been supposed one part of the statement is proved.

If we suppose that the set {Q(λ1, A), A ∈ R} is bounded from both sides, then from
inequality (2.2), further from Theorem 1.9 it follows that the set {F (x,A), A ∈ R} is
compact. This completes the proof of the theorem. �

If R is a ring, the existence of a quantile-set bounded from both sides does not imply
that every quantile-set is bounded. If e.g. R is the ring formed by the finite sets of positive
integers and

F (x, n) =
1√
2π

∫ ∞

−∞
e−

t2

2 dt,

then Q

(
1
2
, A

)
= 0 if A ∈ R. However, the quantities Q(λ,A) are not bounded. In case

of a ring we obtain, using the results of Chapter I, the following theorems.

15



Theorem 2.3. Let ξ(A) be an additive set function defined on a ring R. Suppose that
there is a pair of numbers λ1, λ2 (0 < λ1 < λ2 < 1) such that by a convenient choice
of the quantiles Q(λ1, A), Q(λ2, A) the sets {Q(λ1, A), A ∈ R}, {Q(λ2, A), A ∈ R} are
bounded. In this case the set {Q(λ,A), A ∈ R} is bounded for every fixed λ (0 < λ < 1).

Proof. Contrarily to the statement of the theorem let us suppose that there is a
number λ0 and a sequence of sets Ak such that by a convenient choice of the quantiles
Q(λ0, Ak) we have |Q(λ0, Ak)| → ∞ if k → ∞. Let Bn =

∑n
k=1 Ak, Cn = Bn+1−Bn. Then

CiCk = 0 if i 
= k. Hence the random variables ξ(Cn) are independent. The conditions of
our theorem and Theorem 1.11 together imply the convergence with probability 1 of the
series ∞∑

n=1

ξ(Cn).

Denote by ξ the sum of this series and by f(t) the characteristic function of ξ. It is clear
that

f(t) = f(t, A1 + A2 + · · · + An)
∞∏

k=n

f(t, Ck),

further that

f(t, A1 + A2 + · · · + An) = f(t, (A1 + A2 + · · ·An) − An)f(t, An),

hence
|f(t)| ≤ |f(t, A1 + A2 + · · · + An)| ≤ |f(t, An)|.

We know that the set {Q(λ1, A), A ∈ R} is bounded; hence, by Theorems 1.9 and 1.5
it follows that the quantiles of the random variables ξ(An) are bounded, but this is a
contradiction because we have supposed that |Q(λ0, An)| → ∞ if n → ∞. �

Theorem 2.4. Let ξ(A) be an additive set function defined on a ring R. Suppose
that ξ(A) ≥ 0 (A ∈ R) and there is a number λ1 such that by a convenient choice
of the quantiles Q(λ1, A) the set {Q(λ1, A), A ∈ R} is bounded. In this case the sets
{Q(λ,A), A ∈ R} will be bounded for every fixed λ (0 < λ < 1).

Proof. Contrarily to our statement let us suppose that there is a number λ0 and a
sequence of sets Ak such that by a convenient choice of the quantiles Q(λ0, Ak) we have
Q(λ0, Ak) → ∞ if k → ∞. If Bn =

∑n
k=1 Ak, then Bn+1 ⊇ Bn, Bn ⊇ An. Since ξ(A) is

additive and non-negative, we have ξ(Bn) ≥ ξ(An). If Cn = Bn+1 − Bn, then CiCk = 0 if
i 
= k, consequently the variables ξ(Cn) are independent. We know further that if A ∈ R,
then the quantities Q(λ1, A) are bounded, hence by Corollary 2 of Theorem 1.11 we obtain

∞∑
n=1

ξ(Cn) < ∞.
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If we denote the sum of this series by ξ, then

0 ≤ ξ(An) ≤ ξ(Bn) =
n∑

k=1

ξ(Ck) ≤ ξ,

but this is a contradiction because we have supposed that Q(λ0, Ak) → ∞. Thus our
theorem is proved. �

Let R be a ring and ξ(A) a set function defined on the elements of R. Let us define
the following set functions:

μ1(A) = lim
ε→∞ sup

B∈AR
P(ξ(B) < −ε),

μ2(A) = lim
ε→∞ sup

B∈AR
P(ξ(B) > ε),

μ3(A) = lim
ε→∞ sup

B∈AR
P(|ξ(B)| > ε),

The set functions μ1(A), μ2(A), μ3(A) are the same as the quantities μ1, μ2, μ3 defined in
Chapter I, provided that Z = AR. It is clear that if B ∈ AR, A ∈ R, then

μi(B) ≤ μi(A) (i = 1, 2, 3).

In addition there holds the following

Theorem 2.5. If ξ(A) is an additive set function defined on the elements of a ring R,
and Ak (k = 1, 2, . . . , r) is a finite sequence of sets belonging to R, then

μi

(
r∑

k=1

Ak

)
≤

r∑
k=1

μi(Ak) (i = 1, 2, 3).

Proof. Let us carry out the proof in the case i = 3. The other cases can be treated
in a similar way. Let Ak ∈ R, A′

k ∈ AkR (k = 1, 2, . . . , r), AiAl = 0 if i 
= l, then we have

P(|ξ(A′
1 + A′

2 + · · · + A′
r)| > ε) = P(|ξ(A′

1) + ξ(A′
2) + · · · + ξ(A′

r)| > ε)

≤ P
(
|ξ(A′

1)| >
ε

r

)
+ P

(
|ξ(A′

2)| >
ε

r

)
+ · · · + P

(
|ξ(A′

r)| >
ε

r

)
.

Consequently

sup
C∈�r

k=1 AkR
P(|ξ(C)| > ε) ≤

r∑
k=1

sup
A′

k∈AkR
P
(
|ξ(A′

k)| >
ε

r

)
,

hence it follows that

μ3

(
r∑

k=1

Ak

)
≤

r∑
k=1

μ3(Ak).
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Now, if A1, A2, . . . , Ar are arbitrary sets belonging to the ring R, then, according to
the previous inequalities, we have

μ3

(
r∑

k=1

Ak

)
≤ μ3(A1) + μ3(A2 − A1) + · · · + μ3

(
Ar −

r−1∑
k=1

Ak

)
.

Since the set functions μi(A) (i = 1, 2, 3) are monotonous, it follows that

μ3

(
r∑

k=1

Ak

)
≤

r∑
k=1

μ3(Ak).

This completes the proof of our statement. �
Regarding the set functions μi(A) a law of 0 or 1 holds. This will be expressed by

Theorem 2.6. The set functions μ1(A), μ2(A), μ3(A) defined on the elements of the
ring R can take on only the values 0 or 1.

Proof. Let A ∈ R and consider those elements of the ring R for which B ⊆ A
holds. If μ1(A) > 0 (μ2(A) > 0), then by the Corollary of Theorem 1.4 there is a
λ1 (λ2) such that by a convenient choice of the quantiles Q(λ1, B) (Q(λ2, B)), the set
{Q(λ1, B), B ∈ AR} ({Q(λ2, B), B ∈ AR}) is not bounded from below (from above).
Then, using Theorem 2.2, it follows that also the sets {Q(λ,B), B ∈ AR} are not bounded
from below (from above) for every fixed value of λ. Hence, using again the Corollary of
Theorem 1.4, we get μ1(A) = 1 (μ2(A) = 1). Finally, let us consider the value of μ3(A).
If μ3(A) > 0, then, from μ3(A) ≤ μ1(A) + μ2(A), it follows that at least one of μ1(A)
and μ2(A) is positive. Taking into account what has been said above and the fact that
μ3(A) ≥ μ1(A), μ3(A) ≥ μ2(A), it follows that μ3(A) = 1. This completes the proof. �

Finally let us prove

Theorem 2.7. Let ξ(A) be an additive (completely additive) set function defined on
a ring R. Then the set function |1 − f(t, A)| is subadditive (completely subadditive) for
every fixed t.

Proof. Let A1, A2, . . . be a sequence of disjoint sets of the ring R. By the inequality

|1 − z1z2 · · · zr| ≤ |1 − z1| + |1 − z2| + · · · + |1 − zr|

valid for such complex numbers zi for which |zi| ≤ 1 (i = 1, 2, . . .), we obtain that∣∣∣∣∣1 − f

(
t,

r∑
k=1

Ak

)∣∣∣∣∣ =
∣∣∣∣∣1 −

r∏
k=1

f(t, Ak)

∣∣∣∣∣ ≤
r∑

k=1

|1 − f(t, Ak)| (r = 1, 2, . . .).

18



If ξ(A) is additive, the statement is proved. If ξ(A) is completely additive and A =∑∞
k=1 Ak ∈ R, then, by virtue of

f

(
t,

r∑
k=1

Ak

)
=

r∏
k=1

f(t, Ak) ⇒ f(t, A),

it follows that

|1 − f(t, A)| ≤
∞∑

k=1

|1 − f(t, Ak)|.

