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Introduction

The present paper contains an outline of the stochastic integral which can be defined
relative to a completely additive stochastic set function £(A) (4 € S).

Many types of stochastic integrals are known in the probability theory. Historically
the first one is due to N. WIENER [21]. This was generalized by K. ITO by omitting the
condition that the integrand is a constant function [10] and in another direction by con-
sidering a multidimensional Wiener process instead of the simple one [11]. An important
step in the development was the integral representation of stochastic processes with in-
dependent increments. This result is essentially due to P. LEVI [16] but a rigorous and
complete treatment was given by K. ITO [9] (see also [12]). A stochastic Stieltjes integral
with respect to a stochastic integral process with independent increments is used in [12].
The stochastic integral occurring in the theory of stationary processes was introduced by
A. N. KoLmoGorov [14] [15] and discussed from a general point of view by A. OBUKHOV
[17]. These integrals were later generalized by J. L. Doob [5]. Another generalization is
due to S. BocHNER [1] for the case of an abstract space and for an additive random set
function. Recently V. FABIAN [6] has defined a stochastic integral with a non-negative
stochastic measure.

The generality of our integral introduced in § 1 of Chapter I is contained in the following;:
The space where we integrate is abstract and we do not suppose at all the existence of any
moments. This makes our integral of new type since in the above-mentioned stochastic
integrals, except that of V. FABIAN who uses the non-negativity of the random measure,
the existence of at least one moment of order p > 1 is always supposed. The speciality
of the integral (1.3) is that the stochastic set function £(A) (A € S) has the following
property: to disjoint sets Aq,..., A, there correspond independent random variables.
But exactly this property makes possible the proof of the existence and many properties
of our integral.

We introduce a weaker and a stronger form of our integral. That one introduced by
Definition 4, the u-integral is a generalization of the Radon integral and reduces to the



latter if the random variables £(A) (A € §) are constants with probability 1. Most of the
properties which are true in case of the Radon integral remain true in case of the u-integral
too.

In the formulation of the theorems we did not take into consideration those trivial
generalizations in which the difference from the original theorem is the neglect of some
0-sets. This generalizations can be formulated without any difficulty.

The whole theory of our integral is based on the following property of completely
additive stochastic set functions: the set of the distribution functions {F(z, A), A € S} is
(conditionally) compact in the space of the one-dimensional distribution functions. This
theorem is proved in [18] (Chapter I1I, Theorem, 3.4).

To the practical applications we shall return later.

I express my sincere thanks to Professors A. CsAszAR, B. Sz.-Nacy and A. RENYI
for their valuable remarks made in the preparation of this paper.

Definitions and notations

We keep all the notions and notations introduced in [18] (pp. 217-218). In the whole
paper H denotes the basic space where we integrate, § a o-ring of some subsets of H and
&(A) (A € 8) a completely additive set function with respect to which we integrate. The
variable element of H will be denoted by h. Only in Chapter III will be considered integrals
with respect to more than one set functions, and in Chapter IV in some statements we
replace the o-ring S by a ring R.

If we say that ¢(h) is integrable, we mean that it is integrable with respect to the
completely additive set function {(A) (A € §). The terminology “p(h) is integrable”
includes the measurability of the function.

We have to introduce only one new notion which did not take place in [18]. This is the
following: a set X € § is said to be a 0-set with respect to the completely additive set
function £(A) (A € S) if for every Y € XS we have {(Y) = 0.

1. DEFINITION AND EXISTENCE OF THE INTEGRAL

§ 1. Definitions

In order to simplify our expressions we introduce the following definitions:

DEFINITION 1. A sequence of real numbers {y;} which is infinite in two directions will
be called a dividing point sequence if yr, < yry1 (k=0,£1,42,...), supg(ye+1 — yx) < 00,
(n)}

limp oo yp = 00 and limg__o yr = —00. A sequence of dividing point sequences <y,

will be called a dividing point double sequence.



DEFINITION 2. A dividing point double sequence {y,gn)} will be called infinitely fine if

lim sup (y,(fl_)l — y,gn)) =0.

n—0oo k

Let (h) be a real function defined on the elements of H and measurable with regard
to the o-ring S. Let furthermore {y;} be a dividing point sequence and consider the series
of independent random variables

o0

(1.1) > uE(AHy),

k=—c0

where A € §, Hy, ={h : yp < ¢(h) < yg+1}. The sets Hy are disjoint and their union
equals H.

The system of sets {Hy) will be called the subdivision corresponding to the function
(k) and the dividing point sequence {yx}. Now we formulate the definition of the integral.

DEerINITION 3. Let @(h) (h € H) be a measurable function and suppose that there
exists a § > 0 such that for every dividing point sequence {y;} with supy(yr+1 — yx) < 0
the series (1.1) converges with probability 1 regardless of the order of summation. Let

furthermore {y,gn)} be an infinitely fine dividing point double sequence and put

(12 m(A) = 3y (an”).

k=—cc

If the sequence (1.2) converges stochastically to a limiting random variable n(A), then ¢(h)
will be called integrable over the set A. The random variable n(A), which is obviously

independent of the special choice of {ylgn)}, will be called the integral of ¢(h) over the set
A and will be denoted by

(1.3) | e,

We shall prove (Theorem 1.3) that if (1.1) converges for every sufficiently fine dividing
point sequence, then the integral (1.3) exists. The integral introduced by Definition 3 has,
however, some undesirable properties. First of all we mention that the classical Radon
integral is not a special case of this. For instance, the function #(h) defined by (2.19)
is not integrable in the sense of Radon with respect to the generalized measure (2.18),
but is integrable in the sense of Definition 3. This implies other unpleasant properties as
follows: if ¢(h) and 1(h) are measurable functions, 1(h) is integrable over the set A and
lp(h)] < |¥(h)], then @(h) is not necessarily integrable over A. The same holds for the
sum of two integrable functions ¢1(h), ¢2(h). Both cases are illustrated by examples in
Chapter 11, § 3.

In order to avoid the above-mentioned anomalies we introduce another integrals sup-
posing more on the function ¢(h).



DEFINITION 4. A measurable function ¢(h) will be called unconditionally integrable
(u-integrable) over the set A € § if it is integrable in the sense of Definition 3 over all
measurable subsets of A.

Now, the u-integral is a generalization of the Radon integral. In fact, if the stochastic
set function £(A) (A € §) reduces to a number-valued completely additive set function
u(A) (A € §), then, according to the decomposition theorem of HAHN, every set A € S is
the sum of two disjoint measurable sets Ay, Ay with the property that

for Be A8,

>0
<0 for BeAS.

The u-integrability of ¢(h) implies the existence of the Lebesgue integrals

/ () u(dA), / (1) (—pu(dA)),
Ay As

hence our assertion follows.
It will be shown that the u-integral has analogous properties to the Radon integral.

We anticipate a special case of Theorem 2.7. If (k) is measurable and |¢(h)| is u-
integrable over A € S, then the same holds for ¢(h). The conversion is also true. In fact,
if ¢(h) is measurable and u-integrable, then the positive and negative parts of ¢(h) are
u-integrable, hence, using Theorem 2.2, the statement follows.

§ 2. Two auxiliary theorems

In the paper [18] we have introduced the following set function:

(1.4) W(T,A) = Var,(A) (AeS),
where
(1.5) a(T,B) = |::*|u<pT|1 — f(t, B)] (BeS)

and T is an arbitrary but fixed positive number. In order to avoid superfluous complica-
tions in the formulae of the present paper we extend the definition of W (T, A) (A € S) by
writing
W(-T,A)=W(T,A),

W(0,A) = 0. Thus for a fixed A W(I, A) is an even function defined on the whole real
axis. It is shown in [18] (cf. the proof of Theorem 3.2) that the set function (1.4) is a
finite (consequently also bounded) measure on the o-ring §. In the sequel this measure
will have a fundamental role.

