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Abstract

Results obtained in the last few years are summarized in connection with
logarithmic concave measures and related topics. A new and simple proof is
presented concerning the basic theorem of logarithmic concave measures stating
that if the probability measure P in R™ is generated by a logarithmic concave
density, A, B are convex subsets of R™ and 0 < A < 1, then P(AA+(1-A)B) >
[P(A)MP(B)]'~*. The most important convolution theorems belonging to
the subject are collected. The notion of convex measures and an important
theorem concerning these are formulated. Special distributions are analysed.
Properties of special constraint and objective functions which are derived from
the theorems presented in the paper are described.

1 Introduction

Optimizing a function subject to constraints where at least one of the constraints
is a probabilistic inequality, or maximizing a probability subject to inequality con-
straints, are important stochastic programming problems with many practical ap-
plications. When formulating a mathematical programming model belonging to one
of the above-mentioned categories, it is very important to clarify, from the point of
view of the numerical solution of the model, whether it is a convex problem or one of
a related type. The research work of the past few years aimed at producing efficient
analytic tools for handling sophisticated functions in these models has lead to the
introduction of new mathematical concepts and the proof of some basic theorems
which will probably be useful not only in stochastic programming but in other fields
of mathematics. The purpose of the present paper is to summarize these results
together with earlier results with which they are mathematically interconnected.



We restrict ourselves to the case of absolutely continuous probability distributions
in the space R™. Proofs will be omitted except for special cases. One exception is
the proof of Theorem 2, whose original proof is sophisticated. Here we give a simple
proof which should prove useful for classroom presentation.

In Section 2 we deal with logarithmic concave measures and prove the basic
theorem. Section 3 is devoted to investigations concerning convolutions of functions
defined in R™. In Section 4 convex measures are considered. Special absolute and
conditional distributions will be analysed in Section 6. Finally, in Section 7 some
special functions appearing in stochastic programming models will be investigated.

2 Logarithmic Concave Measures

The notion of a logarithmic concave measure was introduced in [19], [20]. A measure
P defined on the Borel-measurable subsets of R” is said to be logarithmic concave
if for every pair A, B of convex subsets of R™ and every 0 < A < 1 we have

PAA+ (1= X0)B) > [P(A)[P(B)]'

Here the symbol 4+ means Minkowski addition of sets, i.e. C'+ D ={c+d|c €
C, d € D}, and the constant multiple of a set is defined as kC' = {kc | ¢ € C} for
every fixed real number k.

A non-negative point function given by h(z), x € R™, is said to be logarithmic
concave if for every pair zq, 29 € R™ and every 0 < A < 1 we have the inequality

B+ (1= A)aa) > [h(e)] Th(e2)]
If P is a logarithmic concave measure in R™, then the function of the variable

x € R™ given by
P(A+ z)

is logarithmic concave. In particular, if A is the set A = {¢ | t < 0}, then we have
that the function defined by

Fle) = P({t]t < 2}),
i.e. the probability distribution function, is logarithmic concave in R™.
In his classical work [4] Brunn proved the following theorem.

THEOREM 1 (Brunn—Minkowski Inequality). If A and B are non-empty convex
subsets of R™ and 0 < A < 1, then the following inequality holds:

(2.1) pM A+ (1= N)B) > At/ ™ (A) + (1= N/ ™(B),

where i denotes the Lebesgue measure.



By the arithmetic-geometric means inequality it readily follows from (2.1) that
PAA+ (1= X)B) > [u(A) [k(B)]'
so that Lebesgue measure is logarithmic concave.

If P is a logarithmic concave measure in R™ and ' is a fixed convex subset of
R™, then the measure P(ANC) defined on the measurable subsets A of R™, is also
logarithmic concave. In fact if A, B are convex subsets of R™ and 0 < A < 1, then
we have that

M4+ (1-=NBINC D>AANC]+ (1 =N[BnC]
whence the required inequality follows. Thus we see that a uniform probability
distribution over a convex set is a logarithmic concave probability measure.

