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Abstract

Results obtained in the last few years are summarized in connection with
logarithmic concave measures and related topics� A new and simple proof is
presented concerning the basic theorem of logarithmic concave measures stating
that if the probability measure P in Rm is generated by a logarithmic concave
density� A� B are convex subsets ofRm and � � � � �� then P ��A������B� �
	P �A�
�	P �B�
���� The most important convolution theorems belonging to
the subject are collected� The notion of convex measures and an important
theorem concerning these are formulated� Special distributions are analysed�
Properties of special constraint and objective functions which are derived from
the theorems presented in the paper are described�

� Introduction

Optimizing a function subject to constraints where at least one of the constraints
is a probabilistic inequality� or maximizing a probability subject to inequality con�
straints� are important stochastic programming problems with many practical ap�
plications� When formulating a mathematical programming model belonging to one
of the above�mentioned categories� it is very important to clarify� from the point of
view of the numerical solution of the model� whether it is a convex problem or one of
a related type� The research work of the past few years aimed at producing e�cient
analytic tools for handling sophisticated functions in these models has lead to the
introduction of new mathematical concepts and the proof of some basic theorems
which will probably be useful not only in stochastic programming but in other �elds
of mathematics� The purpose of the present paper is to summarize these results
together with earlier results with which they are mathematically interconnected�
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We restrict ourselves to the case of absolutely continuous probability distributions
in the space Rm� Proofs will be omitted except for special cases� One exception is
the proof of Theorem �� whose original proof is sophisticated� Here we give a simple
proof which should prove useful for classroom presentation�

In Section � we deal with logarithmic concave measures and prove the basic
theorem� Section 	 is devoted to investigations concerning convolutions of functions
de�ned in Rm� In Section 
 convex measures are considered� Special absolute and
conditional distributions will be analysed in Section �� Finally� in Section � some
special functions appearing in stochastic programming models will be investigated�

� Logarithmic Concave Measures

The notion of a logarithmic concave measure was introduced in 
���� 
���� A measure
P de�ned on the Borel�measurable subsets of Rm is said to be logarithmic concave
if for every pair A� B of convex subsets of Rm and every � � � � � we have

P ��A� ��� ��B� � 
P �A���
P �B������

Here the symbol � means Minkowski addition of sets� i�e� C � D � fc � d j c �
C� d � Dg� and the constant multiple of a set is de�ned as kC � fkc j c � Cg for
every �xed real number k�

A non�negative point function given by h�x�� x � Rm� is said to be logarithmic
concave if for every pair x�� x� � R

m and every � � � � � we have the inequality

h��x� � ��� ��x�� � 
h�x���
�
h�x���

����

If P is a logarithmic concave measure in Rm� then the function of the variable
x � Rm given by

P �A� x�

is logarithmic concave� In particular� if A is the set A � ft j t � �g� then we have
that the function de�ned by

F �x� � P �ft j t � xg��

i�e� the probability distribution function� is logarithmic concave in Rm�

In his classical work 

� Brunn proved the following theorem�

Theorem � �Brunn�Minkowski Inequality�� If A and B are non�empty convex
subsets of Rm and � � � � �� then the following inequality holds�

���m��A� ��� ��B� � ����m�A� � ��� �����m�B�������

where � denotes the Lebesgue measure�
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By the arithmetic�geometric means inequality it readily follows from ����� that

���A� ��� ��B� � 
��A���
��B������

so that Lebesgue measure is logarithmic concave�

If P is a logarithmic concave measure in Rm and C is a �xed convex subset of
R
m� then the measure P �A�C� de�ned on the measurable subsets A of Rm� is also

logarithmic concave� In fact if A� B are convex subsets of Rm and � � � � �� then
we have that


�A� ��� ��B� � C � �
A� C� � ��� ��
B � C�

whence the required inequality follows� Thus we see that a uniform probability
distribution over a convex set is a logarithmic concave probability measure�

Theorem � expresses the most important fact in connection with logarithmic
concave measures�

Theorem �� Let P be a probability measure in Rm generated by a probability density
of the form

f�x� � e�Q�x�� x � Rm�

where Q is a convex function �i�e�� f is a logarithmic concave point function�� Then
P is a logarithmic concave probability measure�

Remark� The original proof of this theorem in 
��� and 
��� is based on the inequality
of Brunn�Minkowski and the integral inequalityZ

�

��

r�t� dt �

�Z
�

��

f��x� dx

���� �Z �

��

g��y� dy

����
������

where

r�t� � sup
�x�y����t

f�x�g�y�� �� � t �����	�

and f � g are non�negative Borel�measurable functions� Leindler 
��� generalized
the inequality ����� to the case using �� � � � in place of ���� ���� This was
again generalized in 
�	� for the case of functions of m variables� Thus we have the
inequality Z

Rm

r�t� dt �

�Z
Rm

f����x� dx

�� �Z
Rm

g��������x� dx

����
����
�

where

r�t� � sup
�x������y�t

f�x�g�y������

	



and f � g are non�negative Borel�measurable functions which implies the Lebesgue�
measurability of r� �This is proved in 
��� for the case of m � � and the same proof
can be used for m � �� The formulation of Theorem � in 
��� has to be corrected
in such a way that we assume f and g to be Borel�measurable and infer that r is
Lebesgue�measurable� For this corrected theorem� the proof given in 
���� can be
used� Just note that on p� 	�� of 
��� E�� � � � � EN are Borel�measurable� hence their
projections� H�� � � � � HN � are Lebesgue�measurable��

Inequality ���
� gives an immediate proof for Theorem �� The proof of the in�
equality is� however� very sophisticated� It can be established relatively easily for
the case of logarithmic concave functions f � g which will su�ce for the proof of
Theorem � and leads to a simpli�cation in the proof of the theorem�

We remark that if a function de�ned on Rm is logarithmic concave� then the set
of vectors on which the function is positive is convex� This implies that the function
is continuous in the interior of this convex set and it follows that the function is
Borel�measurable on Rm� It is easy to see that when the functions f and g are
logarithmic concave� the function r de�ned by ����� is also logarithmic concave and
hence is Borel�measurable�

Proof of Theorem �� First we prove inequality ���
� for the case ofm � �� We assume
for the moment that both f and g are bounded� Let us introduce the notation

sup
x�R

f�x� � U� sup
y�R

g�y� � V�

It follows from this that
sup
t�R

r�t� � UV�

If at least one of the numbers U � V is equal to �� then ���
� holds trivially� Thus we
can assume that U � �� V � ��

We remark that if h is a measurable function satisfying the inequality � � h�x� �
� for every x � R� then we haveZ

�

��

h�x� dx �

Z �

�
H�z� dz������

where
H�z� � �
fx j h�x� � zg�� � � z � ��

Let � � z � �� � � � � �� and de�ne

F �z� � �

��
x

���� �U f�x� � z�
��

�






G�z� � �

��
y

���� �V g�y� � z���
��

�

R�z� � �

��
t

���� �

UV
r�t� � z

��
�

We have the following relation�

ft j r�t� � zg � �fx j f�x� � z�g� ��� ��fy j g�y� � z���g������

All sets participating in this relation are non�empty and they are intervals since f �
g� r are logarithmic concave� Relation ����� implies that

R�z� � �F �z� � ��� ��G�z�������

Integrating ����� on both sides between � and � and using Equation ����� we conclude
thatZ

�

��

�

UV
r�t� dt � �

Z
�

��

�
�

U
f�x�

����
dx � ��� ��

Z
�

��

�
�

V
g�y�

��������
dy�

This implies ���
� by the arithmetic�geometric means inequality�

If at least one of the functions f � g is unbounded� then we de�ne the functions

fU �x� �

�
f�x� if f�x� � U�

U if f�x� � U�

gV �y� �

�
g�y� if g�y� � V�
V if g�y� � V�

and take limits as U ��� v �� in the inequalityZ
�

��

r�t� dt �

Z
�

��

sup
�x������y�t

fU �x�gV �y� dt

�

�Z
�

��


fU�x��
��� dx

���Z �

��


gV �y��
�������dy

����

�

This has already been established since fU � gV are bounded logarithmic concave
functions for all U � �� V � �� Thus we obtain Inequality ���
� for all logarithmic
concave functions f and g�

We suppose that we have already proved Inequality ���
� for functions f � g of
at most m � � variables and prove it for functions of m variables� Let h�u� v� be
a logarithmic concave function of the vector variables u � Rm�� v � Rm�� The
logarithmic concavity of the function implies that

h��u� � ��� ��u�v� � 
h�u�� v���
�
h�u�� v���

���

�



for every u�� u�� v�� v�� � � � � �� where v � �v� � ��� ��v�� If m� � m� �� then
we can apply Inequality ���
� and obtainZ

Rm�

h��u� � ��� ��u�� v� dv �

Z
Rm�

sup
�v�������v��v


h�u�� v���
�
h�u�� v���

��� dv

�

�Z
Rm�

h�u�� v� dv

�� �Z
Rm�

h�u�� v� dv

����
�

This means that the integral of h�u� v� with respect to v is a logarithmic concave
function of u�

Now let f and g be logarithmic concave functions of m variables and partition
the variables as x � �x�� x��� y � �y�� y�� so that x�� y� � R

m�� x�� y� � R
m�� where

� � m� � m� �� � � m� �m� �� m� �m� � m� Then we can writeZ
Rm

sup
�x������y�t

f�x�g�y� dt

�

Z
Rm��m�

sup
�x�������y��t�
�x�������y��t�

f�x�� x��g�y�� y�� dt� dt�

�

Z
Rm�

sup
�x�������y��t�

�Z
Rm�

sup
�x�������y��t�

f�x�� x��g�y�� y�� dt�

�
dt�

�

Z
Rm�

sup
�x�������y��t�

�Z
Rm�

f����x�� x�� dx�

�

	

�Z
Rm�

g��������y�� y�� dy�

����
dt�

�

�Z
Rm��m�

f����x�� x�� dx� dx�

�� �Z
Rm��m�

g��������y�� y�� dy� dy�

����

�

�Z
Rm�

f����x� dx

�� �Z
Rm�

g��������y� dy

����
�

Thus we have proved Inequality ���
� for logarithmic concave functions�

Let A� B be convex sets in Rm and � � � � � and de�ne the functions f�� f�� f�
in terms of the probability density f as follows�

f��x� � f�x� if x � A and f��x� � � otherwise�

f��x� � f�x� if x � B and f��x� � � otherwise�

f��x� � f�x� if x � �A� ��� ��B and f��x� � � otherwise�

Since f is a logarithmic concave function� we can write

f��t� � sup
�x������y�t


f��x��
�
f��y��

����

�



By Inequality ���
� this implies that

Z
�A������B

f�t� dt �

Z
Rm

f��t� dt �

�Z
Rm

f��x� dx

�� �Z
Rm

f��y� dy

����

�

�Z
A
f�x� dx

�� �Z
B
f�y� dy

����

Thus Theorem � is proved� �

In the course of the proof we also proved the following theorem� �rst published
in 
�	��

Theorem �� If f�x� y� is a logarithmic concave function of all variables in the vec�
tors x � Rn� y � Rm� then Z

Rm

f�x� y� dy

is a logarithmic concave function of the variable x�

Finally� let us make one remark in connection with logarithmic convex functions�
�A function f is logarithmic convex if ��f is logarithmic concave�� Let A be a convex
subset of Rm and consider the sets A � x�� A � x�� A � 
�x� � ��� ��x��� If f is
a logarithmic convex function de�ned on a convex subset of Rm which contains the
above three sets� then a simple application of the H�older inequality shows that

P �A � 
�x� � ��� ��x��� � 
P �A� x���
�
P �A� x���

����

� Convolutions

Logarithmic concave functions were �rst investigated by Fekete 
�� in ����� He
introduced the notion of a multiple positive sequence� we may call a logarithmic
concave sequence a twice positive sequence� or� in other terms� a discrete logarithmic
concave function� The sequence fpig is said to be logarithmic concave if

pi � �pi��� pi���
���� i � ��
��
�� � � �

from which one can derive the inequality

pi � p
k��j�k�
i�j p

j��j�k�
i�k

for all positive integers j� k� Fekete proved that the convolution of two logarithmic
concave sequences is also logarithmic concave� From this one can derive the theo�
rem of Schoenberg 
��� stating that if f and g are two logarithmic concave functions

