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Introduction
Let &1,&,... denote a sequence of independent random variables. In the present paper
two theorems concerning the convergence (regardless of the order of summation) of the
series
[e.e]
D (1)
k=1
are proved.

Throughout the paper I denote by J the set of all finite subsets and by S the set of
all subsets of the set of natural numbers. Let

(A) =) & (2)

keA

provided the series on the right converges with probability 1 regardless of the order of
summation. Let F(z, A) denote the distribution function and f(t¢, A) the characteristic
function of the random variable £(A).

Let 0 < A < 1, and let £ denote a random variable. We say that Q(\) is a A-quantile
of £if P(€ < Q(N)) > Xand P(§ > Q(A)) > 1 — A. An arbitrary A-quantile of the random
variable £(A) will be denoted by Q(A, A).

In the literature many necessary and sufficient conditions are given concerning the
convergence of the series (1). These conditions are expressed generally in terms of mean
values, dispersions and characteristic functions. In what follows such conditions are given
in terms of the compactness of certain sets of distribution functions and of the quantiles.



§ 1. Preliminary lemmas

In this § three lemmas are proved. The first two contain some assertions relative to the
set of random variables {{,, z € Z}, where Z is an arbitrary given set. Let F'(x, z) denote
the distribution function and f(t, z) the characteristic function of the random variable &,.

P. LEVI has introduced the notion of distance between two distribution functions. The
distance L(F}, Fy) between Fj(x) and Fs(x) is defined as the lower bound of the values h,
for which

Fi(x —h) —h < Fy(x) < Fi(x+h)+ h. (3)

It is known that the axioms of the metric space are fulfilled relative to the distance L:

a) L(Fy,Fy) =0 if and only if Fi(z) = Fa(z);
b) L(Fl,FQ) = L(FQ,Fl);

C) L(Fl,Fg) S L(Fl,FQ) + L(FQ,Fg).

Let us consider the set F of all one dimensional distribution functions. From what has
been said it follows that F is a metric space relative to the distance L. According to (3), F
is bounded and by Theorem 2 of [2], p. 42. it is also complete. In Theorem 1 of [2], p. 38.
it is proved, that the relation L(F),,,F) — 0 holds if and only if F,,(x) — F(x) at every
continuity point of F(z). From this fact it is easy to see that the space F is not compact.
For instance sequences of distribution functions can be given, which converge in every
point to 0. The first two lemmas give answers to the question: under what conditions is
a subset ' = {F(x,2), z € Z} of the space F compact?

To fixed values of A, and z there corresponds generally not only one Q(A, z), therefore
the set {Q(A, z), z € Z} is generally not uniquely determined.

LEMMA 1 If to every X, for which 0 < X\ < 1, the quantiles Q(\,z) can be chosen in
such a way that |Q(A, z)| < K(X) for z € Z, where K(\) is independent of z, then the set
F' is compact.

Conversely, if the set F' is compact, then to every \ for which 0 < X\ < 1, there corre-
sponds a K (X) such that |Q(X, z)| < K(X) for every A-quantile Q(\, z) of the variable &,.

PROOF OF THE FIRST PART. Let ¢ > 0, 0 < A < ¢ and z < —K(\). From our
hypothesis it follows that

F(r,z) < F(=K(X),2) = P(§: < —K(}) < P(§. <Q(X,2)) <A <e.
On the other hand if A > 1 — ¢ and « > K (), then we obtain
F(z,z) > F(K(\),z) =P, < K(\) > P(£, <Q(\,2)) > A>1—¢.

It follows that
F(z,z) - 0ifz — —00, F(z,z) = 1if x — 400



uniformly in z. According to HELLY’s theorem we can choose a sequence F'(x, zj) which
converges to a non-decreasing, left continuous function F'(x) at every point of continuity
of the latter. By the preceding relation F'(z) must be a distribution function.

PROOF OF THE SECOND PART. Obviously the relations
F(z,z) - 0ifx — —oc0, F(z,2) = 1if 2z — +o0
hold uniformly in z. If 0 < € < 1, then there is a positive number K (¢) such that
K
F(z,z) <e if z<— ;5),

K
1—F(z,2) <e if xZ%.