Theorem 2 expresses the most important fact in connection with logarithmic
concave measures.

THEOREM 2. Let P be a probability measure in R™ generated by a probability density
of the form
fla)=ePW, zeR7,

where @ is a convex function (i.e., f is a logarithmic concave point function). Then
P is a logarithmic concave probability measure.

Remark. The original proof of this theorem in [19] and [20] is based on the inequality
of Brunn—-Minkowski and the integral inequality

(2.2 |t [ | dw] " [ | sw dy] "

where

(2.3) r(t)=sup  f(z)g(y), -—co<i< o0

(z+y)/2=t
and f, g are non-negative Borel-measurable functions. Leindler [15] generalized
the inequality (2.2) to the case using A, 1 — A in place of 1/2, 1/2. This was
again generalized in [23] for the case of functions of m variables. Thus we have the
inequality

(2.4) /Rmr(t) di > [/mfl/A(x) dxr [/mgl/“—wx) dx]H,



and f, g are non-negative Borel-measurable functions which implies the Lebesgue-
measurability of r. (This is proved in [20] for the case of m = 1 and the same proof
can be used for m > 2. The formulation of Theorem 1 in [20] has to be corrected
in such a way that we assume f and g to be Borel-measurable and infer that r is
Lebesgue-measurable. For this corrected theorem, the proof given in [20], can be
used. Just note that on p. 306 of [20] F, ..., Eny are Borel-measurable, hence their
projections, Hy, ..., Hy, are Lebesgue-measurable.)

Inequality (2.4) gives an immediate proof for Theorem 2. The proof of the in-
equality is, however, very sophisticated. It can be established relatively easily for
the case of logarithmic concave functions f, g which will suffice for the proof of
Theorem 2 and leads to a simplification in the proof of the theorem.

We remark that if a function defined on R™ is logarithmic concave, then the set
of vectors on which the function is positive is convex. This implies that the function
is continuous in the interior of this convex set and it follows that the function is
Borel-measurable on R™. It is easy to see that when the functions f and ¢ are
logarithmic concave, the function r defined by (2.5) is also logarithmic concave and
hence is Borel-measurable.

Proof of Theorem 2. First we prove inequality (2.4) for the case of m = 1. We assume
for the moment that both f and ¢ are bounded. Let us introduce the notation

wp ) =T,  supgly) = V.
z€R yER

It follows from this that

supr(t) =UV.
teR

If at least one of the numbers U, V is equal to 0, then (2.4) holds trivially. Thus we
can assume that U > 0, V > 0.

We remark that if & is a measurable function satisfying the inequality 0 < h(z) <
1 for every z € R, then we have

(2.6) /_Z h(z) de = /01 H(z)dz,

where
H(z) = p[{z | h(z) > =}], 0<z<1.

Let 0 <2< 1,0 < A< 1, and define




We have the following relation;

(2.7) {t1r@) =23 D Ma | fl2) 223+ (1= Ny lgly) > ="

All sets participating in this relation are non-empty and they are intervals since f,
g, r are logarithmic concave. Relation (2.7) implies that

(2.8) R(z) > AF(2) + (1 - NG(2).

Integrating (2.8) on both sides between 0 and 1 and using Equation (2.6) we conclude

that
/Oo %r(t) di > A/OO [%f(w)]m dz + (1- ) /OO [%g(y)]l/(l_” dy.

This implies (2.4) by the arithmetic-geometric means inequality.
If at least one of the functions f, ¢ is unbounded, then we define the functions
_ fe) it f(z) <TG
o ={ 17 1S

=

and take limits as U — 0o, v — oo in the inequality

[ rwaz [T ap e d

—00 —oco Az+(1-N)y=t

>{/ Z[fUu)]de}A {/ Z[gv@)]”“-”dy}l_k.

This has already been established since fi7, gy are bounded logarithmic concave
functions for all U > 0, V > 0. Thus we obtain Inequality (2.4) for all logarithmic
concave functions f and g¢.