The first theorem refers to this and to a closely related set function.



THEOREM 1.1. For every set A€ S
1. li T,A) =
(1.6) lim W(T, 4) =0,

i.e. W(T',A) is continuous at T =0 (W(0, A) is obviously equal to 0). It is true further-
more that for every set A € § the set function

(1.7) Var,qy(4)  (u(e, B) = P([{(B)[ > a), B€S)

depending on the number a is continuous at a = 0o, i.e.

(1.8) ah_}n(r)lo Var,,)(A) = 0.
PrOOF. Let By,..., B, be a system of disjoint sets of the g-algebra AS. According
to Theorem 3.4 of [18] for every £ > 0 there can be found a § > 0 such that
(1.9) —log[f(t,C)[ <&, arg f(t,C) <&t
provided that C' € § and [t| < §. Let us divide the system By,..., B, into two groups

2
accordingly as arg f(t, Bx) > 0 or arg f(t, Bx) < 0. By (1.9) we have (if ¢ < ?ﬂ)

Z; arg f(t, Br) = arg f(t, B') < ¢,
(1.10)

— ZZ arg f(t, By) = —arg f(t, B") <&,

where the summations Y_" and " refer to the subscripts of the sets belonging to the
first and second groups, the sets B’ and B” denote the unions of the corresponding sets,
respectively. (1.10) implies that

(1.11) > Jarg f(t, By)| < 2¢

k=1

if [t| < 4. On the other hand, by (1.9) we have also
(112) loglf( B < (B=B 1B
if |t] < 6. Using (1.11) and (1.12) we get

SO i Bl =Y 1 - e R £, By
k=1 k=1

(113) S Z ‘1 _ ei argf(LBk)
k=1

£ 1 BY)
k=1

<Y larg f(t, Bi)| = > log|f(t, By)| < 22 — log | f(t, B)| < 3e.

'Under arg z we understand the main value of this function: —7 < argz < x.



Applying the inequality

1 [ 1
— 1— f(t)|dt > — dF
ol L] (+),

1.14
( ) 10 |l,|>l

where F'(z) is an arbitrary distribution function, f(¢) is the corresponding characteristic
function and a is a positive number, we conclude

(1.15) P | |¢(By)| > |1 — f(t, By)|dt > 30e
S (lemol> 1) < o3 [ - rn

1.1
whenever — > 5 Thus the second assertion of our theorem is proved.
a

Our first assertion follows from the inequality

- f tBk|_‘/ — 7y dF (a2, By)

/ xdF(z, By)
|z|<a

where a is a positive number and from Theorem 3.8 of [18]. This completes the proof. O

(1.16)
<t

t2 2
+ 5/ e dF (z, By) +2P(|(By)| > a),
|z|<a

The following theorem will be needed first of all in the proof of the existence of the
integral (1.3).

THEOREM 1.2. Let C,gn) (k,n=1,2,...) be a system of sets of the o-ring S for which
C(n)C,gn) =0ifi#k (n=12,...) and 5,(;1) (k, n=1,2,...) a double sequence of real

K3

numbers for which lim,,_, sup, ‘5](?)‘ = 0. In this case

(1.17) Z& () =0

Proor. For a fixed n the series (1.17) converges with probability 1 regardless of the
order of summation. In fact, this holds for the series

>e(e)

and the set of numbers {5,(;1)} is bounded, hence an easy argument referring to the three

series theorem of KOLMOGOROV shows the truth of the preceding assertion.



Using an inequality of the type (1.16) we obtain

L= T07 (i )| < [ (i 1)

(1.18) < |t|2‘5 vdr (z,0f" >)‘

|
re Xk: ()’ /|x|3a o2dF (w,0f") +2P (e (V)| > o),

where @ is a positive number. By Theorem 3.8 of [18] there is a number K, > 0 such that
bl

zk:/|x|§a 22dF (w,C,gn)) < K,.

We may suppose that K, > 1. First, using Theorem 1.1, we choose a so large that the
third member on the right- hand side of (1.18) is smaller than ¢ (we suppose that ¢ < 1).

1 (k=1,2,...). In this case the sum on the

z|<a

xdF (w,C,gn)) < K,

z|<a

Next we choose n so that ‘5

right-hand side of (1.18) is at most €(|t| +¢2/2 + 1). Thus our theorem is proved. a

§ 3. The existence of the integral

Now we return to our original problem, the discussion of the existence of the integral
defined in § 1. The main theorem regarding this matter is the following:

THEOREM 1.3. Let ¢(h) be a real function measurable with regard to the o-ring S and
A € 8§ a set. Suppose that there exists a & > 0 such that the series (1.1) converges with
probability 1 regardless of the order of summation whenever the dividing point sequence
{yr} has the property supy(yr+1 — yr) < 0. In this case the integral (1.3) exists. In
particular, every measurable bounded function is integrable.

Proor. Let {y,gn)} be an infinitely fine dividing point double sequence. Let us unite

the sequences {y,gn)} , {y,gm)} and denote the new dividing point sequence by {z,}.2 If

we introduce the notation

Lj=A{h : z; <p(h) < zj31},

2For the sake of brevity we do not indicate that it depends on n and m.



then

k k
(1.19)
= Z (y](g ) - Z]) §(ALj) - Z (ykm) - Z]) §(ALj)
Bojin,cay Bojin,cH{™
In the sums on the right-hand side the set of the numbers ylgn) - 25, ylgm) — z; is bounded

and if 5,(;;) = ylgn) — z;, then the properties of the double sequence {y,gn)} imply that

5(n)

lim sup max ki | =0-

n—00 L j:L]ngin)

Applying Theorem 1.2 it follows that the sequence of random variables in (1.19) tends
stochastically to 0 as n, m — oco.

Thus the Cauchy’s convergence criterion holds, hence there is a random variable to
which the first member on the left-hand side of (1.19) converges stochastically. As it can
be seen by a well-known argument, this limit is independent of the special choice of the
double sequence {y,gn)} Hence our theorem is proved. O

REMARK. It is not difficult to see that if the series (1.1) converges for sufficiently fine
dividing point sequences, then the same holds for any dividing point sequence. This and
other statements occurring in our discussion follow from the fact that if the series of

ka
k=1

converges with probability 1 regardless of the order of summation, then the same holds

independent random variables

for
o0

chglm

k=1

where ¢, is a bounded sequence of real numbers.?

Now we deduce an inequality playing an important role in the proofs of the present
paper.

THEOREM 1.4. Let ¢(h) be a measurable function for which |¢(h)| < K < co. Then,
denoting by g(t, A) the characteristic function of the integral of p(h) over the set A (A €
S), we have

|1 - g(tv A)| < W(tl(v A)

®This statement is a simple consequence of the three series theorem of KOLMOGOROV.



Proor. Let {y,gn)} be an infinitely fine dividing point double sequence and {Hén)}

the corresponding sequence of subdivisions determined by ¢(h). If g,(t, A) denotes the
characteristic function of the random variable

Soye (anl),

k
then
1= gt A < D[ = 7 (1 am)|
k
<Sw (ty,g”), AH,E”)) <Sw (tK, AH,@) — W(LK, A).
k k
Taking the limit n — oo, we obtain our assertion. O

§ 4. A necessary condition for the existence of the integral
(1.3)

In this section we prove the following

THEOREM 1.5. Let ¢(h) be a measurable function integrable over the set A € S and
an, b, (n = 1,2,...) a pair of sequences with the properties 41 < @y, bpy1 > by
(n=1,2,...), limy00 @y, = —00, limy oo by, = 00. In this case the sequence of ran-
dom variables

(1.20) Ny = / p(h)E(dA) (A, ={h : heA a, <eplh)<b,})
converges with probability 1 and
(1.21) /c,o(h)f(dA) = lim 7,.