This completes the proof. �

III. EXTENSION OF COMPLETELY ADDITIVE SET
FUNCTIONS

§ 1. The discussion of the problem

Let R be a ring consisting of certain subsets of a space H and ξ(A) a completely additive
set function defined on the elements of R. In this chapter we shall deal with the question
under what conditions can the set function ξ(A) be extended to the σ-ring S(R). We
mean by extension the construction of a completely additive set function ξ∗(A) defined on
the elements of S(R) for which

ξ∗(A) = ξ(A) if A ∈ R.

It is clear that not every completely additive set function can be extended; if, in
particular, ξ(ω,A) is constant, ξ(ω,A) ≡ ϕ(A) where ϕ(A) is a real-valued, completely
additive set function defined on the elements of R, then we need also further conditions
for its extension.

Let H be e.g. the square 0 ≤ x < 1, 0 ≤ y < 1 on the (x, y)-plane and R be the
algebra formed 1. by the finite sums of intervals, closed to the left, open to the right
and lying on straight lines parallel to the x-axis, 2. by the complements of the previous
sets (these sets will be shortly called to be of complementary type) and 3. by the set
H itself. If A =

∑n
k=1{ak ≤ x < bk, y = yk}, then put ϕ(A) =

∑n
k=1(bk − ak) and

ϕ(A) = −ϕ(A). ϕ(A) is a completely additive set function. In fact, if A1, A2, . . . is a
sequence of disjoint sets of R and A =

∑∞
k=1 Ak ∈ R, then there will be at most one set

among the sets A1, A2, . . . which is of complementary type. If there is none, then A is the
sum of a finite number of intervals closed to the left and open to the right, such that each
of them is divided into a sum of intervals of the same type. In whatever order we add the
lengths of them we always get the same sum, i.e. ϕ(A) =

∑∞
k=1 ϕ(Ak). But if we have a
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set of complementary type and this is A1, then from ϕ(A) = ϕ(A1) + ϕ (
∑∞

k=2 Ak) and
ϕ (
∑∞

k=2 Ak) =
∑∞

k=2 ϕ(Ak) it follows that ϕ(A) =
∑∞

k=1 ϕ(Ak). In spite of this, ϕ(A) can
not be extended to S(R), because the values +∞ and −∞ can not occur simultaneously
in the set of values of a completely additive set function defined on a σ-ring ([6], p. 18,
Theorem 3.4.13).

In case of ordinary real-valued set functions it is known that in order to be able to carry
out the extension and to have an extended set function of finite value it is necessary and
sufficient that the original set function should be bounded from both sides. The extension
can be carried out most simply by representing the set function as the difference of two
non-negative, completely additive set functions and by extending both these separately.

In case of random-valued set functions this way is inpracticable, namely if the set of
the measurable subsets of the set A is not countable, then the functions

η+(A) = sup
B∈AR

ξ(B), η−(A) = inf
B∈AR

ξ(B)

defined on the space of the elementary events are not certainly measurable; admitted that
they are measurable, it is again possible that they have an infinite value on a set of positive
measure. Therefore we have to look for another way of extension in this case.

We have to emphasize that in the particular case ξ(ω,A) ≡ ϕ(A) the requirement of
ξ(ω,A) being a random variable means that the value ϕ(A) is finite. Consequently, from
the real-valued set functions we obtain as particular cases of random set functions only
the finite-valued ones.

There arises the question whether we can construct the whole theory of random-valued
set functions starting from the family of sample functions (which should be common
real-valued set functions). This way is suitable only if we are satisfied with additive set
functions. Namely, if we require the sample functions to be completely additive, then we
have to exclude several important set functions from the investigations. E.g. let ξt (t ≥ 0)
be the well-known Brownian movement process with M(ξt) = 0, D2(ξt) = t. If R consists
of finite sums of intervals of the real axis, which are closed to the left and open to the
right and the set function ξ(A) is an additive set function formed by the corresponding
differences and sums of differences, respectively, of the process, then the sample functions
ω(A) of the set function ξ(A) can not be completely additive. This can be seen easily. Let
us restrict ourselves to the interval I = [0, 1), i.e. suppose A ⊆ I. Let ξ̃t be a separable
Brownian movement process defined in the interval 0 ≤ t ≤ 1 such that

P(ξ̃t = ξt) = 1,

and let ξ̃(A) be the additive set function generated by the differences and by the sums of
differences, respectively, of the process ξ̃t. It is clear that

P(ξ̃(A) = ξ(A)) = 1 if A ∈ R.
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Almost every sample function of the process ξ̃t is continuous ([4], p. 393, Theorem 2.2).
Hence and by Theorem 2.3 of [4] (p. 395) it follows that almost every sample function of
a separable Brownian movement process is not of bounded variation. Let us divide the

interval I = [0, 1) into a sum of disjoint intervals J1,J2, . . . ,Jn of length
1
n

, closed to the
left, open to the right and put

ζ̃ =
n∑

k=1

|ξ̃(Jk)|, ζn =
n∑

k=1

|ξ(Jk)|.

From what has been said above it follows that

P(ζ̃n → ∞) = 1.

Since P(ζ̃n = ζn) = 1, we have
P(ζn → ∞) = 1,

i.e. almost every sample function of the set function ξ(A) is not of bounded variation.

The results of this chapter will help us to solve existence problems of additive set
functions ξ(A) defined on Borel sets of the space H. We shall consider first, to make clear
the idea, a concrete case.

Let us construct e.g. a set function ξ(A), defined on the set R of Borel subsets of some
finite closed n-dimensional interval H of the space Rn, such that ξ(A) has for any A ∈ R
a Cauchy distribution; the characteristic function of the random variable ξ(A) will be

f(t, A) = e−|A| |t|.

First of all by aid of the construction due to Kolmogorov ([8], § 4) we construct a family
of random variables ξt1,t2,...,tn (t1, t2, . . . , tn) ∈ H for which the following conditions hold:

a) If I is the n-dimensional interval

(3.1) I = {ai ≤ xi < ai + hi; i = 1, 2, . . . , n}, I ⊆ H

and
Δhi

ξt1,t2,...,tn = ξt1,...,ti−1,ti+hi,ti+1,...,tn − ξt1,t2,...,tn ,

further
ΔIξt1,t2,...,tn = Δh1Δh2 . . . Δhnξt1,t2,...,tn ,

then the random variable

(3.2) ξ(I) = ΔIξt1,t2,...,tn

has a Cauchy distribution, namely

(3.3) f(t, I) = e−h1h2...hn|t|.
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b) If I1, I2, . . . , Ir are n-dimensional disjoint intervals lying in the interval H, then the
random variables

ξ(I1), ξ(I2), . . . , ξ(Ir)

defined by expression (3.2) are independent.

We consider the ring R formed by the finite sums of the interval (3.1) and let the
random variables

(3.4) ξ(A) =
r∑

k=1

ξ(Ik)

correspond to its elements A = I1 + I2 + · · ·+ Ir, Il ⊆ H (l = 1, 2, . . . , r), IjIl = 0 if j 
= l.

Having arrived so far through Kolmogorov’s construction, we state that ξ(A) is
completely additive on the ring R, further the set {F (x,A), A ∈ R} is compact. Then,
taking Theorem 3.2 into account, we carry out the extension of the set function ξ(A) to
the σ-ring S(R) of the Borel sets of the set H.4

The complete additiveness of ξ(A) follows from Theorem 2.1 and from that |An| → 0
if An → 0. Namely, by (3.3) and (3.4) we obtain

f(t, An) = e−|An| |t| ⇒ 0 if n → ∞.

The second property, the compactness of the set {F (x,A), A ∈ R} follows from

f(t, A) = e−|A| |t| ≥ e−|H| |t| = g(t),

where g(t) is a continuous function, 0 ≤ g(t) ≤ 1, g(0) = 1. As Q

(
1
2
, A

)
= 0, the

conditions of Theorem 1.9 are satisfied. By this step the construction is finished.

§ 2. Extension of a set function defined on a ring

Theorem 3.1. Let ξ(A) be a completely additive set function defined on a ring R. If
there is a positive number T such that for every fixed value of t for which |t| ≤ T the set
function |1−f(t, A)| is of bounded variation, then ξ(A) can be extended to the σ-ring S(R).
The extension is unique in the sense that if ξ∗(A) and ξ∗∗(A) are completely additive set
functions defined on the σ-ring S(R) and

ξ∗(A) = ξ∗∗(A) if A ∈ R,

then
4In the present case S(R) is not only a σ-ring, but also a σ-algebra.
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ξ∗(A) = ξ∗∗(A) if A ∈ S(R).

Conversely, if ξ(A) is a completely additive set function defined on a σ-ring S and T
is an arbitrary positive number, then the set function

(3.5) sup
|t|≤T

|1 − f(t, A)|

is of bounded variation.