We suppose that we have already proved Inequality (2.4) for functions f, g of
at most m — 1 variables and prove it for functions of m variables. Let h(u,v) be
a logarithmic concave function of the vector variables u € R™!, v € R™2. The
logarithmic concavity of the function implies that

h(Aug + (1= Ayuzv) > [h(ur, v1)] [h(ua, v2)]'



for every uy, ug, vy, vz, 0 < A < 1, where v = Avy + (1 — A)wvg. If mgy < m — 1, then
we can apply Inequality (2.4) and obtain

/ h(Aur + (1 — Nug,v)dv > / sup [h(u1, v1)] [R(ug, v2)] = do
R™2 R™2 Avi+(1-N)ve=v

[ wtwwa T[]

This means that the integral of h(u,v) with respect to v is a logarithmic concave
function of u.

Now let f and ¢ be logarithmic concave functions of m variables and partition
the variables as @ = (21, 232), ¥ = (y1, y2) so that z1,y1 € R™, 23, y2 € R™2, where
1<mi<m-—-1,1<my <m-—1, my +mg=m. Then we can write

/ sup f(r)gly)dt
R™ Az+

(1-N)y=t

= / sup flx1, 22)g(y1, y2) dty dity
R™1+m2 Azq+(

l—k)yl =t
Azy+(1-Ayz =tz

> / sup [/ sup (@1, 22)9(y1, y2) dt1] diy
R™2 A$2+(1—A)y2:t2 R™1 Al’l-l—(l—A)yl:tl

> / sup [/ fl/A(QCh?Cz) d961]
R™2 A$2+(1—A)y2:t2 RrR™1

1—X
X[/R gl/(l_”(yhyz)dyl] dt,
my

A 1-A
z [/ Y @1, 20) day dwz] [/ g =N (1, y2) di dyz]
Rm1+m2 Rm1+m2

=[P dw]A [ e dy]H.

Thus we have proved Inequality (2.4) for logarithmic concave functions.

Let A, B be convex sets in R™ and 0 < A < 1 and define the functions f1, f3, f3
in terms of the probability density f as follows:

filz) = f(z) if =€ Aand fi(z) =0 otherwise,
folz) = f(z) if = € B and fa(x) =0 otherwise,
f3(z) = flz) if 2€ XA+ (1—-A)B and fs(z) =0 otherwise.

Since f is a logarithmic concave function, we can write

6> swp AR

/\l’-l—(l—/\)y:t
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By Inequality (2.4) this implies that

(o [ o]

Thus Theorem 2 is proved. O

In the course of the proof we also proved the following theorem, first published
in [23].

TueOREM 3. If f(2,y) is a logarithmic concave function of all variables in the vec-
tors x € R, y € R™, then
fla,y)dy
Rm

is a logarithmic concave function of the variable x.

Finally, let us make one remark in connection with logarithmic convex functions.
(A function fis logarithmic convezif 1/ f is logarithmic concave.) Let A be a convex
subset of R™ and consider the sets A + 1, A+ 22, A+ [Axr+ (1 — N)ag]. If fis
a logarithmic convex function defined on a convex subset of R”™ which contains the
above three sets, then a simple application of the Hélder inequality shows that

P(A+ Ay + (1= Nas]) < [P(A+ 2)]'[P(A+ 22)]'

3 Convolutions

Logarithmic concave functions were first investigated by Fekete [8] in 1912. He
introduced the notion of a multiple positive sequence; we may call a logarithmic
concave sequence a twice positive sequence, or, in other terms, a discrete logarithmic
concave function. The sequence {p;} is said to be logarithmic concave if

pi > (pin,piz)Y?, i=0,41,42,...
from which one can derive the inequality

k/G+k) 5/(G+k
pi > pl Rl oHn

for all positive integers j, k. Fekete proved that the convolution of two logarithmic

concave sequences is also logarithmic concave. From this one can derive the theo-

rem of Schoenberg [27] stating that if f and g are two logarithmic concave functions



defined on R, then their convolution is also logarithmic concave on R. The general-
ization of this theorem for logarithmic concave functions defined on R™ was proved
first by Davidovich, Korenblum and Hacet [7]. See also [23] where this statement
is derived from Theorem 3 of Section 2. In fact, if f(z) and ¢(y) are logarithmic
concave functions of x, y € R™, then the function

@ =y)g(y)

is logarithmic concave in R?™. Hence by Theorem 3 its integral with respect to y is
a logarithmic concave function of the remaining variable z.