A n— 0o

ProoF. We may suppose that a, < 0, b, > 0,

sup(bp4+1 — by) < o0, sup(a, — apq1) < 00 (n=1,2,...).

n

Let us unite these sequences into one dividing point sequence {y,} and consider the series

(1.22) Z/AH (yn — #(h))E(dA),

where {H,,} is the subdivision determined by the sequence {y,} and the function ¢(h).
We do not know yet that the series (1.22) converges. Denoting by f,(t) the characteristic
function of the n-th member of the series (1.22), it follows from Theorem 1.4 that

(1.23) |1 - fn(t)| < W((Stv AHN)v



where § = sup, (Ynt+1 — Yn). (1.23) implies
(1.24) D L= fult) S WSt A).

As the terms of the series (1.22) are evidently independent, this series converges with
probability 1 regardless of the order of summation (cf. [5], p. 115, Theorem 2.7). The sum
(1.22) equals

S s =Y [ enea)!

hence, taking Theorem 1.3 into account, it follows that if ¢(h) is integrable over A, then
the sequences of the type (1.20) converge with probability 1.

Now we are going to verify the relation (1.21). Let 7 denote the limiting variable of
the sequence 7, and choose an infinitely fine dividing point double sequence {ygN)} with

the property {ygN)} C {ygNH)} and {ygl)} ={y,}. If {Hle)} is the corresponding

sequence of subdivisions determined by ¢(h), then, using the precedings, we have
1.2 h)é(dA) =
(1.2 S [ e @A) =

for every N. Let féN) (t) denote the characteristic function of the n-th term of the series

(1.26) Z/AH(N) (4 = o) €(dA).

If fN)(t) denotes the characteristic function of the sum (1.26), then by Theorem 1.4 we
have

(1.27) =Y <3 [1= 5N 0] < wE™r, ),

where 6(NV) = sup,, (yg_\l_f)l - yle)). By (1.27) and Theorem 1.1

MHy=1 if N oo

(1.25) implies that the sequence (1.26) (which depends on N) converges stochastically to
the random variable

/ p(h)&(dA) —n.
A

Hence this is equal to 0 with probability 1. (|

“We have used here a trivial special case of Theorem 2.4

10



II. THE PROPERTIES OF THE INTEGRAL / p(h)E(AA)
A

§ 1. Elementary properties of the integral

It is only for the sake of the systematic treatment that we mention the following almost
trivial theorems:

THEOREM 2.1. If ¢(h) is integrable over the set A € S, then the same holds also for
cp(h) where ¢ is a real constant and

2.1) [ cetmsan =« [ pmean.

A

THEOREM 2.2. If ¢(h) is integrable over the sets Ay € S, Ay € § where A1A4; = 0,
then it is integrable also over Ay + Ay and

2:2) [ etgan = [ e+ [ e,

As

The following theorem requires a little more complicated argument than the corre-
sponding theorem for Lebesgue integrals.

THEOREM 2.3. If ¢(h) is a measurable and bounded step function over the set A € S,
i.e. there are disjoint sets Ay, Ag,... (D 1oy A = A) of S such that ¢(h) = ¢, if h € Ay,
and |pg| < K (k=1,2,...) where K is a constant, then

(2.3) /Acp(h)f(dA) = g} er€(Ag).

A similar but more general assertion follows from Theorem 2.4 for u-integrable functions
taking on a countable number of different values.

§ 2. The complete additiveness of the indefinite integral

In this § our aim is to prove the following

THEOREM 2.4. If the function ¢(h) is integrable over all sets A € S, then

(2.4) n(A) = /A S(h)E(dA)

is a completely additive stochastic set function.’

*The definition of this notion is given in [18], p. 216.

11



ProOF. It is quite easy to argue that n(A) is an additive set function. In fact, if the sets
A € § (k=1,2,...,r) are disjoint, then the random variables n(Ag) (k= 1,2,...,r)
must be independent and Theorem 2.2 ensures the fulfilment of the remaining part of this
assertion.

Now we prove that the set function 7 is also completely additive. First we consider the
case of a bounded function and suppose that |¢(h)| < K. According to Theorem 2.1 of
[18] we have to verify the following criterion: if By, Bg, ... is a non-increasing sequence of
sets of S such that lim,_.., B, = 0, then

(2.5) n(B,) =0 if n—oo.

Denoting by f,,(t) the characteristic function of n(B,,). Theorem 1.4 implies
(2.6) I1— fo(t)| < W(KtL B,,).

As for every T W(T', A) is a bounded measure on the o-ring S, it follows that

(2.7) lim W(Kt,B,) =0

n—0oo

Our assertion follows from (2.6) and (2.7).

Now we consider the general case. Let us introduce the notation Sy = DnS where
D, ={h: =N < ¢(h) < N}. We shall denote by R the ring of those sets A which are of
the form

A=A, 4+ A, where A, €S

i

Our argument for the case of a bounded function shows that the set function 7 is
completely additive on R. In fact, if Ay, Ao,... is a sequence of disjoint sets of R for
which A = Y377, Ay € R, then for some N we have A € Sy. But since 4; C A
(k=1,2,...), we have also A, € Sy (k= 1,2,...). As ¢(h) is bounded on the o-ring
Sy, it follows that

n(A) = n(Ap).

k=1

o0

The following step is to prove that the set function n can be extended to the smallest
o-ring S(R) containing R (cf. [18], p. 233). Obviously S(R) = §. Let By, By, ... be an

arbitrary sequence of disjoint sets of R. We shall show that the series
(2.8) > n(Br)
k=1
converges with probability 1 regardless of the order of summation. By Theorem 3.2 of [18]
this property ensures the possibility of the extension. Let

Cryptn = (DNeyr = Dn,) By

(N,,<Nr+1,kg7’)<k£:_)1; s=1,2,...; r:l,Q,...).

12



Since |p(h)| < N, + 1 for h € Cn, =322, Oy (), it follows that

(2.9) n(Cn,) = i " (CNrkg;))

s=1

and this series converges with probability 1 regardless of the order of summation. On
the other hand, o(h) is integrable over the set C' = 377 C,, hence by Theorem 1.5
(choosing the sequences a, = =N, — 1, b, = N, + 1)

(2.10) n(C) =) n(Cn,)-

(This series must converge also if we omit an arbitrary set of terms, hence it converges
with probability 1 regardless of the order of summation.®) Comparing (2.9) and (2.10), it
follows that the series

(2.11) ii’? (Crue)
r=1 s=1

converges with probability 1. Now we prove a

LEMMA. Let &y (i, k = 1,2,...) be independent random variables. Suppose that for

every system of sequences i, kﬁ” (s=1,2,...; r=1,2,...) with i, < i,41, kﬁ” < kg:_)l
(s=1,2,...; r=1,2,...) the series
(2.12) PIPBLE

r=1 s=1

converges with probability 1. In this case the series

o] o]
22 S
=1 k=1
converges with probability 1 regardless of the order of summation.
ProoF. By condition there is a 6 > 0 such that for every ¢ for which |t| < §, the
infinite double product

(2.13) I/ 00
r=1s=1

converges where f;;(f) is the characteristic function of the random variable &;.

Let us fix the number ¢ (|t| < §) and introduce the notation

fzk(t) :pikemik (i,k: 1,2,...),

5This can be seen e.g. by the aid of the three series theorem of KOLMOGOROV.