Proof of the first part of the theorem. By assumption ξ(A) is a completely
additive set function on the ring R. Now, if A1, A2, . . . is a sequence of disjoint sets of the
ring R, A =

∑∞
k=1 Ak ∈ R, then

(3.6) lim
n→∞ sup

|t|≤T

∣∣∣∣∣f(t, A) −
n∏

k=1

f(t, Ak)

∣∣∣∣∣ = 0.

Let us consider the Banach-algebra B of continuous functions in the interval [−T, T ];
let the maximum of the absolute value of a function be its norm. It is clear that B is
commutative and has a unit element. By (3.6), if we consider the characteristic functions,
defined on the ring R, only in the interval [−T, T ] and put g(t, A) = f(t, A) if |t| ≤ T ,
then g(t, A) will be a completely multiplicative5 set function defined on the ring R whose
values belong to the Banach algebra B. We note that in virtue of g(0, A) = 1, for A ∈ R,
the values of the set function g(t, A) are different from 0.

We prove that the set function ‖1 − g(t, A)‖(A ∈ R) is of bounded variation and
completely subadditive.

In order to prove the first statement we show that the conditions of Theorem 1.1 hold.
Since ‖g(t, A)‖ ≤ 1, consequently ‖1 − g(t, A)‖ ≤ 2, hence Condition 1 is satisfied.

According to Theorem 2.7 if A1, A2, . . . , Ar are disjoint sets of the ring R, A =
∑r

i=1 Ai,
then for every value of t

|1 − f(t, A)| ≤
r∑

k=1

|1 − f(t, Ak)|,

i.e.

‖1 − g(t, A)‖ = sup
|t|≤T

|1 − f(t, A)| ≤
r∑

k=1

sup
t≤T

|1 − f(t, Ak)| =
r∑

k=1

‖1 − g(t, Ak)‖.

5The definition of this notion may be found in the paper [11].
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Consequently, Condition 2 is also satisfied. Let A1, A2, . . . be a sequence of disjoint sets
of the ring R. According to the condition of our theorem

∞∑
k=1

|1 − f(t, Ak)| < ∞ if |t| ≤ T.

Hence it follows ([4], p. 115, Theorem 2.7) that every rearrangement of the series
∑∞

k=1 ξ(Ak)
converges with probability 1. On the other hand, this involves the absolute convergence
of the infinite series

∞∑
k=1

∫
|x|≤ε

xdF (x,Ak),
∞∑

k=1

∫
|x|≤ε

x2 dF (x,Ak),
∞∑

k=1

P(|ξ(Ak)| > ε)

([8], § 5).

According to what has been said above it follows from the inequality

‖1 − g(t, Ak)‖ = sup
|t|≤T

|1 − f(t, Ak)| ≤ sup
|t|≤T

∣∣∣∣∣
∫
|x|≤ε

(eitx − 1 − itx) dF (x,Ak)

+ it

∫
|x|≤ε

xdF (x,Ak)

∣∣∣∣∣+ 2P(|ξ(Ak)| > ε)

≤ T 2

2

∫
|x|≤ε

x2 dF (x,Ak) + T

∣∣∣∣∣
∫
|x|≤ε

xdF (x,Ak)

∣∣∣∣∣+ 2P(|ξ(Ak)| > ε)

that ∞∑
k=1

‖1 − g(t, Ak)‖ < ∞,

i.e. Condition 3 of Theorem 1.1 is also satisfied.

The second statement follows immediately from Theorem 2.7; namely, in the set func-
tion |1 − f(t, A)| is completely subadditive for every value of t, then the set function
‖1 − g(t, A)‖ = sup|t|≤T |1 − f(t, A)| is also completely subadditive.

We have thus proved that the conditions of Theorem 1 in [11] are satisfied; consequently,
the set function g(t, A) can be uniquely extended to the σ-ring S(R). By other words,
there exists one and only one completely multiplicative set function g∗(t, A), defined on
the σ-ring S(R), for which

g∗(t, A) = g(t, A) if A ∈ R
and

g∗(t, A) ∈ B if A ∈ S(R).
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Further, it is true that if An ∈ S(R) (n = 1, 2, . . .) and limn→∞ An = A, then
limn→∞ g∗(t, An) = g∗(t, A). In particular, if A = 0, then the equality g∗(t, 0) = 1
implies that limn→∞ g∗(t, An) = 1.

The extension of the set function ξ(A) will be carried out by transfinite induction.

Let us construct a transfinite sequence of classes of sets R0 = R,R1,R2, . . . as follows.
If for every number ν for which ν < ν ′ < ω1 the class of sets Rν has been already defined,
then let Rν′ be the system of the sets which can be obtained as limits of convergent
sequences of sets belonging to the class

∑
ν<ν′ Rν . It is clear that every class Rν (ν < ω1)

is a ring.

Suppose that there are already corresponding random variables to the elements of every
ring Rν where ν < ν ′ < ω1; more exactly suppose that for every ν < ν ′ we have defined
on the elements of Rν a completely additive set function ξν(A) for which the relations

ξν(A) = ξν0(A) if ν0 < ν, A ∈ Rν0 ,
(3.7)

fν(t, A) = g∗(t, A) if |t| ≤ T, A ∈ Rν

are satisfied where fν(t, A) is the characteristic function of the random variable ξν(A).
Now we start to define the set function ξν′(A)(A ∈ Rν′).

First we show that if A1, A2, . . . is a convergent sequence of the ring
∑

ν<ν′ Rν , Ak ∈
Rνk

(k = 1, 2, . . .), then the sequence ξνk
(Ak) converges stochastically to some random

variable. Let us put Ck =
∏k

n=1 An, Dk = Ck − Ck−1 (k = 2, 3, . . .). As the sets
C1,D2,D3, . . . are disjoint, by applying the assumption of transfinite induction it follows
that the random variables ξν1(C1), ξν2(D2), ξν3(D3), . . . are independent. Since in addition
Ck = C1 + D2 + · · · + Dk and thus

(3.8) ξνk
(Ck) = ξν1(C1) +

k∑
n=2

ξνn(Dn),

applying the assumption of induction (3.7) we get

(3.9) fνk
(t, Ck) = fν1(t, C1)

k∏
n=2

fνn(t,Dn) = g∗(t, C1)
k∏

n=2

g∗(t,Dn) if |t| ≤ T.

The sequence on the right hand side of (3.9) converges to a function which is continuous in
the interval [−T, T ]; consequently (see [4], p. 115, Theorem 2.7) the series on the right hand
side of the expression (3.8) and thus also the sequence ξνk

(Ck) converges with probability
1 to a limit which shall be denoted by ξ. We show that

ξνk
(Ak) ⇒ ξ if k → ∞.

Consider the following relation

ξνk
(Ak) = ξνk

(Ck) + ξνk
(Ak − Ck).
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It suffices to show that

ξνk
(Ak − Ck) ⇒ 0 if k → ∞.

Since limk→∞(Ak − Ck) = 0, it follows that if |t| ≤ T , then limk→∞ fνk
(t, Ak − Ck) =

limk→∞ g∗(t, Ak − Ck) = 1. On the other hand, by the inequality (1.3) the relation

1 − Rfν(2t, Ak − Ck) ≤ 4(1 − Rf(t, Ak − Ck))

is satisfied for every value of t, hence fνk
(t, Ak − Ck) ⇒ 1 if k → ∞; thus our statement

is proved.

Let us define the set function ξν′(A) (A ∈ Rν′) as follows: if A ∈ Rν′ , A = limn→∞ An

where An ∈ Rνn (νn < ν ′; n = 1, 2, . . .), put

ξν′(A) = lim st
n→∞

ξνn(An).

We prove that ξν′(A) is uniquely defined. Let A1, A2, . . ., B1, B2, . . . be two convergent
sequences of the ring

∑
ν<ν′ Rν , limn→∞ An = limn→∞ Bn = A. The members of the

sequences An, Bn, An −Bn are also elements of the ring
∑

ν<ν′ Rν . Besides limn→∞(An −
Bn) = limn→∞(Bn − An) = 0. If An ∈ Rνn , Bn ∈ Rνn (νn < ν ′; n = 1, 2, . . .), then

ξνn(An) = ξνn(AnBn) + ξνn(An − Bn),
ξνn(Bn) = ξνn(AnBn) + ξνn(Bn − An),

Since limn→∞(An − Bn) = limn→∞(Bn − An) = 0 and thus if |t| ≤ T ,

fνn(t, Bn − An) = g∗(t, Bn − An) → 1,
fνn(t, An − Bn) = g∗(t, An − Bn) → 1

}
if n → ∞,

then, taking into account the inequality (1.3), it follows that

ξνn(An) − ξνn(An, Bn) ⇒ 0,
ξνn(Bn) − ξνn(An, Bn) ⇒ 0

}
if n → ∞,

consequently

lim st
n→∞

ξνn(An) = lim st
n→∞

ξνn(Bn).