Results in connection with convolutions are important in this framework because
using convolution properties we can prove theorems for functions of the type

P(A+2x) = f(t)dt, r € R™,
A+z
which is the convolution of the function f and the indicator function of the set —A.
If A is a convex set, then the indicator function of — A is logarithmic concave. Hence
the theorem that the convolution of two logarithmic concave functions in R™ is also
logarithmic concave implies that if f is a logarithmic concave function in R™, then
P(A + z) is also logarithmic concave in R”— which is an important special case
of Theorem 2. For the case of the normal distribution the logarithmic concavity of
P(A + z), where A is a convex set, was proved first by Zalgaller [33].

In 1956 Ibragimov [11] published a theorem that contains the following

THEOREM 4. Let f > 0 be a quasi-concave, and g a logarithmic concave function
defined on R. Then the convolution of these functions is quasi-concave on R.

One can give a simple counter-example showing that the corresponding statement
in m-dimensional space does not hold. Though we are not dealing with discrete
probability distributions, it is interesting to mention that Keilson and Gerber [14]
proved the discrete version of Ibragimov’s theorem in the one-dimensional case.
Ibragimov’s Theorem 4 implies

THEOREM 5. Let f > 0 be a quasi-concave function defined on R and I C R be an
interval. Then the function
f(t)dt
I+z
is a quasi-concave function of the variable x.

As noted in [9], the convolution of two univariate, unimodal distributions is not
necessarily unimodal. However, Wintner [32] proved that the convolution of two
univariate symmetric unimodal distributions is unimodal. A generalization of this
result is the following theorem, from Sherman [28].



THEOREM 6. Let us introduce the norm ||f||s for real-valued functions defined on
R™ by the equation

[£1ls = max{|[F], [[£]l1};

where

17l = sup {1£()]}, Wm:/lﬂ@Mw
zER™ Rm™

Let C' be the closed (with respect to ||-||3) convex cone generated by indicator functions
of convex symmetric sets in R™. Then for f,g € C, we have fx g € C, where

(fxg)(@)= [ [flz—1)g(t)dt.

The above theorem implies Anderson’s inequality [1] which we formulate in the
following theorem.

THEOREM 7. Let [ be a quasi-concave probability density defined on R™ satisfying
f(z) = f(—2z) and let D be a convex symmetric subset of R™. Then for everyy € R™
and 0 < XA <1 we have

(3.1) P(D + \y) = /

fyde > [ flo)da,
D4y D

Proof. We show that Theorem 6 implies Theorem 7. In fact for the indicator
function g of a symmetric convex set the inequality g(Ay) > ¢(y) holds for every
y € R™and 0 < A < 1. It follows that the same inequality holds for convex
combinations of such functions and also for functions which are uniform limits of
the latter, i.e. for all functions belonging to C'. Since

f(z)da
D+y
is the convolution of f and the indicator function of the set —D, Theorem 6 implies
that it belongs to C' hence (3.1) follows. a

4 Convex Measures in R™

Following the work in [20]; Borell developed the notion of “convex measure” in R™
and proved important theorems [3]. We mention here only the definition and one
theorem which seems to be the most important for stochastic programming. The
probability measure P defined on the (Borel) measurable subsets of R™ will be said



to be convex (of order s) if for every nonempty pair A, B of convex subsets of R
and every 0 < A < 1 we have

PAA+ (1= NB) > (AP + (1 - N[PB},

where —o0 < s < 00, s # 0. The cases s = —00, s = 400 and s = 0 are interpreted
by continuity. Thus if s = —oo, the right hand side equals min(P(A), P(B)) and
for s = 0 we obtain as a special case the notion of a logarithmic concave measure.
Convex measures of order s = —oo will be called quasi-concave. In his paper [3]
Borell proved the following result.