13



where —7 < a;; < 7. Since (2.13) converges, it follows that

o0 o0
H H Pkl
r=1s=1

does also. Hence a well-known argument shows that
>3 <

Now consider the double series
o] o]
22
=1 k=1
and prove that it converges absolutely. Let us suppose that it does not hold. In this case

either the sum of the positive terms or that of the negative terms diverges. We consider
the first case, the second one can be treated similarly. Then there is a countable number of

l(r)

rows of the matrix («;;) which contain the positive elements. If j,.,ls’ (s=1,2,...; r=
1,2,...) denote the positions of the positive elements, then the convergence of the infinite

product
Hf,rl(sr) (r=1,2,...)

implies that
aj. = ZO&],TI(ST) < 0.
S

We can distinguish two cases accordingly as «;, < 7 for every large r or a;, > 7 for an
infinite number of the r’s. In the first case the convergence of the infinite product

0
H H f‘rl(;)
r=1 s

implies
o]
E aj. < 00
r=1

what is a contradiction. Considering the second case, let i1, ¢9,... denote a subsequence
of the sequence j, jg,... for which o;, > 7 (r = 1,2,...). Then in the ¢-th row of the
matrix there is a finite or infinite number of positions, whose subscripts will be denoted

by kY), kgr), ..., such that
7
5 < zg:airk@ <.

This is, however, also a contradiction, since the infinite product

ﬁH ()
e ks

r=1 s

14



converges. Thus
o0 o0
33 ol <o
=1 k=1

In view of the inequality

11— fie(t)] <1 = pig + |

we obtain

Y3 = falt) <o it <5,

=1 k=1
hence our Lemma follows (cf. [5], p. 115, Theorem 2.7 and p. 118, Corollary 1).
Applying the Lemma for the random variables &, = 7(Cjx), we conclude that the series

(2.14) S n(Cw)
k=1 N=1

converges with probability 1 regardless of the order of summation. By Theorem 1.5 we
have

o0

(2.15) n(Bi) =Y n(Cwi),

N=0

thus the series (2.8) converges with probability 1 regardless of the order of summation.

Let n*(A) (A € S) denote the extended set function of the set function n(A4) (A € R).
If E is the following set:

En={h :heB, =N <¢(h) <N} where BesS,

then by Theorem 1.5

(2.16) i [ e = [ e

N—oo EN

Now, since * and 7 coincide on R and 7 is the indefinite integral (2.4), we have

(2.17) (B) = Jim o (Bx) = Jim g(Bx) = lim [ p(hé(dA).

— 00 En

On the basis of (2.16) and (2.17) we may write

7 (B) = /B S(R)E(A).

Since the extension process leads to a completely additive stochastic set function, this
property of »* implies the assertion of our theorem.

15



REMARK. Let ¢(h) be a measurable function taking on a countable number of different

values on the set A € §, i.e. there are measurable disjoint sets Ay, Ag, ... of the o-ring
AS such that A=)7", Ax and o(h) = ¢y, if h € Ay (k=1,2,...). If p(h) is integrable
over the sets of the type A;, + A;, + -+ where 11, 13... is an arbitrary sequence of natural

numbers, then (it is integrable over A and)

/A AMEAA) =3 it (Ap),
k=1

where the series on the right-hand side converges with probability 1 regardless of the order
of summation.

Proor. Consider the o-algebra of the sets A;, + A4;, + --- and denote it by S. By
condition ¢(h) is u-integrable over the set A with respect to S and the completely additive
set function €. Since ¢(h) is integrable over A = A; + Ay +- - - with respect to S and &, it
is integrable with respect to S and ¢ too. Applying Theorem 2.4 for S instead of S, the
assertion follows.

§ 3. Further properties of the integral

Two properties of the classical Lebesgue-Radon integral cannot be formulated in case of
the integral introduced by Definition 3. They will, however, hold in case of the u-integral.
The first of these properties is that if ¢(h) and 1(h) are two measurable functions such
that |@(H)| < 1 (h), moreover ¥ (h) is integrable with respect to some finite measure over
a measurable set A, then the same holds for ¢(h).

An example for this is the following: Let H be the set of the natural numbers and &
the o-algebra of all subsets of . We define the set function £(A) as follows:

1 1
(2.18) EA) = 3 (=)

heA

It is easy to see that the function

P (2h — 1) = 2h,

(2.19) (h=1,2,...)
P(2h) = 2h

is integrable over H, but the same is not true for

(2.20) p(h)=nh (h=1,2,...)

through 0 < (k) < 4 (h) for every h.

A similar example can be given for the assertion that the integrability of two functions
¢1(h) and @q(h) over a set A € S does not imply the integrability of ;1 (h) + @2(h) over
the same set.
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Let H and S be the same as before and define the functions ¢q(h), ¢@2(h) as follows:

e1(2h) = (=1)"2h, B

(2.21) ou(2h— 1) = (—1)"2h } (h=1,2,...),
©2(1) =0,

(2.22) wa(2h) = (=1)"12h, (h=1,2,...).
0o (2h + 1) = (=1)12h

In this case the function ¢q(h) 4+ ¢2(h) vanishes on the set of the even numbers and its
integral does not exist on the set of the positive odd numbers, since the series defining
this integral is not absolutely convergent.

As it will be shown in the sequel, these anomalies do not occur in case of the u-integral.
We prove two theorems, the first of which refers to the w-integrability of the sum of two
u-integrable functions, while the second one, referring to the existence of the u-integral of
a majorated function (Theorem 2.8), requires further preparations.

THEOREM 2.5. If the functions p1(h) and @3(h) are u-integrable over the set A € S,
then the same holds for ¢1(h) 4+ ¢2(h) and

(2.23) /A (1(h) + g2 (h)E(AA) = /A 1 (WE(AA) + /A a(h)EA).

Proor. Let {y,gn)} be an infinitely fine dividing point double sequence and {Hén)

the corresponding sequence of subdivisions determined by the function ¢1(h) 4+ @2(h).
Now consider the following series:

> (yfﬁf (am™) - |, o PHIEAD ~ /. o @2<h>5<dA>)

k=—c0

(2.24)

= 3 () = 30 [ emean = 30 [ e,

k=—00 k=—co k=—c0

The second and third series on the right-hand side converge with probability 1 regardless
of the order of summation and their sum equals the integrals over A of ¢ (h) and ¢2(h),
resp. We do not know yet anything about the convergence of the series on the left-hand
side.

Let {zﬁm)} be an infinitely fine dividing point double sequence, {Lgm)} and {Ms(m)}
the corresponding sequences of subdivisions determined by the functions ¢1(h) and ¢2(h),

resp. We introduce the notation f,gn) (t) for the characteristic function of the k-th member

17



on the left-hand side of (2.24). Since

e () - [ e [ eamean)

(225) = lim st {y,g”)g (Ar") =7 2 (Am1em) = 3 2 (A ml™) }

~ tim st 37 (57 - o) - o) ¢ (AL )

and in the last member ‘y,gn) — ng) — Zr(’m)‘ < 20, for large m’s where §,, = sup, (y,(fl_)l

—y,gn)), it follows that

1 70 =

S r
m—00

1— lim Hf (t (y,gn) —2lm z(m)) ,AHén)L(m)Mrgm))‘

< ngnooz ‘1 _ (t (yl(f) — ) z,(,m)) 7AH,§”)L£W)M£W))‘ <W (25nt, AH,gn)) :

Hence, by summation, we get

(2.26) f: ‘1 . (t)‘ < W (26,1, A).

k=—c0

This shows that the series on the left-hand side, consequently also the first series on the
right-hand side of (2.24) converges with probability 1 regardless of the order of summation.
Taking the limit n — oo in (2.26) and using Theorem 1.1, it follows that the right-hand
side of (2.24) tends stochastically to 0 which implies (2.23).