Thus the definition of ξν′(A) is unique. This implies that

ξν′(A) = ξν(A) if ν < ν ′.

Now we shall prove that all what has been supposed about the set functions ξν(A) cor-
responding to the ordinal numbers ν < ν ′ will be satisfied also for the set function
ξν′(A). First we show that fν′(t, A) = g∗(t, A) if |t| ≤ T . Put A = limn→∞ An where
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An ∈ Rνn (νn < ν ′; n = 1, 2, . . .). Since ξνn(An) ⇒ ξν′(A) if n → ∞ and consequently
fνn(t, A) ⇒ fν′(t, A), further g∗(t, An) → g∗(t, A) if n → ∞, it follows that

fν′(t, A) = lim
n→∞ fνn(t, An) = lim

n→∞ g∗(t, An) = g∗(t, A) if |t| ≤ T.

The statement that ξν′(A) is an additive set function can be proved as follows. Let
A1, A2, . . . be disjoint sets belonging to the ring Rν′ . Let A

(n)
1 , A

(n)
2 , . . . , A

(n)
r be sequences

of sets belonging to the ring
∑

ν<ν′ Rν for which

lim
n→∞A

(n)
k = Ak, k = 1, 2, . . . , r, A

(n)
i A

(n)
k = 0 if i 
= k.

To the sets A
(n)
1 , A

(n)
2 , . . . , A

(n)
r correspond independent random variables and the sum of

these random variables corresponds to the sum of these sets. Since these properties hold
even after carrying out the limiting process, the random variables ξν′(A1), ξν′(A2), . . .,
ξν′(Ar) are independent and ξν′ (

∑r
k=1 Ak) =

∑r
k=1 ξν′(Ak) is completely additive, too. In

fact, as we have seen fν′(t, A) = g∗(t, A) if |t| ≤ T and for every non-increasing sequence
A1, A2, . . . of sets belonging to Rν′ for which limn→∞ An = 0, we have

lim
n→∞ fν′(t, An) = lim

n→∞ g∗(t, An) = 1 (|t| ≤ T ).

Thus the condition of the Corollary of Theorem 2.1 is satisfied, hence our assertion holds.

Finally, let us define the set function ξ∗(A) as follows:

ξ∗(A) = ξν(A) if A ∈ Rν (ν < ω1).

Since
∑

ν Rν = S(R), the set function ξ∗(A) has been defined for every element A of
S(R). It is clear that ξ∗(A) is an additive set function. ξ∗(A) is even completely additive.
This follows from the fact that, as we have seen, for the characteristic functions f∗(t, A)
of the random variables ξ∗(A) the relation f∗(t, A) = g∗(t, A) (|t| ≤ T ) holds. Thus for
every non-increasing sequence of S(R) tending to 0, we have

lim
n→∞ f∗(t, An) = lim

n→∞ g∗(t, An) = 1 if |t| ≤ T

which according to the Corollary of Theorem 2.1 implies that ξ∗(A) is a completely additive
set function.

The uniqueness of the extension can be proved as follows. Let ξ∗ and ξ∗∗ be two
completely additive set functions defined on the σ-ring S(R). Suppose that ξ∗ and ξ∗∗

coincide on the ring R. Let M denote the class of those sets A for which ξ∗(A) =
ξ∗∗(A). Let A1, A2, . . . be a monotone sequence of sets M, A = limn→∞ An. The complete
additiveness of the set functions ξ∗, ξ∗∗ implies that

lim
n→∞ ξ∗(An) = ξ∗(A), lim

n→∞ ξ∗∗(An) = ξ∗∗(A).

27



Since ξ∗(An) = ξ∗∗(An) (n = 1, 2, . . .), it follows that A ∈ M. Hence M is a monotone
class of sets. We know that R ⊆ M, M ⊆ S(R) but these together imply that M = S(R),
because the smallest monotone class containing a ring R is identical with the σ-ring S(R).

Proof of the second part of the theorem. In order to prove the second half of
the theorem we shall show that for any positive number T the conditions of Theorem 1.1
are satisfied for the set function (3.5). Condition a) is obviously satisfied because f(t, A)
is a characteristic function and accordingly

sup
|t|≤T

|1 − f(t, A)| ≤ 2.

Let us investigate Condition b). By Theorem 2.7 the set function |1 − f(t, A)| is
subadditive for every fixed value of t. Hence it follows that if T is a fixed positive number,
then the set function sup|t|≤T |1 − f(t, A)| is also subadditive, i.e. Condition b) is also
satisfied.

Finally, as for Condition c), let us consider an arbitrary sequence of disjoint sets
A1, A2, . . . of the σ-ring S. Since the series

∞∑
k=1

ξ(Ak)

converges with probability 1 regardless of the order of summation, it follows that the
infinite series

∞∑
k=1

∫
|x|≤1

x2 dF (x,Ak),
∞∑

k=1

∣∣∣∣∣
∫
|x|≤1

xdF (x,Ak)

∣∣∣∣∣ ,
∞∑

k=1

P(|ξ(Ak)| > 1)

are convergent ([8], § 5). Hence by the inequality

|1 − f(t, Ak)| =
∣∣∣∣
∫ ∞

−∞
(1 − eitx) dF (x,Ak)

∣∣∣∣ =

∣∣∣∣∣
∫
|x|≤1

+
∫
|x|>1

∣∣∣∣∣
≤
∣∣∣∣∣
∫
|x|≤1

(eitx − 1 − itx) dF (x,Ak)

∣∣∣∣∣+ |t|
∣∣∣∣∣
∫
|x|≤1

xdF (x,Ak)

∣∣∣∣∣
+ 2P(|ξ(Ak)| > 1) ≤ t2

2

∫
|x|≤1

x2dF (x,Ak)

+ |t|
∣∣∣∣∣
∫
|x|≤1

xdF (x,Ak)

∣∣∣∣∣+ 2P(|ξ(Ak)| > 1)

it follows that Condition c) is also satisfied, i.e. the set function (3.6) is of bounded
variation. Thus Theorem 3.1 is proved. �

As a consequence of Theorem 3.1 we can prove
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Theorem 3.2. Let ξ(A) be a completely additive set function defined on a ring R. If
for every sequence A1, A2, . . . of disjoint sets of R the series

∞∑
k=1

ξ(Ak)

converges with probability 1, then ξ(A) can be extended to S(R).

Proof. The above series must converge with probability 1 regardless of the order of
summation, since a rearrangement Aik of the sequence Ak consists also of disjoint sets of
R. Hence by Theorem 2.1 of [4] (p. 115) it follows that

∞∑
k=1

|1 − f(t, Ak)| < ∞

for every t. By Theorems 2.7 and 1.1, for every t, |1 − f(t, A)| (A ∈ R) is of bounded
variation, and thus the conditions in Theorem 3.1 are fulfilled. This completes the proof
of the theorem.

The proof of the following theorem is contained implicitly in the proof of Theorem 3.1.
However, we give here another proof which does not use transfinite induction and is based
only on the second assertion of Theorem 3.1.

Theorem 3.3. Let ξ(A) be a completely additive set function defined on a σ-ring S.
If A1, A2, . . . is a convergent sequence of sets of S, limn→∞ An = A, then

ξ(An) ⇒ ξ(A) if n → ∞.

Proof. By Theorem 2.7, for every fixed t, |1 − f(t, A)| is a completely additive set
function. Hence it follows that for every T > 0, supt≤T |1 − f(t, A)| is also completely
subadditive and by Theorem 3.1 it is also of bounded variation. Let W (T,A) denote the
variation of sup|t|≤T |1 − f(t, A)| on the set A ∈ S, then by Theorem 1.2 it follows that
W (T,A) is a bounded measure on S. Since limn→∞(An − A) = limn→∞(A − An) = 0,
we have limn→∞ W (T,An − A) = limn→∞ W (T,A − An) = 0. Taking into account the
inequality

sup
|t|≤T

|1 − f(t, B)| ≤ W (T,B) (B ∈ S),

we obtain that limn→∞ f(t, An −A) = limn→∞ f(t, A−An) = 1 if |t| ≤ T . As this is true
for every T > 0, it follows that

ξ(A − An) ⇒ 0, ξ(An − A) ⇒ 0 if n → ∞.

From this fact and from the inequality

|ξ(An) − ξ(A)| ≤ |ξ(An − A)| + |ξ(A − An)|

our assertion follows immediately.
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§ 3. An extension theorem under condition on the distribu-

tion functions

In the following theorems the possibility of carrying out the extension will be proved by
reducing it to Theorem 3.1. Thus we need not state again the uniqueness of the extension.

Theorem 3.4. Let ξ(A) be a completely additive set function defined on a ring R. If
the set of distribution functions {F (x,A), A ∈ R} is compact, then ξ(A) can be extended
to S(R).