THEOREM 8. If f is the probability density of a continuous probability distribution
in R™ and f~1/"™ is convex in the entire space, then the probability measure

P(C) :/ f(z)da
C
defined on the (Borel) measurable subsets C' of R™ is quasi-concave.

In the next section we show that among the well known probability distribu-
tions there are some which are quasi-concave and not logarithmically concave. This
emphasizes the importance of Theorem 8.

5 Special Joint and Conditional Probability Distribu-
tions

In this section we make some general remarks concerning special probability distri-
butions. A few of them will be analysed in detail. We include a consideration of
conditional distributions, since they frequently appear in stochastic programming
models.

Let ¢ € RN and € R™ be two vector-valued random variables and suppose
that their joint distribution is absolutely continuous with probability density f(z,y)
where z refers to ¢ and y refers to n. It follows that the joint distribution of the
components of 7 is absolutely continuous with probability density

gw) = | [flz,y)dy.
R
If fis a logarithmic concave function in RV*” then, by Theorem 3, the function
g is a logarithmic concave function in R™. Thus the marginal densities belonging

to a logarithmic concave density are logarithmic concave. This statement was first
formulated in [23].
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The conditional probability density of ¢ given 1 = y is given by the following

f(@,y)
9(y)

Obviously f(z | y) is logarithmic concave in z for any fixed y provided f(z,y)
is logarithmic concave. Thus for conditional distributions we can derive formulae
similar to those mentioned in the previous sections. Also if f satisfies the condition
of Theorem 8, i.e. [f(ac,y)]l/” is convex in RN*" then [f(z | y)]_l/” is convex in
RN for any fixed y and thus the conditional probability measure is quasi-concave.

flz]y) =

We give an example in which f(z,y) is logarithmic concave in RN*" and the
same holds for f(z | y) as a function of both arguments. A further example will
show that this is not always the case.

Let us consider the non-degenerate normal distribution in R™. Its probability
density function is given by

_1N 1/2
() = (%) (/DO =) g
T m

where u is the vector of expectations and (' is the covariance matrix. C' is non-
singular since the distribution is non-degenerate. Hence f is a logarithmic concave
function so that the corresponding probability distribution is logarithmic concave.

Let us now consider a non-degenerate normal distribution in m dimensional space
(m = N+n) and suppose that it is the joint distribution of the N-component random
vector ¢ and the n-component random vector 5. Partition C' and p accordingly in

the following manner
S U
(v 7 ),

=),

The conditional distribution of ¢ is given 1 = y is again a normal distribution (see
e.g. [2]) with expectation vector

1/+UT_1(y— T)

and covariance matrix

S—-ur-tu.
Hence the conditional probability density has the following form

(5.1) fla |y):Kexp{—%[x—l/—UT_I(y—T)]'

X[S —UTT'U T e —v-UT" (y - T)]},

11



where

K = [det(s(;ﬂl)]]ivf—lzj)] 1/2 |

Function (5.1) is logarithmic concave in both variables 2 and y. Using this and the
theorems of the previous sections, various statements can be proved. For example,
it is a consequence of Theorem 3 that if G is a convex subset of R, then

/Gf<x|y>dx

is a logarithmic concave function of y.

Consider now the Dirichlet distribution — for the sake of simplicity in R% The
probability density of this distribution is given by

C(pr+p2+p3) i1 poet
T Y 1
T (o (pa) (

ifa>0,y>0,1-—2—y>0and f(z,y) = 0 otherwise. The numbers py, p3, p3
are supposed to be positive. Suppose that py > 1, p2 > 1, ps > 1. Then f(z,y) is
logarithmic concave in R2. If this is the joint distribution of the random variables ¢
and 7 then the probability density of 1 equals

00 r
9(y) = /_ fle,y)de = F((ﬁ;)}réiii)) Yy (L = )t

if 0 <y < 1 and g(y) = 0 otherwise. Thus the conditional density of ¢ given n =1y
has the form

f(ﬂﬁly)zr(plﬂ’:a)u( v ) (1 . )+

L(p)l(ps) \1 -y L—y
for 0 < # < 1 —y and f(z,y) = 0 otherwise. It is easy to see that there are
parameters py, po, p3 for which this function is not a logarithmic concave function
in R?.