We can repeat the argument for an arbitrary measurable subset of the set A and thus
the assertion follows.

§ 4. Two auxiliary theorems

THEOREM 2.6. A non-negative measurable function @(h) is u-integrable over the set
A € S if and only if for every dividing point sequence {yi}, for which yo = 0, the relation

(2.27) f:W(yk, AHyp) < o0 (t>0)
k=0

holds where {Hy} is the subdivision corresponding to w(h) and {yx}.

ProOF. The sufficiency of the condition is a simple consequence of Theorem 1.3. In
fact, if B € AS, then (2.27) implies that for every ¢

D Witye, BHy) <Y W(tyr, AHy) < o0,
k=0 k=0

18



hence
o0

Zsup |1 — f(zyx, BHE)| < o0
k=0 |z|<t

which implies the convergence in every order of the series

iykf(BHk)'

k=0

The other part of the theorem is less obvious. We prove it in an indirect way and
suppose that there exist disjoint sets By (I = 1,...,lx; kK =0,1,2,...) such that By €
AH S (I=1,...,l; k=0,1,2,...) and

(o] lk

(2.28) ZZ sup |1 — f(zyx, ABg)| = oc.

k=0 [=1 |Z|St
In view of the inequality

t?
1el< [ et

/mssxdG(x) —|—2/|w|>6dG(x)

<9 (t2+ti2) (/|x|gsx2dG($)+ /mssxdG(ac) +/|xl>sda(x)),

valid for every t, every £ > 0 and every distribution function, the characteristic function
of which is ¢(¢), we may write

oo g
2 v

k=0 [=1
T T
/ zdF (—7 ABM) + / dF (—7 ABM) = 00.
|z|<e Yk |z|>e Yk

Hence the three series theorem of KOLMOGOROV implies that the series of independent
random variables

_I_

o0

Ik
DD (B

k=0 [=1
does not converge with probability 1 regardless of the order of summation.

This leads to a contradiction. Let K = supy(yr+1 — yx) and denote by fii(¢) the
characteristic function of the random variable

(2:29) [ eeaa) - me = [ (o) - mg(aa

By

By Theorem 1.4

(2.30) |1 — fkl(t)| < W(I(t, Bkl)-
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This implies that

Ik

(2.31) DY = fu(t)] < o

k=0 (=1

hence the series

(2.32) i; (/Bkl £(dA) - ykf(Bkz))

k=0

converges with probability 1 regardless of the order of summation. Since ¢(h) is integrable
over all elements of the o-ring AS, by Theorem 2.4 the series

(2.33) iZ/

k=0 1=1 /B
has also this property. Thus

o0

Ik
(2.34) DY uké(Br)

k=0 (=1

converges with probability 1 regardless of the order of summation what is a contradiction.

g

THEOREM 2.7. Let p(h) and 1 (h) be two non-negative measurable functions such that
w(h) < (h) and (k) is u-integrable over the set A (A € S). If{yx} (yo = 0) is a dividing

point sequence, then we have

(2.35) > Wiyk, ALy) <YW (yr, AHy),
k=0 k=0

where {Li} and {Hy} are the subdivisions corresponding to the functions ¢(h) and 1 (h),
respectively.

Proor. By definition

Ly ={h : yr < o(h) < Yrt1}s
Hy = {h :yr <oh) < yrt1}

} (k=0,1,2,...),

hence

J J
(2.36) dHyCY Ly (7=0,1,2,...),
(2.37) H]‘Lk =0 for k> 7.

20



From these we conclude that

ZW yi, AH;) = W (y;, AH;Ly)
J=0 7=0 k=0
=D > Wiy AHLy) =) Y Wiy, AH;Ly)
=0 k=0 E=0 j=k
<IN Wy, AHLy) =Y W yk,AZH Li | =Y Wiy ALy)
k=0 j=k k=0 = k=0
what was to be proved. O

§ 5. The theorem relative to the majorated function and the
bounded convergence theorem

In § 3 of this Chapter we have seen that if a function has an integrable majorant, then
this does not imply in general the integrability of the majorated function. For a positive
assertion in this direction the same additional assumption is needed which has had a
fundamental role in Theorem 2.4. Our result is contained in

THEOREM 2.8. Let ¢(h) and ¢(h) be measurable functions such that |p(h)| < ¥ (h)
and (h) is u-integrable over the set A € S. Then @(h) is also u-integrable over the set
A.

ProoF. Let be B € AS. If By and By denote those subsets of B where ¢(h) > 0 and
p(h) < 0, resp., then Theorems 2.6 and 2.7 imply the integrability of ¢(h) over By and
B;y. Applying Theorem 2.2, the assertion follows.

In accordance with the precedings, the analogy to the bounded convergence theorem
contains also more assumptions than simple integrability. It seems, however, that The-
orems 2.7 and 2.8 express unexpected good properties of our integral. We have only to
remind of our paper [18] where an example is given for a completely additive stochastic
set function which cannot be represented as the sum of positive and negative parts (cf.
pp. 261-262). A remarkable situation is that though in case of the Radon integral the
generalized measure can always be decomposed into a difference of two measures, our
Theorems 2.7 and 2.8 need not more assumptions than the corresponding Radon integral
theorems.

We shall not consider the integrability term by term of series of functions and other
statements, but prove the following theorem from which these can easily be deduced:

THEOREM 2.9. Let on(h) (N =1,2,...) be a sequence of measurable functions such
that |on(h)| < (k) where ¥ (h) is u-integrable over the set A € §. Suppose furthermore
that the limit (h) = limy_oo @n(h) exists. In this case the functions ¢(h), en(h) (N =
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1,2,...) are also u-integrable over the set A and we have the limit relation
(2.38) / o (R)E(dA) = / S(WEA)  if N = oo,
A A

Proor. The assertion regarding the integrability of the functions ¢(h), ¢n(h) (N =
1,2,...) follows at once from Theorem 2.8. According to Theorem 2.5, we may restrict
ourselves to the case when ¢(h) =0, on(h) >0 (N =1,2,...).

First we consider the case of a sequence majorated by a constant and suppose that
en(h) < M. Let Ay denote the following set:

An ={h : on(h) < p},

where p is a positive constant. Denoting by fn (¢) the characteristic function of the random
variable

/ en(h)E(dA),
A

by Theorem 1.4 we have

(2:39) 1 — (@) < Wipt, An) + W(Mt, A— Ay)
' < Wi(pt, A) + W (Mt, A — Ay).

Let ¢ be a fixed number and choose first p so small that the first term on the right-hand
side of (2.39) is less than £/2. By Theorem 1.1 this is possible. Next we choose N so large
that the second term is also less than £/2. The possibility of this is a consequence of the
relation
lim Ay=A

Nl—r>noo N
which follows from

li h) = 0.
The preceding argument shows that for every ¢

li t)y=1

what was to be proved.
Now, turning to the proof of the general case, let us decompose the function ¢x(h) as
en(h) = ¢ (h) + &R (h),

where

Wy = J en(h)if en(h) < M,
i (h) = { 0 otherwise,
A (h) = on = ) (0)

and M is a constant of which we shall dispose later. Denote f](\})(t) and f](\?)(t) the
characteristic functions of the random variables

/ eW(h)e(dA)  and / oD (h)¢(dA),
A A
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respectively, and consider first the latter.
Let {y,gn)} be an infinitely fine dividing point double sequence for which {y,gn)} C

{y,gn+1)} and denote by { A% )} the sequence of subdivisions determined by c,og\,)(h) and

{y,gn)} If an(t) denotes the characteristic function of the random variable

Zyk (ALNk)
then obviously

(2.40) B =P
if n — oo.