�



de�ned on R� then their convolution is also logarithmic concave on R� The general�
ization of this theorem for logarithmic concave functions de�ned on Rm was proved
�rst by Davidovich� Korenblum and Hacet 
��� See also 
�	� where this statement
is derived from Theorem 	 of Section �� In fact� if f�x� and g�y� are logarithmic
concave functions of x� y � Rm� then the function

f�x� y�g�y�

is logarithmic concave in R�m� Hence by Theorem 	 its integral with respect to y is
a logarithmic concave function of the remaining variable x�

Results in connection with convolutions are important in this framework because
using convolution properties we can prove theorems for functions of the type

P �A� x� �

Z
A�x

f�t� dt� x � Rm�

which is the convolution of the function f and the indicator function of the set �A�
If A is a convex set� then the indicator function of �A is logarithmic concave� Hence
the theorem that the convolution of two logarithmic concave functions in Rm is also
logarithmic concave implies that if f is a logarithmic concave function in Rm� then
P �A � x� is also logarithmic concave in Rm� which is an important special case
of Theorem �� For the case of the normal distribution the logarithmic concavity of
P �A � x�� where A is a convex set� was proved �rst by Zalgaller 
		��

In ���� Ibragimov 
��� published a theorem that contains the following

Theorem �� Let f � � be a quasi�concave� and g a logarithmic concave function
de	ned on R� Then the convolution of these functions is quasi�concave on R�

One can give a simple counter�example showing that the corresponding statement
in m�dimensional space does not hold� Though we are not dealing with discrete
probability distributions� it is interesting to mention that Keilson and Gerber 
�
�
proved the discrete version of Ibragimov�s theorem in the one�dimensional case�
Ibragimov�s Theorem 
 implies

Theorem �� Let f � � be a quasi�concave function de	ned on R and I � R be an
interval� Then the function Z

I�x
f�t� dt

is a quasi�concave function of the variable x�

As noted in 
��� the convolution of two univariate� unimodal distributions is not
necessarily unimodal� However� Wintner 
	�� proved that the convolution of two
univariate symmetric unimodal distributions is unimodal� A generalization of this
result is the following theorem� from Sherman 
����

�



Theorem 	� Let us introduce the norm kfk� for real�valued functions de	ned on
R
m by the equation

kfk� � maxfkfk� kfk�g�

where

kfk � sup
x�Rm

fjf�x�jg� kfk� �

Z
Rm

jf�x�j dx�

Let C be the closed �with respect to k�k�� convex cone generated by indicator functions
of convex symmetric sets in Rm� Then for f� g � C� we have f 
 g � C� where

�f 
 g��x� �

Z
Rm

f�x� t�g�t� dt�

The above theorem implies Anderson�s inequality 
�� which we formulate in the
following theorem�

Theorem 
� Let f be a quasi�concave probability density de	ned on Rm satisfying
f�x� � f��x� and let D be a convex symmetric subset of Rm� Then for every y � Rm

and � � � � � we have

P �D � �y� �

Z
D��y

f�x� dx �

Z
D

f�x� dx��	���

Proof� We show that Theorem � implies Theorem �� In fact for the indicator
function g of a symmetric convex set the inequality g��y� � g�y� holds for every
y � Rm and � � � � �� It follows that the same inequality holds for convex
combinations of such functions and also for functions which are uniform limits of
the latter� i�e� for all functions belonging to C� SinceZ

D�y
f�x� dx

is the convolution of f and the indicator function of the set �D� Theorem � implies
that it belongs to C hence �	��� follows� �

� Convex Measures in Rm

Following the work in 
���� Borell developed the notion of �convex measure� in Rm

and proved important theorems 
	�� We mention here only the de�nition and one
theorem which seems to be the most important for stochastic programming� The
probability measure P de�ned on the �Borel� measurable subsets of Rm will be said