As mentioned in [20], the multivariate beta, Dirichlet, and Wishart distributions
are logarithmic concave (for suitable parameter values). Many other distributions
belong to this category. The reader may consult [13] and check that logarithmic
concavity is quite often a property of probability densities.

— = y)p3—17

fla,y) =

Examples of probability densities satisfying the condition of Theorem 8 are given
in [3]; they include the multivariate ¢ and the F' densities and one of the multivariate
Pareto densities introduced in [16]. The Pareto density in question is given by

—(a+m)

f(z):a(a—l—l)...(a—l—m—l)ndj -m+1

m m .
Z
d.

j=1 j=1 "

12



for z; > d;, j=1,...,m and f(z) = 0 otherwise, where «a, dy, ..., d,, are positive
constants. It is interesting to note that this function is also logarithmic convex in
the domain z; > d;, 7 = 1,...,m, and hence the remark made in Section 1 in
connection with logarithmic convex functions applies for this density.

6 Special Functions Appearing in Stochastic Program-
ming Models

In this section we analyse certain functions which appear as constraint or objec-
tive functions in stochastic programming models. The theorems formulated below
contain statements expressing analytic properties of certain functions which are ad-
vantageous when numerically solving the problems in which these functions appear.
The first theorem was published in [21].

THEOREM 9. If g1(2,9),...,g-(x,y) are concave functions in R™%4, where x is an
m-component and y is a g-component vector, and ( is a ¢-component random vector
whose probability distribution is logarithmic concave in R4, then the function

(6.1) h(z) = P(g1(2,¢) > 0,...,¢:(2,¢) > 0), v €R™

is logarithmic concave on R™,

Proof. Let us consider the following family of sets

H(z) ={y|gi(z,y) 20, i=1,...,r}

where & € R” is a parameter. If for some z1,29 € R™ we have H(zy) # () and
H(z3) # 0, then for every 0 < A < 1 we also have H (Azy + (1 — A)ag) # 0. In fact if
y1 € H(z1) and yp € H(z3), then, since g1,..., ¢, are concave functions, it follows
that

gi( Az + (1= Nzo, Ay + (1 — N)ya)

>
Agi(e,y1) + (1= A)gi(2a, y2) >

0, v=1,...,7,
hence Ay; 4+ (1 — Ny2 € H(Az1 + (1 — A)az). From this we also see that the set
H = {o| H(z) £ 0}

is convex. If H is empty then (6.1) is identically zero and the assertion holds trivially.
If H # () then we observe that as a consequence of the above reasoning, the family
H(z) is concave on H, i.e. for 1,22 € H and 0 < A < 1,

H(Axy+ (1= Naa) D AH (1) + (1 — N H (2).

13



Then using the equation
h(z) = P(C € H(z)),

valid for every € R™, and Theorem 2, we derive

h(Axy+ (1 — Nag) = P(C € HOwy + (1 — Naa))
> P(C € AH (21) + (1 — A)H(x2))
> [P(¢ € H(z)]'[P(¢ € H(ay))]

[
= [A(e )] [h(22)]

This means that h(z) is logarithmic concave on the convex set H. Since h(z) = 0 if
x ¢ H it follows that h(z) is logarithmic concave on the entire space R™. O

The next theorem can be proved by the same method except that instead of
Theorem 2 we must use Theorem 8.

THEOREM 10. Suppose that the functions g1(x,y), ..., g.(x,y) are as in Theorem 9.
If C is a g-component random vector having a quasi-concave probability distribution
on RY, then the function h(x) defined by (6.1) is quasi-concave on R™.