Let furthermore { H;} denote the subdivision corresponding to the dividing point se-
quence {yél)} = {yx} and the function (h), finally denote by K the following number:
K =supy (yr+1 — yx). If M > 1, then by applying Theorem 2.6 we get

-l S whar)) < > w (e acg))

k:yén)ZM k:yél)ZM
< ¥ W(y,g”(K+1)t,AL§§L) < N Wyl + L)t AHy).
k:yél)ZM k:yk:M
Hence
(2.41) ﬁ-ﬁ%ﬂg S W(g(K + 1)t, AHy).
kiyp>M

Fixing the number ¢, first we choose M so large that the right-hand member of (2.41)
is less than /2. The possibility of this is ensured by Theorem 2.6. Next, if N is large
enough, then

‘1—f](vl)(t)‘ < g

If we keep the notation fx(t) for the characteristic function of the random variable
[ extmgian,

then since the sets of those h’s for which c,og\l,)(h) # 0 and 995\2,)(/1) # 0, respectively, are
disjoint, we have

whence
- vl < L= Q|+ - 7P| <

for large N’s. Hence our theorem is proved. O
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§ 6. The case of a non-negative set function

If the random variables £(A) (A € &) are non-negative, then the sequence (1.2) converges
not only stochastically to the limit (1.3), but also with probability 1. This assertion is a
special case of the following theorem which is a strong version of Theorem 2.9:

THEOREM 2.10. If for every B € S we have {(B) > 0 and ¢(h), ¢,(h) (N =1,2,...)

are measurable functions such that

lim on(h) = ¢(h), len(R)] < ¥(h) (N=1,2,...)

N—oo

and (h) is u-integrable over the set A € S, then the same holds for p(h), pn(h) (N =
1,2,...) and

iim_ [ en(t€) = [ wmeaa).
A A

N—oo

Proor. It is sufficient to consider the case when ¢(h) =0, pn(h) >0 (N =1,2,...).
Let £ be a positive number and Ay the following set:

Ay ={h:he A, on(h) > <.

Thus we obtain

[entien = [ ovime@n+ [ entmea)
(2.42) 4 A Ay

< [ $(h)E(dA) +2£(A).

AN

Using Theorem 2.4 of the present paper and Theorem 4.3 of [18], we conclude

lim en(h)E(dA) = 0.
A

N—oo

Hence our assertion follows. O

IITI. SOME PROPERTIES OF THE INDEFINITE INTEGRAL

§ 1. Derivation of a completely additive set function

Let us suppose that the function ¢(h) is integrable over all sets of & with respect to the
completely additive set function £(A) and denote by 7 the indefinite integral:

(3.1) n(A) = /A SEAA)  (AES).

First we prove that the function ¢(h) is uniquely determined by the set functions &
and 7 except at most on a 0-set of the set function &. This is expressed by
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THEOREM 3.1. Let p1(h) and po(h) be two measurable functions integrable over all
sets A € S with respect to the set function & and suppose that for every A € S we have

(3.2) A%Mﬁ@ﬁzAmmwwm

Then there exists a set I such that H — I is a 0-set relative to the set function & and

Proor. Let us consider the function ¥ (h) = ¢1(h) — p2(h). According to (3.2), for
every A € § we have

(3.3) A¢WﬂM%ﬂ-

The fulfilment of this relation obviously does not depend on the concrete representation of
the random variables £(A) (A € §), or more precisely, it must hold also for other stochastic
set functions defined on the elements of & whenever the so-called finite-dimensional dis-

tributions, i.e. the distributions of the vectors (£(A1),...,&(A)) (A1 € S,..., A, €8)

for the different set functions remain unchanged.

Let us imagine the sample space, where the random variables £(A) (A € S) are defined,
in two exemplars and denote them by €2y and {2, respectively. We shall consider the
product space

Q=0 X Qo = {(w1, wa)} (wi € Qy, wy € Q)

with the product probability measure. Let

§i(A) = &1 (w1, w2), A) = E(w1, A),

§2(A) = &a(wrs wa), A) = E(wa, A).
If Ay,..., A, and By,..., B, are arbitrary systems of sets of §, then the vectors

(A, &lAn))s (&(B1), - &2(Bn))

are independent. Hence the set function
(3.5) §(A) = &i(A) — &(4) (AeS)

is completely additive and every random variable &5(A) (A € 8) has a (relative to the
point 0) symmetric probability distribution. We know furthermore that

(3.4)

(3.6) [ oman) = [ v - [ e =o-o=o.

If Apn is the set of those h’s for which

1

(3.7) S <BmISN (N2,
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then obviously, Axy C An41 (N=1,2,...).
Let {y,gn)} be an infinitely fine dividing point double sequence and {Hén)} the sequence
of subdivisions determined by 1 (h) and {y,gn)} For a fixed N we have

(3.8) S e (ANH,E”)) ~ 0
k

if n — oo. Thus the sum in (3.8) satisfies the weak law of large numbers (cf. [7], § 22,
Definition 3), hence (cf. [7], § 22, Remark to the Theorem)

2
(6 (avir”))
(3.9) li_>m 5
Taking into account the definition of the set Ay, it follows that

0= lim (y’(ﬂn)&’ (ANHfgn)))z .
S 1+ (y,(f)f:a (ANH ,5”)))

(3.10)

> 1 im Sm (53 (ANHIEH)))Z
(o ()]

Applying again the necessary and sufficient condition of the weak law of large numbers
we get

(3.11) St (avhM) =0
k

if n — co. But for every n (3.11) equals £5(An), hence {5(An) = 0.
Let L denote the set where ¢ (h) # 0. It follows from the precedings that

(3.12) §s(L) = Nll_f>noo Es(An).
Now suppose that B € LS. Since by (3.12)
(3.13) &(B) +&(L - B) =0,

further £&3(B) and &5(L — B) are independent and depend on symmetric distributions (with
respect to the point 0), we obtain that £3(B) = 0. On the other hand, & (B) and &;(B)
are also independent and &53(B) = &1(B) — &(B), hence & (B) = const.

Now we return to our original set function &. As £(B) and & (B) depend on the same
probability distribution, we conclude that there is a completely additive number-valued
set function u defined on the o-algebra LS such that

(3.14) &(B) = p(B) for Bc LS.
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Since
(3.15) [ wtntan) = [ v =0 (aeLs).

the Radon—Nikodym theorem implies the existence of a set I € LS such that L — I'is a
0-set with regard to g (or what is the same, to &) and

(3.16) b(hy=0 if hel.

This set I fulfils the requirements of our theorem. O

We shall call the function ¢(h) the derivative of the completely additive set function 5
relative to the completely additive set function & and denote it by

(3.17) o(h) = j—g.

We may call also the set function 7 absolutely continuous relative to the set function .
In the following § we formulate the chain rule for the derivation of stochastic set functions
which is the generalization of the classical Radon—Nikodym theorem.

§ 2. The chain rule for the derivation of completely additive
stochastic set functions.

In this section we prove the following

THEOREM 3.2. Let &, n, ¢ be completely additive stochastic set functions defined on
the o-ring S. Suppose that there exist measurable functions ¢(h) and ¥ (h) such that for
every A€ S

(3.18) ¢(4) = /A B(RYp(A),  n(A) = /A S(R)E(A).