�



to be convex �of order s� if for every nonempty pair A� B of convex subsets of Rm

and every � � � � � we have

P ��A� ��� ��B� � f�
P �A��s� ��� ��
P �B��sg��s�

where �� � s ��� s �� �� The cases s � ��� s � �� and s � � are interpreted
by continuity� Thus if s � ��� the right hand side equals min�P �A�� P �B�� and
for s � � we obtain as a special case the notion of a logarithmic concave measure�
Convex measures of order s � �� will be called quasi�concave� In his paper 
	�
Borell proved the following result�

Theorem �� If f is the probability density of a continuous probability distribution
in Rm and f���m is convex in the entire space� then the probability measure

P �C� �

Z
C
f�x� dx

de	ned on the �Borel� measurable subsets C of Rm is quasi�concave�

In the next section we show that among the well known probability distribu�
tions there are some which are quasi�concave and not logarithmically concave� This
emphasizes the importance of Theorem ��

� Special Joint and Conditional Probability Distribu�

tions

In this section we make some general remarks concerning special probability distri�
butions� A few of them will be analysed in detail� We include a consideration of
conditional distributions� since they frequently appear in stochastic programming
models�

Let 	 � RN and 
 � Rn be two vector�valued random variables and suppose
that their joint distribution is absolutely continuous with probability density f�x� y�
where x refers to 	 and y refers to 
� It follows that the joint distribution of the
components of 
 is absolutely continuous with probability density

g�y� �

Z
Rn

f�x� y� dy�

If f is a logarithmic concave function in RN�n then� by Theorem 	� the function
g is a logarithmic concave function in RN� Thus the marginal densities belonging
to a logarithmic concave density are logarithmic concave� This statement was �rst
formulated in 
�	��

��



The conditional probability density of 	 given 
 � y is given by the following

f�x j y� �
f�x� y�

g�y�
�

Obviously f�x j y� is logarithmic concave in x for any �xed y provided f�x� y�
is logarithmic concave� Thus for conditional distributions we can derive formulae
similar to those mentioned in the previous sections� Also if f satis�es the condition
of Theorem �� i�e� 
f�x� y����n is convex in RN�n� then 
f�x j y�����n is convex in
R
N for any �xed y and thus the conditional probability measure is quasi�concave�

We give an example in which f�x� y� is logarithmic concave in RN�n and the
same holds for f�x j y� as a function of both arguments� A further example will
show that this is not always the case�

Let us consider the non�degenerate normal distribution in Rm� Its probability
density function is given by

f�z� �

	
det C��

����m


���

e�������z���
�C���z���� x � Rm�

where � is the vector of expectations and C is the covariance matrix� C is non�
singular since the distribution is non�degenerate� Hence f is a logarithmic concave
function so that the corresponding probability distribution is logarithmic concave�

Let us now consider a non�degenerate normal distribution in m dimensional space
�m � N�n� and suppose that it is the joint distribution of theN �component random
vector 	 and the n�component random vector 
� Partition C and � accordingly in
the following manner

C �

	
S U

U � T



�

� �

	
�





�

The conditional distribution of 	 is given 
 � y is again a normal distribution �see
e�g� 
��� with expectation vector

� � UT���y � 
�

and covariance matrix
S � UT��U ��

Hence the conditional probability density has the following form

f�x j y� � K exp

�
�
�

�

x� � � UT���y � 
��������

	
S � UT��U ����
x� � � UT���y � 
��
�
�

��



where

K �

�
det�S � UT��U�

����N

����
�

Function ����� is logarithmic concave in both variables x and y� Using this and the
theorems of the previous sections� various statements can be proved� For example�
it is a consequence of Theorem 	 that if G is a convex subset of RN� thenZ