These theorems can be applied to many important stochastic programming mod-
els. We refer to the reservoir system design models described in [22] and [21]. In
these cases we were able to show that some fairly complex optimization problems
were convex programming problems.

The above theorems have important theoretical consequences as well. For exam-
ple, let us consider the function of the variables x1, 25 € R given by

(6.2) Pz < ¢ <),

where ¢ is a random variable. Jagannathan [12] shows that if { has a uniform or
exponential distribution then this function is logarithmic concave in R2. Now from
Theorem 9 it follows that the function given by (6.2) is logarithmic concave if ¢ has
an absolutely continuous distribution with logarithmic concave density. In fact if we
introduce the functions of the variables xq, x9, 3y defined by

g1z, y) =y —m
g2(x,y) = 22 — v,

where 2z € R? is the vector having components 1, x5, then clearly

Pz < ¢ < @3) = P(gi(z,¢)) > 0, g2(x,¢) >0

and our assertion follows.

14



THEOREM 11. Let ¢ be an absolutely continuous random variable having a quasi-
concave density and let ¢ > 0, d > 0 be constants and a € R™ be a constant vector.
Then the function of the variable vector x given by

(6.3) P(C—c<dn<Ctd)
18 quasi-concave on R™,

Proof. The proof is based on Theorem 5. Since f is a quasi-concave function,

Theorem 5 implies that
z+

Cf(av) dz

z—d

is quasi-concave in —oo < z < oo. Thus
z+c

04)  PC-c<iSC4d=PlE-d<C<z4= [ fla)da
z—d

is quasi-concave in —oo < z < 0o. The function given by (6.3) arises from (6.4) if we
replace z by a’x. Since a quasi-concave function of a linear function is quasi-concave,
our theorem is proved. O

Van de Panne and Popp [30] proved that (i, ..., (,, ¢ are random variables having
a joint normal distribution, then the set

{2 | P(Qa1+ ...+ Guan <) > p}

is convex on R™ provided p > % In the original proof { was supposed to be a
constant, but the generalization to the above situation is trivial. A similar result
has been obtained for the case of random variables having stable distributions [29],
but independent and identically distributed random variables (; are required. We

shall consider the more general function given by
(6.5) P(Ar <)

in which some or all entries of the matrix A are allowed to be random as well. A will
be supposed to be an m X n matrix, its columns will be denoted by (y,...,(, and
for ¢ we shall use the alternative notation ¢ = —(,41. The following three theorems
are proved in [19], [24].

THEOREM 12. Suppose that the m(n+1) components of the random vectors (3, . . .,
Cnt1 have a joint normal distribution where the cross-covariance matrices of ¢; and
¢; are constant multiples of a fized covariance matriz C', i.e.

E[(¢ — 1) (& — 1)1 = s55C, hLj=1,...,n+1,

15



where
,ui:E(Q), 1=1,...,n+1.

Then the set
(6.6) {z | P(Az < () > p}
is convex for every fived p > %

The assumption concerning the cross-covariances is a very special one. There are,
however, important cases where such a condition is satisfied. If for example only one
of the vectors (1, ...,(yy1 is random, the others are constants and the components
of the random vector have a joint normal distribution, then the assumptions of
Theorem 12 are valid.

THEOREM 13. Let A; denote the ith row of the random m X n matriz A and let
i denote the ith component of ¢, i = 1,...,m. Suppose that the random (n + 1)-

component row vectors
(A, —=G), i=1,...,m

are independent, normally distributed and have covariance matrices which are con-
stant multiples of a fized covariance matriz C'. Then the set (6.6) is convex for every
fized p > %

Before formulating the third theorem, consider again the probability

G(zy, ..., 2n) = P(Gie1 + ...+ Guay > ().

If {1, ...,C, are positive-valued random variables and the joint distribution of n; =
log(y, ..., mn = log(, and ¢ is logarithmic concave, then a simple application of
Theorem 9 shows that

Ge™, ... e™) = P(=eMt? — [ — et 4 (> 0)
is logarithmic concave in z comprising the components z1, ..., z,. Since every set of
positive numbers zy,..., 2, can be represented in the form e*1, ..., e*", this result

is important from the point of view of mathematical programming. The portfolio
selection problem with log normally distributed returns seems to be one possible
field of application. For the formulation of the general theorem we need further
notation.