In this case @(h) 1 (h) is integrable over all sets of S relative to the completely additive
set function £ and

(3.19) )= [ ememelan

for every A € §. By other words: the derivative of { relative to & exists and
d¢ _ d¢dp

(3.20) dE ~ dnde’

ProoF. Let us suppose first that ¢(h)¥(h) is a bounded function. We choose an

infinitely fine dividing point double sequence {y,gn)} and denote by {Hén)} the sequence
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of subdivisions determined by v (h) and {y,gn)} Let us define the sequences of functions
P (h), en(h) as follows:
o) =yl it heH™  (k=0,£1,42,...;n=1,2,...),
en(h) = o(h)a(h)  (n=1,2,...).

Our assumptions imply

(3.21) S (AH) = ¢(A).
k

On the other hand,

> (AH’EH)) =>_u” /AH(") p(MEEAA) =3 /AH(") . p(h)E(dA)
k F K g

(3.22) g
=3 [ P = [ eatioian,

A

Relations (3.21) and (3.22) together imply
323 €)= [ eleihea)

Now we return to the general case. First we prove that the function ¢(h)y(h) is
integrable over all measurable sets relative to the completely additive set function . For
this purpose we consider a dividing point sequence {y;} with the corresponding sequence
of sets:

Hiy=A{h : yr <o) (h) < yps1} (k=0,£1,42,...).

According to what has been said above concerning the bounded functions, it follows that

C(CHy) = / PR (R)E(A),

CH;,

where C' is an arbitrary but fixed element of the o-ring &.

Since ( is a completely additive stochastic set function, the series

k=—c0

consequently also the series

3 /O el

k=—c0

converges with probability 1 regardless of the order of summation.
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On the other hand, the relation

implies that
B2 [ ememeda) = [ (p)uih) - p)€dA) + e (CH).
CH;, CHy
If gi(t) denotes the characteristic function of the first term on the right-hand side, then
by Theorem 1.4 we have
(3.25) 11— gelt)] < W(6t,CHy)
where W is the measure defined by (1.4) with respect to the set function & and ¢ =
supy(Yr+1 — yx). 1t follows from (3.25) that

o0 o0

DTl —gel < D W(St,CH) = W(6t,C) < oo,

k:—oo k:—OO
Thus the series

k:z_:oo /ch ((h) (k) = yr)€(dA)

converges with probability 1 regardless of the order of summation. Taking (3.24) into
account we conclude that the series

o0

Y wé(CHy)

k=—c0

does also which implies the integrability of ¢(h)y(h) relative to the set function £ on the
set C'. Since ' was arbitrary, our assertion holds.

Now let Ay be the following set:
Anv={h : he A, —N < ¢(h)¥(h) < N}.

Since the integral of (k)1 (h) coincides with the corresponding value of ¢ on every set
where @(h)y(h) is bounded, it follows that

(3.26) C(An) = /A () (h)E(dA),

If N — oo, then the monotonous sequence Ay converges to A. Moreover, since ¢ and the
indefinite integral of the function ¢(h)1(h) are completely additive set functions, (3.26)
implies that

(327)  CA) = lim ((Ax) = lim [ p(R)i(h)EdA) = / () (dA).

— 00 Ay

Thus Theorem 3.2 is proved. (|
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REMARK. The classical Radon—Nikodym theorem cannot be generalized word for word
to our integral. E.g., let H be the interval [0, 1] and S the family of the Lebesgue measur-
able sets. If £(A) and n(A) are two completely additive set functions with the characteristic
functions

S

im(A)t—m(A4)L

e z and e ,

respectively, where m(A) is the Lebesgue measure of A, then the relation £(A) = 0 implies
that 77(A) = 0. Nevertheless, the relation

n(A) = /A p(MEMA) (A€ S)

can be fulfilled for no function ¢(h).

In fact, as it is easy to see, the characteristic function of n(A) equals

o {it [ eimian) -5 [ iman}.

For every A € § this must be identical with the function of ¢

e { =S}

which is impossible.

IV. SOME THEOREMS CONCERNING THE EXPECTATIONS
AND DISPERSIONS

§ 1. The expectations and dispersions of a completely addi-
tive set function

If £(A) is an additive set function defined on a ring of sets R and for every A € R the
expectation

(4.1) M(A) = M(£(A))

exists, then M (A) (A € R) is an additive number-valued set function. The same holds for
the variances

(4.2) D*(A) = D*(£(4))

if they exist. The complete additiveness of the set functions (4.1) and (4.2) holds also if
&(A) is a completely additive set function. This is expressed by
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THEOREM 4.1. If £(A) is a completely additive set function defined on a ring R for
which the expectations M(£(A)) or the dispersions D(E(A)) (A € R) exist, then, respec-
tively, the set functions (4.1) and (4.2) are completely additive.

PrOOF. Let Aj, Ag,... be a sequence of disjoint sets of R with A =377 A, € R.
According to a theorem of DooB (cf. [5], p. 339, Theorem 5.2),

M(£(A)) = M({(AR))
k=1
whence
(4.3) M(A) =" M(Ay).
k=1

In order to simplify the proof of our assertion relative to the dispersions we suppose
that M (B) = 0 for every B € R. By the above-mentioned theorem of DooB we have also

lim M (5(A) —if(Ak)) = 0.
k=1

Since
n

§(A) = Y &(AR) = E(Buga),

k=1
where B, =) ;. Ay, we have
(4.4) lim D*(By1) = lim D?(¢(By1)) = 0.
On the other hand,
(4.5 D¥(A) = 3" DX(A) + DA (Buy)
k=1
whence the theorem follows. [l

REMARK. If&(A) (A € R) is a completely additive set function and for every A € S
the dispersion D?(A) = D?(&(A)) ewists, further the completely additive number-valued
set functions (4.1) and (4.2) can be extended to S(R), then {(A) can also be extended to
S(R) and

(4.6) D*(§*(B)) = D™*(B),  M(§(B))=M*(B)  (Be€S(R)),

where £, D*? and M* denote the extended set functions corresponding to &, D? and M,
respectively.

ProoF. According to Theorem 3.11 of [18], the completely additive set function £(A) —
M(A) (A € R) can be extended to S(R). If M denotes the family of those sets B for
which £*(B) has a finite dispersion and (4.6) holds, then from the well-known theorems
concerning the convergence of series of independent random variables it follows that 91 is
a monotone class of sets (cf. [8], p. 27). Since R C M, we conclude that M = S(R) (cf.
[8] p. 27, Theorem B). O
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§ 2. The expectations and dispersions of the integral (1.3)

In general, the existence of the expectations M(£(A)) (A € S) (and dispersions D?(£(A))
(A € 8), resp.) does not imply the existence of the corresponding quantities of the integral
(1.3). In order to prove such a theorem we have to make further assumptions. We shall
prove two theorems in this direction. In the first one we do not strive to formulate a very
general assertion.

THEOREM 4.2. Let £(A) (A € S) be a completely additive set function. Suppose that
for every B € S the expectation M (B) = M(&(B)) exists and there is a random variable
¢ such that M(|C]) < oo and

PERIEYe

k=1
where Ay, ..., A, is an arbitrary system of disjoint sets of S. In this case for every bounded
and measurable function ¢(h) the expectations of the random variables
(1.7 nB) = [ )
exist and
(1.9 MO(B) = [ e (da),

where the integral is taken in the sense of Radon.