Conversely, if ξ(A) is a completely additive set function defined on a σ-ring S, then
the set {F (x,A), A ∈ S} is compact.

Proof of the first part of the theorem. Let A1, A2, . . . be a sequence of disjoint
sets of R. The set F ′ = {F (x,Ai1 + Ai2 + · · · + Air)} is a subset of {F (x,A), A ∈ R},
hence F ′ is compact. According to Theorem 1.10, the series

∞∑
k=1

ξ(Ak)

converges with probability 1 regardless of the order of summation, hence by Theorem 3.2
ξ(A) can be extended to S(R).

Proof of the second part of the theorem. First we prove that the set function
μ3(A) (∈ S) is completely subadditive. Let A1, A2, . . . be a sequence of disjoint sets of the
σ-ring S. By Theorem 2.5 it follows that

μ3

( ∞∑
k=1

Ak

)
≤

n∑
k=1

μ3(Ak) + μ3

( ∞∑
k=n+1

Ak

)
.

Consequently, we have merely to show that the second member on the right hand side
converges to 0. Let Bn =

∑∞
k=n Ak. The set function μ3(A) is monotonous, hence the

sequence μ3(Bn) is non-increasing. By Theorem 2.6 μ3(A) can take on only the values 0
and 1, therefore there are two cases: either there is an N such that μ3(Bn) = 0 if n > N
or μ3(Bn) = 1 for all values of n. Contrarily to the statement let us suppose that the
latter case holds. Then by the Corollary of Theorem 1.4 and by Theorem 2.2 there exists

a sequence C1, C2, . . . of sets such that Ck ∈ S, Ck ⊆ Bk,
∣∣∣∣Q
(

1
2
, Ck

)∣∣∣∣ > 1 (k = 1, 2, . . .).

Since Bk → 0, it follows that Ck → 0, hence by Theorem 3.2 ξ(Ck) ⇒ 0 if k → ∞. Thus

Q

(
1
2
, Ck

)
→ 0 if k → ∞, what is a contradiction. Consequently, μ3(A) is completely

subadditive.
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It follows from the monotonity of the set function μ3(A) that the following property
also holds: if A1, A2, . . . are arbitrary sets belonging to the σ-ring S, then

μ3

( ∞∑
k=1

Ak

)
≤

∞∑
k=1

μ3(Ak).

Namely
∞∑

k=1

Ak =
∞∑

k=1

(
Ak −

k−1∑
l=1

Al

)
(A0 = 0),

therefore, since μ3(A) is completely subadditive and monotonically increasing, it follows
that

μ3

( ∞∑
k=1

Ak

)
≤

∞∑
k=1

μ3

(
Ak −

k−1∑
l=1

Al

)
≤

∞∑
k=1

μ3(Ak).

Consider the completely additive set function ξ(A) defined on the σ-ring S. In contra-
diction to the statement, let us suppose that the set {F (x,A), A ∈ S} is not compact.
Then, by Theorem 1.6,

μ3 = lim
ε→∞ sup

A∈S
P(|ξ(A)| > ε) = ρ > 0.

Hence it follows that for every positive ε

sup
A∈S

P(|ξ(A)| > ε) ≥ ρ > 0.

Since
sup
A∈S

P(|ξ(A)| > ε) = sup
A∈S

sup
B∈AS

P(|ξ(B)| > ε),

it follows that there exists a sequence of sets An (An ∈ S) for which

sup
B∈AnS

P(|ξ(Bn)| > n) ≥ ρ

2
> 0.

If A =
∑∞

k=1 Ak, then by the preceding inequalities

sup
B∈AS

P(|ξ(B)| > n) ≥ sup
B∈AnS

P(|ξ(B)| > n) ≥ ρ

2
> 0;

therefore
μ3(A) = lim

n→∞ sup
B∈AS

P(|ξ(B)| > n) ≥ ρ

2
> 0.

By Theorem 2.6 μ3(A) can take on only the values 0 and 1; hence it follows that μ3(A) = 1.
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Now we shall prove that if B ∈ S, μ3(B) = 1, then for every pair of numbers λ, m we
can found a set Bm ∈ BS such that by a convenient choice of the quantiles Q(λ,Bm) we
have

μ3(Bm) = 1, |Q(λ,Bm)| > m.

Suppose that such a set does not exist. Since μ3(B) = 1, we can find sets Ck ∈ BS
(k = 1, 2, . . .) such that |Q(λ,Ck)| > k. According to our assumption μ3(Ck) = 0 if
k ≥ m. Consider the set C =

∑∞
k=m Ck. We have proved that

μ3(C) ≤
∞∑

k=m

μ3(Ck),

therefore μ3(C) = 0. Then by Theorems 1.6 and 1.5, there exists a number K(λ) such
that for all Q(λ,C ′) we have

|Q(λ,C ′)| ≤ K(λ) if C ′ ∈ CS,

but this is a contradiction.

Applying to the set B = A what has been said above let us choose a set B1 ∈ AS for

which μ3(B1) = 1,
∣∣∣∣Q
(

1
2
, B1

)∣∣∣∣ > 1. Similarly, it follows that there exists a set B2 ∈ B1S

for which μ3(B2) = 1,
∣∣∣∣Q
(

1
2
, B2

)∣∣∣∣ > 2 etc. Therefore we can construct a non-increasing

sequence of sets B1, B2, . . . for which Bn ∈ S,
∣∣∣∣Q
(

1
2
, Bn

)∣∣∣∣ > n. The sequence ξ(Bn) is

convergent because

ξ(Bn) = ξ(B) +
∞∑

k=n

(ξ(Bk) − ξ(Bk+1)), B =
∞∏

k=1

Bk.

Consequently, the series Q

(
1
2
, Bn

)
is bounded, but this is a contradiction. Thus Theo-

rem 3.2 is proved. �

Corollary. Let ξ(A) be a completely additive set function defined on a ring R. If

μ3 = lim
ε→∞ sup

A∈R
P(|ξ(A)| > ε) = 0,

then ξ(A) can be extended to S(R).

Conversely, if ξ(A) is a completely additive set function defined on a σ-ring S, then

μ3 = lim
ε→∞ sup

A∈S
P(|ξ(A)| > ε) = 0.

Proof. The statement follows from Theorems 3.4 and 1.6 immediately. �
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§ 4. Extension theorems under conditions on quantiles

The following theorems are simple applications of Theorems 3.1 and 3.2 and of those of
Chapter II and deal with the reduction of the condition in Theorem 3.4.

Theorem 3.4 contains when compared with the case of ordinary real-valued set functions
a surplus of conditions which are needed to ensure the extension of a completely additive
random-valued set function ξ(A). If ϕ(A) is a completely additive real-valued set function
defined on a ring R and

ξ(ω,A) ≡ ϕ(A) if A ∈ R,

then
Q(λ,A) ≡ ϕ(A) if 0 < λ < 1, A ∈ R,

i.e. all quantiles of ξ(ω,A) coincide with the value ϕ(A). Since it has been shown that
for the extension of ϕ(A) the boundedness of the set {ϕ(A), A ∈ R} is needed, we can
say that the set function ξ(A) = ϕ(A) can be extended if there is a λ for which the set
{Q(λ,A), A ∈ R} is bounded.

If the random variables ξ(A) (A ∈ R) are not constants, then for the extension the
boundedness of two quantile-sets is required.

Theorem 3.5. Let ξ(A) be a completely additive set function defined on a ring R. If
there exists a pair of numbers λ1, λ2 (0 < λ1 < λ2 < 1) such that with a convenient choice
of the quantiles Q(λ1, A), Q(λ2, A) the sets {Q(λ1, A), A ∈ R}, {Q(λ2, A), A ∈ R} are
bounded, then ξ(A) can be extended to S(R).

Proof. The theorem is a straightforward consequence of Theorems 1.11 and 3.2. �
Theorem 3.6. Let ξ(A) be a completely additive set function defined on a ring R.

If the random variables ξ(A) (A ∈ R) are symmetrically distributed and there exists a

number λ 
= 1
2

(0 < λ < 1) such that with a convenient choice of the quantiles Q(λ,A) the

set {Q(λ,A), A ∈ R} is bounded, then ξ(A) can be extended to S(R).

Proof. Since λ 
= 1
2
, it follows that λ 
= 1 − λ. On the other hand, ξ(A) has a

symmetric distribution, hence with a convenient choice of the quantiles Q(1 − λ,A) the
set {Q(1 − λ,A), A ∈ R} is also bounded together with the set {Q(λ,A), A ∈ R} and
thus the conditions of Theorem 3.5 are satisfied. �

Theorem 3.7. Let ξ(A) be a completely additive set function defined on a ring R. If
the random variables ξ(A) are non-negative and there is a λ (0 < λ < 1) such that with
a convenient choice of the quantiles Q(λ,A) the set {Q(λ,A), A ∈ R} is bounded, then
ξ(A) can be extended to S(R).