Let a;;,7=1,...,m; j =1,...,n be the elements of the matrix A and for the
sake of simplicity suppose that the columns of A are numbered so that those which
contain random variables come first. Let r be the number of these columns and
introduce the following notation:
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J denotes the set of those ordered pairs (¢, j) for which a;; is a random variable,
I<i<m,1<7<r,

L denotes the set of those subscripts ¢ for which {; is random variable, where
1< <m.

THEOREM 14. Suppose that the random variables a;; (i,j) € J are positive with
probability 1 and the constant a;;, 1 <1< m, 1< j<r, (i,7) ¢ J are non-negative.
Suppose further that the joint distribution of the random variables

Qg (27])€J7 ﬁh 1€ L

is a logarithmic concave probability distribution, where o;; = logay;, (i,j) € J,
B; =log(;, v € L. Under these conditions the function

X X
Ge™, ... e, Tpy1, e, @)

is logarithmic concave on R™, where G is the function defined by (6.5).

The proofs of the last three theorems are based on special cases of Theorem 9.

The following theorem helps in checking quasi-concavity of probability distribu-
tion functions. A function ¢ defined on an m-dimensional interval is said to be
concave in the positive direction if for every x, y belonging to this interval satisfying
x <y we have

g(Az+ (1= Ny) > Ag(z) + (1 = A)g(y),
where 0 < A < 1.

THEOREM 15. Let F'(z,y) be a probability distribution function on R™, where x is
an my-component vector, y is an mey-component vector and 1 < my, mo < m — 1,
my + mg = m. If F(x,y) is concave in the positive direction with respect to x
(respectively y) in an my-dimensional (respectively mq-dimensional) interval, then
F(z,y) is quasi-concave on the Cartesian product of these intervals.

This theorem is proved in [18]. In order to show how one can apply it, let us
consider the two-dimensional extreme-value distribution [13] given by

F($7 y) = exp[—e_gg —e Y+ d(ex + ey)_l]v

where —oo < 2, y < oo and d is a constant, 0 < d < 1. It is easy to see that
for fixed values of the remaining argument, I'(z, y) is concave in the finite intervals
{z | @ > 0} and {y | y > 0}, respectively. Hence by Theorem 15, the function
F(z,y) is quasi-concave in the two-dimensional interval {(z,y |z >0, y > 0}.

Finally, we formulate a consequence of Anderson’s Theorem (Theorem 7) which
states that a certain set is star shaped. A set K in R™ is said to be star shaped with
respect to the point b € R™ if the intersection of K and the ray {b+ Az | A > 0} is
an interval for every fixed z € R™.
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THEOREM 16. Let { € R™ be a random wvector having an absolutely continuous
probability distribution. Suppose that the probability density f of ( is quasi-concave
and satisfies the equality f(—z) = f(z) for every z € R™. Then the set

K={2|P((—c<Ax <(+d)>p}

is of a star shape with respect to any xo which satisfies Axg = %(d — ¢), provided K
is not empty and such an xg exists. Here ¢ > 0, d > 0 are constant vectors, A is an
m X n constant matriz and p is a fived probability level, 0 < p < 1.

Proof. Theorem 7 implies that the set
1 1
p={op (s jer i jera) <of
is star shaped with respect to the origin. Hence the set
1
Lt gld=c)={z| P-d<C<z+0)2p) = {2 | PC—ec <2 <CHd) 2 p)

is star shaped with respect to the point %(d — ¢). Since
. 1
K = {x|A9€ €L+§(d—c)} ={zo+a| Az €L}

and {z | Az € L} is obviously star shaped with respect to the origin, our theorem
is proved. O

The star shaped property of the set of feasible vectors may be helpful when
developing an algorithm for solving the relevant stochastic programming problem.
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