In this case
—K(e) < Q(e,2) < K(e) for z € Z,

as was to be proved. O

LEMMA 2 The set F' is compact if and only if the characteristic functions f(t,z),
z € Z are equicontinuous at t =0, i.e. if to every € > 0 there corresponds a § such that

1— f(t,2)| <e if [t| <6 (4)

PROOF OF THE FIRST PART. Suppose that for a fixed pair €, d of positive numbers the
relation (4) holds. In view of

sinzx 1
1-— — if >1
> 10 if |z|>1,
we obtain
1 4 1 00 4 ”
— 1— f(¢t dt > — 1 —e")dtdF
e g5 [ n-fealaez g [ [ a-dmaare.:)
> sin dx sin 0z 1 1
— - > - > -
/Oo <1 5 ) dF(z,z) > /x>§ (1 5 > dF(z,z) > 10P (|§Z| > 5>,
whence

1
F(—z,2)+1—F(z,2) <10e if z > 5

To every ¢ there corresponds such a §, therefore if F(z, 2x) is a sequence of F, klim F(x,z)
—00

= F(z) at every point of continuity of the latter, where F'(z) is a left continuous function,
then F'(z) must be a distribution function.

PROOF OF THE SECOND PART. If € > 0, then there is a number K such that

P(lg:] > K) <

= M



€
Let 6 = K Then for |t| < § we have
11— f(t,2)] = ‘/ (1 —e"™)dF(z, 2)
g/ 11— ¢t dF(z, )

—00

< |t 2| dF(z, 2) + 2P(€.| > K) < |t|K + = < <. 0
o] <K 2

LEMMA 3 Let 1,12, ... denote a sequence of random variables for which
P(lim nn:oo) =1
n—oo
Then if 0 < A < 1 and Q(\,n) is a A\-quantile of n,, we have

lim Q(\,n) = oco.

Proor. Let Q,,,, denote the event that

Ny > m.
Since

Hm P(Qn) = 1,

n—oo
there exists a number N such that if n > N,
P(Qmn) >1 - A

But in this case

Q(A\,n) >m.
As m can be chosen arbitrarily, this implies the assertion of Lemma 3. g
COROLLARY If the random variables £1,&s, ... are non negative and there exists a num-

ber A (0 < X\ < 1) for which
QAA) <K if Aed,

where K is a constant, then the series (1) converges with probability 1.

PROOF. By the zero-one law (see [3], p. 60.) either

P (ng < oo> =0,
k=1

or

o0
P (Z 6 < oo> 1
k=1
But now the first case is impossible because it would imply that for every A

lim QA {1,2,...,n}) = occ.



§ 2. Necessary and sufficient conditions of the convergence
of the series (1)

In this § two theorems are proved.

THEOREM 1 If the set {F(z,A), A € J} is compact, the series (1) converges with
probability 1 regardless of the order of summation.

Conversely, if the series (1) converges with probability 1 regardless of the order of
summation, then the set {F(x,A), A € S} is compact.

PROOF OF THE FIRST PART. Let us consider the sequence

Fa, {1}), F(z, {1,2}), ..., F(x,{1,2,...,n}),....

Since the set {F(x,A), A € J} is compact, there is an increasing subsequence ny of the
natural numbers with the property that the sequence

F(x,{l,?, e ,nk})

converges to a distribution function F'(x) at every point of continuity of the latter. It
follows that if

[e.9]

fo= [ ar)

— 00

then
ng
li t, {l}) = f(¢).
kggoll:[lf( A = ()
Since the sequence

[Tl
=1

is non-increasing, we obtain that

[TIremhi=1r@l.
=1

Since f(t) is a characteristic function, there is a number T° > 0 such that |f(¢)| > 0 if
|t| <T. According to Theorems 2.7 and 2.6 of [1], Chapter III, there is a sequence c1, ca, . . .
of real numbers such that the series

D (& —cx)

k=1

converges with probability 1 regardless of the order of summation. Therefore it is sufficient

to prove that
o0
Z lex| < oo.
k=1

5



Let us suppose that this is not true. In this case there exists a rearrangement c;,, ¢;,, . .. of
the sequence ci, ¢a, . . ., for which either > 77, ¢;, = 400 or > 72, ¢, = —oc. It suffices to
consider the first case as the second can be reduced to the first by considering the variables
Cr = —&g. It follows that

n

b= (G —cp)+ Y ey —ooifn— oo (5)
k=1

k=1 k=1
Let A,, = {i1,i2,...,in}. By (5) and Lemma 3 we obtain that for every fixed A (0 < A < 1)
QN Ap) — 0 if n — oo.

But this contradicts our supposition that the set {F(z, A), A € J} is compact because
by Lemma 1 to every A (0 < A < 1) there corresponds a number K (\) for which

KQ(ArA)‘f;}((A)v AeJ.