Proor. Let {y,gn)} be an infinitely fine dividing point double sequence and K the
upper bound of the values of |p(h)|. Consider the series

m= Y o ().

k=—c0

where {Hén)} is the sequence of subdivisions determined by {y,gn)} and ¢(h). Since

m= [ e i o

moreover
(4.9) il < 30 o] Je (B < w¢
k=—0o0

the bounded convergence theorem of LEBESGUE (cf. [8], § 26, Theorem 4) implies that
(4.10) lim M(77,) = M(n(B)).
In view of (4.9) we have also
(4.11) M(n) = > "M (¢ (Br")) = 3 yim (BHM) .

k=—0o0 k=—0o0
Comparing (4.10) and (4.11), the theorem follows. O
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THEOREM 4.3. Let £(A) (A € S) be a completely additive set function. Suppose that
Jor every B € S the dispersion D*(B) = D?(&(B)) eaists and ¢(h) is such a measurable
function that the integrals

[emrany. [ S
B B
exist. In this case the integral (4.7), M(n(B)) and D*(n(B)) also exist, (4.8) holds and

(4.12) DX(y(B)) = /B F(h)DX(dA).

Proor. Let {y,gn)} be an infinitely fine dividing point double sequence and {Hén)}
the sequence of subdivisions determined by {y,gn)} and the function ¢(h). We show that
the sequence

6= Yoo (B
k
converges in mean. In fact, if {z;} is the union of the dividing point sequences {ylgn)},

{y,gm)} (not indicating the dependence on n and m) and {Ly} is the corresponding se-
quence of subdivisions, then

(413) G-Cu=> Y (W -zm)eary =Y 3 (u - =) ALy,

Bojin,caf Bojin,cH{™

If 5,(;) = y,gn) — z;, then, since the double sequence {y,gn)} is infinitely fine, it follows

(4.14) 50 =sup  max 5,(;;) —0 if  n—oo.
ko j:L;CH™
Formulae (4.13) and (4.14) imply
D2((, = () < 2 (") _ ;) D2(¢(AL;
(Cn Cm) < Z Y 23 (5( ]))
k J ngHl(gn)

(4.15) +23° Y (WY -z) DAeaLy)

K j:ngHl(em)

<462 DE(ALy)) = 46 DA(E(A) -0 i myn— oo

J
and it is easy to see that M((, — () — 0 for m,n — co. We know that

(4.16) ¢=n(B) if  n— oo,
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hence

(4.17)

Using the fact that the random variables ¢ (BH,gn)) (k=0,£1,42,...) are independent,
we get

2
(4.18) D(¢.) = M (¢2) - M2(¢) = Y (u”) 0* (BH)
k
whence (4.11) follows immediately. (4.18) is equivalent to the first line of (4.17). a

A similar formula could be deduced for the third central moments. In fact, the third
central moment of a sum of independent random variables is equal to the sum of the single
third central moments. As this question is not a very significant one, we do not enter into
the details.

V. The Characteristic Functional

Let B denote the space of those measurable functions ¢(h) (h € H) which are almost
everywhere bounded relative to the completely additive set function £(A4) (A € S). If we
assign to every ¢ € B the norm

llp]] = vrai max o(h),
heH

then B becomes a Banach space.

We consider the functional
(5.1) L) =M [exi [ o(heiaa]

which will be called the characteristic functional of the completely additive set function &.

The notion of characteristic functional as a generalization of the Fourier integral was
introduced by A. N. KoLMoGoRoV [15] in the year 1935. For probabilistic applications
it was introduced by L. LE Cam [3] in 1947 for stochastic processes and in the same
year by S. BocHNER [1] for random additive set functions. The characteristic functional
(5.1) is neither a special case nor a generalization of the notions introduced by the above-
mentioned authors. If the realizations of £(A), i.e. the number-valued set functions £(w, A)
for fixed w’s are completely additive, then the functional (5.1) becomes a special case of
the characteristic functional of KoLMOGOROV.

If the functional (5.1) is known, then we know also the probability situations concerning
the random variables £(A) (A € §). This is expresses more precisely by
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THEOREM 5.1. The characteristic functional L(p) determines completely the probabil-
ity measure on the smallest o-ring relative to which the random variables £(A) (A € S)
are measurable.

ProoF. Let Ay,..., A, be asystem of disjoint sets of S. We show that L(¢) determines
the joint characteristic function of the random variables £(Ay),...,&(A,). Let us define
the functions

tp if h € Ay,
i (h) = { 0 otherwise (k=1,...n).

Obviously,

(5.2) Mlexpi(t1&(A1) + -+ t.8(A,))]| =M [expi/H Gty (R)E(AA) |,

where
(5.3) Gtritn(h) = 1, (h).
k=1

If the variables ¢1,...,t, run over the set of the real numbers, then L(py, . 1, (h)) gives
the characteristic function of the random vector (£(A41),...,£(A4,)). These so-called finite-
dimensional distributions determine the probability measure on the o-ring in question. [

If for every ¢ € B the moment

(5.4) Lt =M ([ sinietan)) |

exists, then we call the functional (5.4) the n-th moment of the completely additive set
function £(A) (A € §). By Taylor expansion we get from (5.1)

o La()

(5.5) L) =1+ili(¢)+3 ne1Lo-i(9) | L0(9)

ST o TR A

)

Now we describe the characteristic functional of some simple type of stochastic com-
pletely additive set functions.

()

where

(5.6) ()= M (\ | e

and R, () is such a functional that |R,(¢)| < 1.

1. Poisson type. In this case
(5.7) [t 4) = SDED (s es),

where A(A) is a finite measure on the o-ring S. It is easy to see that

(5.8) L(p) = exp { /H (er(h) — 1)/\(dA)}.
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We mention that every measurable function ¢(h) (bounded and not bounded equally)
is integrable with respect to a completely additive set function of Poisson type. This
is plausible because essentially it is composed of a set of purely discontinuous measures
(which are the realizations) with finite numbers of discontinuity points. In this case the
realizations are completely additive set functions but it is not difficult to prove the general
assertion.

In fact, the convergence with probability 1 of the series
e (am”
c(ant)
implies that for a fixed n & (AH,gn)) # 0 for at most a finite number of k’s; hence
Sl ()
k

also converges with probability 1. Here {y,gn)} and {Hén)} have the usual meaning.
2. The compound Poisson type. In this case
(5.9) £t 4) = exp {Z Cu(A) (e 1>} (Aes),
k=1

where A1, Ag, ... is an additive semi-group of real numbers, further Cx(A) (k =1,2,...)
and

(5.10) C(A) = iCk(A)
k=1

are finite measures on the o-ring S.

The characteristic functional has the form
(5.11) L(g) = exp {Z/ (eiMelh) _ 1)Ck(dA)}.
k=1 H

Such as in 1 we can prove that every measurable function ¢(h) is integrable with respect
to a compound stochastic set function too.

3. The Laplace—Gauss type. In this case

) 2
(5.12) F(t, A) = M-8 ) e gy
where M(A) (A € §) is a number-valued completely additive set function and D?*(A)
(A € §) is a finite measure.
The characteristic functional has the form

t?

(5.13) L<so>=exp{it [ e -5 [ so2<h>D2<dA>},
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where the integrals on the right-hand side in the exponent are Radon and Lebesgue inte-
grals, respectively. Formula (5.13) can be deduced immediately from Theorem 4.3 too.

4. The Cauchy type. A completely additive set function £(A) (A € S) will be called of
Cauchy type if

(5.14) ft, A) = W=D (4 ¢ 8,

where C1(A) (A € §) is a number-valued completely additive set function and Cy(A)
(A € §) is a finite measure.

The characteristic functional has the following form:

(5.15) L(g) = exp { | emeran - [ |so<h>|cz<dA>},

where the integrals on the right-hand side in the exponent are Radon and Lebesgue inte-
grals, respectively.

It would be possible to define the functional L(y) in a much more extensive space of
the functions ¢, e.g. in the space of all functions which are integrable over the set H.
This latter space is, however, not a Banach space. On the other hand, Theorem 5.1 shows
that our space B is extensive enough to characterize the probabilistic situation concerning
a completely additive stochastic set function.
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