Proof. The theorem is a straightforward consequence of Corollary 2 of Theorem 1.11
and of Theorem 3.2. �
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§ 5. Further extension theorems

Theorem 3.8. 6 Let ξ(A) be a completely additive set function defined on a ring R.
If there is a positive number ε such that the following set functions

(3.10)
∫
|x|≤ε

x2 dF (x,A),
∫
|x|≤ε

xdF (x,A), P(|ξ(A)| > ε) (A ∈ R)

are of bounded variation, then ξ(A) can be extended to S(R).

Conversely, if ξ(A) is a completely additive set function defined on a σ-ring S, then
the set functions (3.10) (A ∈ S) are of bounded variation for every positive ε.

Proof of the first part of the theorem. We shall show that the set function
|1 − f(t, A)| is of bounded variation for every fixed value of t. Namely, if ε > 0, then

|1 − f(t, A)| =
∣∣∣∣
∫ ∞

−∞
(1 − eitx) dF (x,A)

∣∣∣∣
≤ t2

2

∫
|x|≤ε

x2 dF (x,A) + |t|
∣∣∣∣∣
∫
|x|≤ε

xdF (x,A)

∣∣∣∣∣+ 2P(|ξ(A)| > ε) (A ∈ R).

Proof of the second part of the theorem. By Theorem 3.1 the set function
(3.5) is of bounded variation. By inequality (1.1) it follows that if 0 < ε ≤ 1, the set
function ∫

|x|≤ε
x2 dF (x,A)

is of bounded variation.

By inequality (1.2) it follows that

P(|ξ(A)| > ε) (A ∈ S)

is of bounded variation for every ε > 0. In addition, since for an arbitrary positive ε we
have ∫

|x|≤ε
x2 dF (x,A) ≤

∫
|x|≤1

x2 dF (x,A) + ε2P(|ξ(A)| > 1),

taking into account what has been said previously we obtain that the set function∫
|x|≤ε

x2 dF (x,A)

6This theorem can be regarded as a generalization of the three series theorem of Kolmogorov.
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is also of bounded variation for every positive ε. Let us consider the following inequality:

f(t, A) − 1 =
∫
|x|≤ε

(eitx − 1 − itx) dF (x,A)

+ it

∫
|x|≤ε

xdF (x,A) +
∫
|x|>ε

(eitx − 1) dF (x,A).

If t 
= 0, it follows∣∣∣∣∣
∫
|x|≤ε

xdF (x,A)

∣∣∣∣∣ ≤ 1
|t| |1 − f(t, A)| + |t|

2

∫
|x|≤ε

x2 dF (x,A) +
2
|t|P(|ξ(A)| > ε),

hence the set functions (3.10) are of bounded variation for every positive ε. Thus we have
proved the theorem. �

Theorem 3.9. Let ξ(A) be a completely additive set function defined on a ring R. If
the set function

1 − P0(A) = 1 − P(ξ(A) = 0)

is of bounded variation, then ξ(A) can be extended to S(R).

Proof. The theorem is a straightforward consequence of the inequality

|1 − f(t, A)| ≤ 2(1 − P0(A))

and of Theorem 3.1. �
Theorem 3.10. Let ξ(A) be a completely additive set function defined on a ring R. If

the set function

M(|ξ(A)|) =
∫ ∞

−∞
|x|dF (x,A) (A ∈ R)

is of bounded variation, then ξ(A) can be extended to S(R).

Proof. The theorem is an immediate consequence of the inequality

|1 − f(t, A)| =
∣∣∣∣
∫ ∞

−∞
(1 − eitx) dF (x,A)

∣∣∣∣ ≤ |t|
∫ ∞

−∞
|x|dF (x,A)

and of Theorem 3.1. �
Theorem 3.11. Let ξ(A) be a completely additive set function defined on a ring R. If

the set functions

M(A) = M(ξ(A)) =
∫ ∞

−∞
xdF (x,A),

D2(A) = D2(ξ(A)) =
∫ ∞

−∞
x2 dF (x,A) −

(∫ ∞

−∞
xdF (x,A)

)2

are of bounded variation, then ξ(A) can be extended to S(R).
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Proof. According to Chebysev’s inequality

P(|ξ(A) − M(A)| > ε) ≤ D2(A)
ε2

.

Consequently, if |M(A)| ≤ M1, D2(A) ≤ D1, then

P(|ξ(A)| > M1 + ε) ≤ P(|ξ(A) − M(A)| > ε) ≤ D2(A)
ε2

≤ D1

ε2
.

Hence we have
μ3 = lim

ε→∞ sup
A∈R

P(|ξ(A)| > M1 + ε) = 0,

therefore, by Theorem 1.6 and the Corollary of Theorem 3.4, the extension can be carried
out.

Remark. We see that the set functions M(A) and D2(A) need not to be completely
additive. The extension can be carried out also if they are only bounded.

§ 6. Extension of a set function defined on an algebra

If the domain of definition of the set function ξ(A) is an algebra, the conditions concerning
the extension can be reduced. This is shown by the following theorems:

Theorem 3.12. Let ξ(A) be a completely additive set function defined on an algebra
R. If there exists a number λ (0 < λ < 1) such that by a convenient choice of the quantiles
Q(λ,A) the set {Q(λ,A), A ∈ R} is bounded, then ξ(A) can be extended to S(R).

Proof. The theorem is a straightforward consequence of Theorems 2.2, 1.5 and 3.2.

�

Theorem 3.13. Let ξ(A) be a completely additive set function defined on an algebra R.
If the random variables ξ(A) (A ∈ R) are symmetrically distributed, then the set function
ξ(A) can be extended to S(R).

Proof. Since the quantiles Q

(
1
2
, A

)
can be chosen in such a way that Q

(
1
2
, A

)
= 0,

the statement follows from Theorem 3.12 immediately. �

Theorem 3.14. Let ξ(A) be a completely additive set function defined on an algebra
R. If ξ(A) ≥ 0 (A ∈ R), then the set function ξ(A) can be extended to S(R).
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Proof. From
ξ(H) = ξ(A) + ξ(A) (A ∈ R)

it follows that ξ(A) ≤ ξ(H). Hence if Q(λ,H) is the greatest λ-quantile of ξ(H), then

0 ≤ Q(λ,A) ≤ Q(λ,H) = K(λ),

therefore by Theorems 1.5 and 3.4 ξ(A) can be extended to S(R). �

§ 7. The case of Euclidean spaces

There often occur problems in which we need to have an additive set function ξ(A) with
given properties on the ring of the bounded Borel sets of the space Rn. In this case we
act in such a way that we divide the space Rn into a sum of an enumerable number of
n-dimensional intervals in each of which the extension can be carried out.

In the present case H is the n-dimensional Euclidean space, H = Rn and R is the ring
whose elements are finite sums of n-dimensional intervals of the following type:

ak ≤ xk < bk (k = 1, 2, . . . , n).

Let ξ(A) be a completely additive set function defined on the ring R. Suppose that H can
be divided into a countable sum of disjoint intervals H1,H2, . . . which have the property
that every bounded set can be covered with a finite number of the intervals Hk and ξ(A)
can be extended to the σ-algebras HkR. Under these conditions there is a set function
ξ∗(B) is completely additive and

ξ∗(B) = ξ(B) if B ∈ R.

The extension is unique, i.e. if ξ∗∗(B) is a completely additive set function defined on the
ring B1 and

ξ∗(B) = ξ∗∗(B) if B ∈ R,

then
ξ∗(B) = ξ∗∗(B) if B ∈ B1.

This can be seen as follows. Carry out the extension inside the sets Hk. If B ∈ B1,
then there is a number N such that B ⊆

∑N
k=1 Hk. Let

ξ∗(B) =
N∑

k=1

ξ∗(BHk).

It is easy to see that ξ∗(B) is completely additive on the ring B1 and on the elements of
R it coincides with ξ(B). Also the statement concerning the uniqueness can be simply
proved.
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From the precedings and from Theorems 3.11 and 3.12 it follows immediately that if
R,B1 and ξ(A) denote the same as above and for every set A ∈ R the variable ξ(A) has a
symmetrical distribution or for every set A ∈ R we have ξ(A) ≥ 0, then the set function
ξ(A) can be extended to the ring B1.

In the following theorem we consider as random variables also the functions ξ(ω), ω ∈ Ω
which are measurable but eventually may have an infinite value with positive probability.

Theorem 3.15. Denote by R the same ring as above. Let R be the σ-algebra of Borel
sets of the space Rn and ξ(A) a completely additive set function defined on the elements
of R for which

0 ≤ ξ(A) < ∞ (A ∈ R).

Under these conditions ξ(A) can be extended to all elements of B and the extension is
unique.