PROOF OF THE SECOND PART. If the series (1) converges with probability 1 regardless
of the order of summation then the series

Y11= f(t{k})]
k=1

converges uniformly in every finite ¢-interval (See [1], Chapter III, Theorem 2.7). Using
the inequality
1 —z120. .. 20| < |1 — 21|+ |1 — 22| + -+ |1 — 2]

valid for every sequence z1,z29,...,2, of complex numbers with the property |z| < 1,
|z2| <1,...,]2| <1, we obtain that

1= re )
=1

<Y = ft )l
=1

Let us put A = {j1,jo,...}. If r — 0o, we obtain the following inequality:
1= fA) <Y = FEARDI <D 11— AR (6)
k=1 k=1

The series on the right of (6) is uniformly convergent, hence the continuity of the terms
implies the continuity of the sum. Since the relation (6) holds for every A € S, the
characteristic functions f(t,A), A € S, are equicontinuous at ¢t = 0, and thus by Lemma 2
the set {F(x,A), A € S} is compact, as it was to be proved. O

COROLLARY If for every A (0 < X < 1) the quantiles Q(\, A) (A € J) can be chosen in
such a way that they are bounded, then the series (1) converges with probability 1 regardless
of the order of summation.

Conversely, if the series (1) converges with probability 1 regardless of the order of
summation, then to every A (0 < A < 1) there is a K(X\) such that

QN A <K(), AeS.



PROOF. The assertion is an immediate consequence for Lemma 1 and Theorem 1.

In the above corollary to Theorem 1 the condition implying the convergence of the
series (1) can be essentially reduced. This fact is contained in the following theorem.

THEOREM 2 Let us suppose that there can be found two numbers A1, Ao for which
0 < A\ < A2 <1, such that the quantiles Q(A1, A) and Q(A2, A) can be chosen in such a
manner, that the sets Q1 = {Q(M,A), A€ T} and Q2 = {Q(X\2, A), A € J} are bounded.
Then the series (1) converges with probability 1 regardless of the order of summation.

Proor. Let K be such a number for which by choosing appropriately the values
Q(A1,A) and Q(Ae, A), we have

|Q()‘17A)| S K: Q()‘luA) € Ql

and
|Q()‘27A)| S Ku Q()‘QuA) € QQ
for A € J. It follows that

sup P(|¢(A)] > K) < sup P(§(A) < —K)+sup P(§(A) > K) < A\ +1—-X <1
AeJg AeJ AeJg

It follows simply that
inf P(|¢(A)] < K)=p>0.

AeJ
Thus
- n
nlgroloP<Z§k §K> > p > 0.
k=1
The last inequality, together with Theorems 2.9 and 2.6 of [1], Chapter III, implies the
existence of constants ¢y, cs, ... which have the property that the series
[e.e]
> (& —cx)

k=1

converges with probability 1 regardless of the order of summation. Applying the same
reasoning as in the proof of Theorem 1 it can be shown that

o0
> e < oo,
k=1

because in the contrary case all the sets {Q(\, A), A € J}, 0 < A < 1 were unbounded.
Taking into account the equality

n n

Zfik = Z(fik —¢iy,) + Zcz’k,
k=1

k=1 k=1

we obtain that the series (1) converges with probability 1 regardless of the order of sum-
mation. Hence Theorem 2 is proved. O



COROLLARY Let us suppose that the random variables & are symmetrically distributed.
1
Then if there exists \ # 3 such that with a convenient choice of the quantiles Q(\, A), the

set {Q, (N, A), A€ J} is bounded, the series (1) converges with probability 1 regardless of
the order of summation.

1
PROOF. The assertion follows from the fact that in this case 0 is a Q—quantile of £(A)
for A € J, hence the conditions of Theorem 2 are fulfilled. O

REMARK It is easy to see that the boundedness of only one set of the type {Q, (A, A),
A € J} does not imply the convergence of the series (1). For instance if the random
variables & are equally and symmetrically distributed, moreover P(§; = 0) < 1, then the

1
series (1) diverges for every ordering of the terms, but 0 is a Q—quantile of £(A) for A e J.

Finally I mention a problem. Let us suppose that the series (1) converges with prob-
ability 1 regardless of the order of summation. Let Ay, Ao, ... be a sequence of sets of S
such that if B, = A, + A1 + -+ -, then [[>7, B,, = 0. By the inequality (6) it follows
that

E(Ap) =0, if k— oo.

Does the ordinary limit of the sequence £(Ay) exist with probability 17 If the series (1)
converges absolutely, then this is true, but the series (1) may be convergent by every
ordering of the terms and not absolutely convergent. Such series is the following:

o0 .
Z sgn sin 2wz
n

, 0<z<1.

n=1
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