Proof. First, according to what has been said above, let us carry out the extension
of ξ(A) to the ring B1. Now, if B is an unbounded Borel set and B =

∑∞
k=1 Bk where the

sets B1, B2, . . . are bounded disjoint Borel sets, then put

ξ∗(B) =
∞∑

k=1

ξ∗(Bk).

This correspondence is unique. In fact, if C1, C2, . . . is a sequence of bounded disjoint
Borel sets for which B =

∑∞
k=1 Ck, then, according to

Bn =
∞∑

k=1

BnCk

and

Ck =
∞∑

n=1

CkBn,

it follows that

ξ∗(Bn) =
∞∑

k=1

ξ∗(BnCk), ξ∗(Ck) =
∞∑

n=1

ξ∗(CkBn).

Thus ∞∑
n=1

ξ∗(Bn) =
∞∑

n=1

∞∑
k=1

ξ∗(BnCk) =
∞∑

k=1

∞∑
n=1

ξ∗(CkBn) =
∞∑

k=1

ξ∗(Ck).

ξ∗(B) is a completely additive set function. Namely, by the construction it is clear
that if the sets B1, B2, . . . , Br are pairwise disjoint sets, then the random variables ξ∗(B1),
ξ∗(B2), . . . , ξ∗(Br) are independent. If B =

∑r
k=1 Bk, where Bk is a sequence of disjoint
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Borel sets, let us construct the sequences {Ckn} consisting of bounded Borel sets for which
we have

Bk =
∞∑

n=1

Ckn, CknCkm = 0 if n 
= m (k = 1, 2, . . .).

We know that

ξ∗(Bk) =
∞∑

n=1

ξ∗(Ckn),

therefore, by the uniqueness of the definition of ξ∗(B), it follows that,

ξ∗(B) =
∑
k,n

ξ∗(Ckn) =
∞∑

k=1

∞∑
n=1

ξ∗(Ckn) =
∞∑

k=1

ξ∗(Bk).

This completes the proof of the theorem. �

Remark 1. The random variables ξ∗(B)(B ∈ B) are either finite-valued with proba-
bility 1 or infinite-valued with probability 1. Namely, if B =

∑∞
k=1 Bk where BiBk = 0 if

i 
= k, Bk ∈ B1 (k = 1, 2, . . .), then the probability that the sum of the series
∑∞

k=1 ξ∗(Bk)
is finite is either 0 or 1 ([8], p. 60).

Remark 2. Suppose that the function ξ(A) defined on the ring R is homogeneous, i.e.
the distribution of ξ(A) depends on the measure of the set A only, but it does not depend
on its position. In this case in order to have ξ∗(B) < ∞ it is necessary and sufficient that
|B| < ∞.

Namely, if |B| < ∞ and B1, B2, . . . is a sequence of bounded disjoint Borel sets for which
B =

∑∞
k=1 Bk, then there exists a bounded Borel set A and a sequence Ak consisting of

disjoint Borel sets such that

A =
∞∑

k=1

Ak, |Bk| = |Ak| (k = 1, 2, . . .).

Since ∞∑
k=1

|1 − f(t, Bk)| =
∞∑

k=1

|1 − f(t, Ak)| < ∞,

it follows that the sum of the series
∑∞

k=1 ξ∗(Bk) is finite with probability 1, i.e. ξ∗(B) <
∞. Conversely, if |B| = ∞, then let B1, B2, . . . be disjoint Borel sets such that B =∑∞

k=1 Bk, |Bk| = 1. In this case

∞∑
k=1

|1 − f(t, Bk)| = |1 − f(t, B1)| + |1 − f(t, B1)| + · · · = ∞,
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therefore the series
∑∞

k=1 ξ∗(Bk) is not convergent. Thus, according to the 0 or 1 law, the
equality

∞∑
k=1

ξ∗(Bk) = ξ∗(B) = ∞

has the probability 1, and thus we have proved our statement.

IV. THE PROPERTIES OF COMPLETELY ADDITIVE
SET FUNCTIONS DEFINED ON A σ-RING

§ 1. Set functions of bounded variation

In Chapter III we have seen that if ξ(A) is a completely additive set function defined on
a σ-ring S, then for every positive T and ε the set functions

sup
|t|≤T

|1 − f(t, A)|,
∫
|x|≤ε

x2 dF (x,A),
∫
|x|≤ε

xdF (x,A), P(|ξ(A)| > ε)

are of bounded variation. Starting from this fact, we shall prove two theorems.

Theorem 4.1. Let ξ(A) be a completely additive set function defined on a σ-ring S
and g(x) a polynomial for which g(0) = 0. If the point 0 is not a limiting point of the
closed interval [a, b], then the set function∫

a≤x≤b
g(x) dF (x,A)

is of bounded variation.

Proof. It is clear that it suffices to prove that the set functions∫
a≤x≤b

xdF (x,A),
∫

a≤x≤b
|x|k dF (x,A) (k ≤ 2)

are of bounded variation. Let c1 = min(|a|, |b|), c2 = max(|a|, |b|). If a < 0 < b, then

∣∣∣∣
∫

a≤x≤b
xdF (x,A)

∣∣∣∣ ≤
∣∣∣∣∣
∫
|x|≤c1

xdF (x,A)

∣∣∣∣∣ + c2P(|ξ(A)| > c1),∫
a≤x≤b

|x|k dF (x,A) ≤
∫
|x|≤1

x2 dF (x,A) + ck
2P(|ξ(A)| > 1).
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On the other hand, if b < 0 or a > 0, then∣∣∣∣
∫

a≤x≤b
xdF (x,A)

∣∣∣∣ ≤
∫

a≤x≤b
|x|dF (x,A) ≤ c2P(|ξ(A)| ≥ c1),∫

a≤x≤b
|x|k dF (x,A) ≤ ck

2P(|ξ(A)| ≥ c1),

hence our statement is proved. �

Remark. In Chapter V we shall see that the set function
∫
|x|≤ε

|x|dF (x,A) is not

always of bounded variation.

Theorem 4.2. Let ξ(A) be a completely additive set function defined on a σ-ring S
and h(x) be a Borel measurable function for which

|h(x)| ≤ c, h(x) = o(x2) if x → 0

where c is a constant. Form these conditions it follows that the set function∫ ∞

−∞
h(x) dF (x,A)

is of bounded variation.

Proof. By assumption there is a positive ε and a constant K such that |h(x)| ≤ Kx2

if |x| ≤ ε. Thus we obtain that∣∣∣∣
∫ ∞

−∞
h(x) dF (x,A)

∣∣∣∣ ≤
∫ ∞

−∞
|h(x)|dF (x,A) ≤ K

∫
|x|≤ε

x2 dF (x,A) + cP(|ξ(A)| > ε).

Since on the right hand side there stand set functions of bounded variation, our statement
is proved. �

§ 2. A further convergence theorem

Let ξ(A) be a completely additive set function defined on a σ-ring S and An ∈ S a
convergent sequence, limn→∞ An = A. Theorem 3.2 states that the sequence of random
variables ξ(An) converges stochastically to ξ(A). Besides, if An is a monotonic sequence,
the complete additiveness of ξ implies the more stronger relation

lim
n→∞ ξ(An) = ξ(A).

In the following theorem we shall suppose regarding the set function ξ(A) only that
to disjoint sets there belong independent variables. Since we only permit non-negative-
valued random variables, the theorem can be proved in the same way as the corresponding
theorem concerning ordinary measures.
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Theorem 4.3. Let S be a σ-ring. To each element A of S let a non-negative random
variable ξ(A) correspond in such a manner that if A1, A2, . . . is a sequence of disjoint sets
of S, A =

∑∞
k=1 Ak, then

(4.1) ξ(A) =
∞∑

k=1

ξ(Ak).

In this case the set function ξ has the following property: if B1, B2, . . . is a convergent
sequence of sets belonging to the σ-ring S, limn→∞ Bn = B, then

lim
n→∞ ξ(Bn) = ξ(B).

Proof. Put
Cn = BnBn+1 . . . , Dn = Bn + Bn+1 + · · · .

Since
Cn ⊆ Bn ⊆ Dn (n = 1, 2, . . .),

it follows that

(4.2) ξ(Cn) ≤ ξ(Bn) ≤ ξ(Dn) (n = 1, 2, . . .).

On the other hand,
lim

n→∞Cn = lim
n→∞Dn = lim

n→∞Bn = B,

consequently, by the relation (4.1) we obtain that for the monotonous sequences Cn and
Dn of sets

(4.3) lim
n→∞ ξ(Cn) = lim

n→∞ ξ(Dn) = ξ(B).

From (4.2) and (4.3) it follows that

lim
n→∞ ξ(Bn) = ξ(B).

Thus we have proved the theorem. �
It is an open question whether the relation

ξ(An) → ξ(A) if An → A, An ∈ S

holds always for a completely additive set function ξ(A) defined on a σ-ring S. In some
particular cases, however, this stronger convergence holds even for set functions ξ(A)
which take on positive and negative values equally. The authors wishes to return to these
problems in a forthcoming paper.
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§ 3. Continuous and complete set functions

Let ξ be a σ-ring consisting of some subsets of a set H. Suppose that the elements of
H belong to S. A completely additive set function ξ(A) defined on the σ-ring S will be
called continuous if for every element h of the set H we have

ξ(h) = 0.

The set function ξ(A) will be called purely discontinuous if there exists an enumerable
set H1 such that

ξ(AH1) = 0 if A ∈ S.

If ξ(A) is a completely additive set function and ξ(h) 
= 0 where h ∈ H, then the point h
will be called a discontinuity point of ξ(A).

In the theory of real-valued set functions it is well known that every completely ad-
ditive set function possessing points of discontinuity can be decomposed into the sum of
a continuous and a purely discontinuous set function. A similar decomposition can be
carried out here, too. Before passing to this we prove the following

Theorem 4.4. Let ξ(A) be a completely additive set function defined on a σ-ring S.
If T is a fixed positive number, then the set function ξ(A) is absolutely continuous with
respect to the measure W (T,A),7 i.e.

ξ(A) = 0 if W (T,A) = 0.

Proof. Since
|1 − f(t, A)| ≤ W (T,A) if A ∈ S,

it follows that
f(t, A) = 1 if |t| ≤ T.

From the inequality (1.3) it follows that, for every t, f(t, A) = 1, what was to be proved.

�

Now we shall prove

Theorem 4.5. Let ξ(A) be a completely additive set function defined on a σ-ring S.
Suppose that the elements of H belong to S also and ξ(A) has at least one discontinuity
point. In this case there exist continuous and purely discontinuous completely additive set
functions ξ′(A) and ξ′′(A), resp., such that

ξ(A) = ξ′(A) + ξ′′(A) if A ∈ S.

7See p. 244.
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Proof. Let T be a fixed positive number. As W (T,A) is a finite measure, there exists
an enumerable set H1 such that

W (T, h) = 0 if h ∈ H − H1.

Since ξ(A) is absolutely continuous, regarding the measure W (T,A), it follows that the
set function

ξ′(A) = ξ(AH1)

is continuous. On the other hand, the set function

ξ′′(A) = ξ(AH1)

is purely discontinuous and

ξ(A) = ξ(AH1) + ξ(AH1).

Thus our theorem is proved. �
In the same way as in case of ordinary set functions we can introduce also here the

notion of completeness. The definition is also a perfect analogue to that on p. 34 of [6]
therefore we do not consider it in detail. Taking Theorem 4.4 into account we can easily
see that the process of completion can also be carried out without any difficulty.

V. EXAMPLES

1. Poisson set functions. Denote M(A) a real-valued, finite, non-negative, addi-
tive set function defined on a ring R. Further let ξ(A) (A ∈ R) be an additive set function.
If

P(ξ(A) = k) =
Mk(A)

k!
e−M(A) (k = 0, 1, 2, . . .),

then the set function ξ(A) will be called to be of Poisson type. In this case the characteristic
function of ξ(A) has the form

f(t, A) = eM(A)(eit−1).

If the set function M(A) is completely additive (in other words: if M(A) is a measure),
the same holds for the set function ξ(A), too. Namely, let A1, A2, . . . be a non-increasing
sequence of sets consisting of the elements of R, limn→∞ An = 0, then, from the relations

(5.1) |1 − f(t, A)| ≤ M(A)|t|eM(A)|t|

and
lim

n→∞M(An) = 0,
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it follows that
f(t, An) ⇒ 1 if n → ∞,

hence by Theorem 2.1 ξ(A) is completely additive. If the measure M(A) is bounded,
then, by (5.1), the set function |1 − f(t, A)| is of bounded variation, hence ξ(A) can be
extended. Particularly, if H = R1, M(A) = c|A| where c is a constant, we get the set
function generated by the differences of an ordinary homogeneous Poisson process.

2. Composed Poisson set functions. Let M1(A),M2(A), . . . be a sequence of
real-valued, non-negative, additive set functions defined on a ring R. The additive set
function ξ(A) defined on the ring R will be called to be of composed Poisson type if the
characteristic function of ξ(A) has the form

(5.2) f(t, A) = exp
∞∑

k=1

Mk(A)(eiλkt − 1),

where the set {λk} is the set of all possible values of the random variables ξ(A) (A ∈ R)
and ∞∑

k=1

Mk(A) < ∞ (A ∈ R).

If

M(A) =
∞∑

k=1

Mk(A) (A ∈ R)

is a finite measure on the ring R, then in the same way as in the case of Poisson set
functions it can be shown that ξ(A) is completely additive. If, in addition, we suppose
that

(5.3)
∞∑

k=1

|λk|Mk(A) < ∞ (A ∈ R)

and the sum (5.3) is a bounded measure on the ring R, then by the relation (5.2) we
obtain that

|1 − f(t, A)| =

∣∣∣∣∣
∞∏

k=1

eMk(A)(eiλkt−1) − 1

∣∣∣∣∣ ≤
∞∑

k=1

∣∣∣eMk(A)(eiλkt−1) − 1
∣∣∣

≤ |t|
∞∑

k=1

|λk|Mk(A)eλktMk(A) ≤ L(t)
∞∑

k=1

|λk|Mk(A)

where
L(t) = max

k
e|λkt|Mk(A),
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hence |1 − f(t, A)| is of bounded variation for every fixed value of t; thus ξ(A) can be
extended to the σ-ring S(R).

It is easy to see that if R is a ring of some subsets of the space Rn and the distribution
of ξ(A) depends on the measure |A| of the set A only, then

Mk(A) = ck|A| (k = 1, 2, . . .),

where c1, c2, . . . are constants.

3. Laplace–Gauss set function. That is the name of additive set functions ξ(A)
for which

f(t, A) = eitM(A)−D2(A) t2

2 (A ∈ R),

where M(A) and D2(A) are real-valued, additive set functions, D2(A) ≥ 0 (0 ∈ R). If
both set functions M(A) and D2(A) are completely additive, then taking into account
Theorem 2.1 it follows that ξ(A) is completely additive, too. If, in addition, the set
functions M(A) and D2(A) are bounded, then from the inequalities

|1 − f(t, A)| ≤ |1 − eitM(A)| + 1 − e−D2(A) t2

2 ≤ |t|M(A) + D2(A)
t2

2

it follows that for any fixed value of t the set function |1−f(t, A)| is of bounded variation,
therefore ξ(A) can be extended to S(R). If R is a ring of certain subsets of the space Rn

and the distribution of ξ(A) depends on |A| only, then it is easy to see that

M(A) = M |A|, D2(A) = D2|A|,

where M and D2 are constants. In particular, if n = 1, then ξ(A) is nothing else than the
set function generated by the differences of the ordinary Brownian movement process.

4. Let fn(x) denote the n-th Rademacher function

fn(x) = sg sin 2nπx (0 ≤ x ≤ 1).

Let the interval [0, 1] be the space of the elementary events and the possible events be the
Lebesgue measurable sets of this interval. Then the functions {fn(x)} will be independent
random variables. Consider the random variables

gn(x) =
fn(x)

n
(n = 1, 2, . . .).

Since
M(gn(x)) = 0, D2(gn(x)) =

1
n2

,

it follows that the series ∞∑
n=1

gn(x)
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converges with probability 1 regardless of the order of summation. If A is a set of natural
numbers, then the series ∑

n∈A

gn(x)

converges with probability 1 in every rearrangement to the same function, further the set
function

g(x,A) =
∑
n∈A

gn(x)

is completely additive on the σ-ring S of the subsets of the set H of natural numbers ([4],
p. 118, Corollary 1). The set function g(x,A) has the following properties:

a) P
(
|gn(x)| =

1
n

)
= 1, and thus the series

∞∑
n=1

|gn(x)|

diverges. Hence it follows that the set function g(x,A) can not be decomposed in such a
way that

g(x,A) = g+(x,A) − g−(x,A),

where g+(x,A), g−(x,A) are completely additive, non-negative set functions. Namely, if
such a decomposition would exist, then from the inequality

∞∑
n=1

|gn(x)| ≤ g+(x,H) + g−(x,H)

it would follow that the series
∑∞

n=1 gn(x) converges absolutely, what is not true.

b) Since for every positive ε we have

M(|gn(x)|) =
∫
|x|≤ε

|x|dF (x, n) if n ≥ 1
ε
,

then, by Condition a), it follows that the set function∫
|x|≤ε

|x|dF (x,A)

is not of bounded variation.
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[10] A. Prékopa, On the convergence of series of independent random variables, Publ.

Math. Debrecen, 4 (1956), pp. 410–417.
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