G

f�x j y� dx

is a logarithmic concave function of y�

Consider now the Dirichlet distribution � for the sake of simplicity in R�� The
probability density of this distribution is given by

f�x� y� �
��p� � p� � p��

��p����p����p��
xp���yp������ x� y�p����

if x � �� y � �� � � x � y � � and f�x� y� � � otherwise� The numbers p�� p�� p�
are supposed to be positive� Suppose that p� � �� p� � �� p� � �� Then f�x� y� is
logarithmic concave in R�� If this is the joint distribution of the random variables 	
and 
 then the probability density of 
 equals

g�y� �

Z
�

��

f�x� y� dx �
��p� � p� � p��

��p����p� � p��
yp������ y�p��p���

if � � y � � and g�y� � � otherwise� Thus the conditional density of 	 given 
 � y

has the form

f�x j y� �
��p� � p��v
��p����p��

	
x

�� y


p��� 	
��

x

�� y


p��p���
�

for � � x � � � y and f�x� y� � � otherwise� It is easy to see that there are
parameters p�� p�� p� for which this function is not a logarithmic concave function
in R��

As mentioned in 
���� the multivariate beta� Dirichlet� and Wishart distributions
are logarithmic concave �for suitable parameter values�� Many other distributions
belong to this category� The reader may consult 
�	� and check that logarithmic
concavity is quite often a property of probability densities�

Examples of probability densities satisfying the condition of Theorem � are given
in 
	�� they include the multivariate t and the F densities and one of the multivariate
Pareto densities introduced in 
���� The Pareto density in question is given by

f�z� � a�a� �� � � ��a�m� ��
mY
j��

dj

�

 mX

j��

zj
dj
�m� �

�
A
��a�m�

��



for zj � dj � j � �� � � � � m and f�z� � � otherwise� where a� d�� � � � � dm are positive
constants� It is interesting to note that this function is also logarithmic convex in
the domain zj � dj � j � �� � � � � m� and hence the remark made in Section � in
connection with logarithmic convex functions applies for this density�

� Special Functions Appearing in Stochastic Program�

ming Models

In this section we analyse certain functions which appear as constraint or objec�
tive functions in stochastic programming models� The theorems formulated below
contain statements expressing analytic properties of certain functions which are ad�
vantageous when numerically solving the problems in which these functions appear�
The �rst theorem was published in 
����

Theorem �� If g��x� y�� � � � � gr�x� y� are concave functions in Rm�q� where x is an
m�component and y is a q�component vector� and 	 is a q�component random vector
whose probability distribution is logarithmic concave in Rq� then the function

h�x� � P �g��x� 	� � �� � � � � gr�x� 	� � ��� x � Rm�����

is logarithmic concave on Rm�

Proof� Let us consider the following family of sets

H�x� � fy j gi�x� y� � �� i � �� � � � � rg�

where x � Rm is a parameter� If for some x�� x� � R
m we have H�x�� �� � and

H�x�� �� �� then for every � � � � � we also have H��x�������x�� �� �� In fact if
y� � H�x�� and y� � H�x��� then� since g�� � � � � gr are concave functions� it follows
that

gi��x� � ��� ��x�� �y� � ��� ��y�� �

�gi�x�� y�� � ��� ��gi�x�� y�� � �� i � �� � � � � r�

hence �y� � ��� ��y� � H��x� � ��� ��x��� From this we also see that the set

H � fx j H�x� �� �g

is convex� IfH is empty then ����� is identically zero and the assertion holds trivially�
If H �� � then we observe that as a consequence of the above reasoning� the family
H�x� is concave on H � i�e� for x�� x� � H and � � � � ��

H��x�� ��� ��x�� � �H�x�� � ��� ��H�x���

�	



Then using the equation
h�x� � P �	 � H�x���

valid for every x � Rm� and Theorem �� we derive

h��x� � ��� ��x�� � P �	 � H��x� � ��� ��x���

� P �	 � �H�x�� � ��� ��H�x���

� 
P �	 � H�x����
�
P �	 � H�x����

���

� 
h�x���
�
h�x���

���

This means that h�x� is logarithmic concave on the convex set H � Since h�x� � � if
x �� H it follows that h�x� is logarithmic concave on the entire space Rm� �

The next theorem can be proved by the same method except that instead of
Theorem � we must use Theorem ��

Theorem �
� Suppose that the functions g��x� y�� � � � � gr�x� y� are as in Theorem 
�
If 	 is a q�component random vector having a quasi�concave probability distribution
on Rq� then the function h�x� de	ned by ����� is quasi�concave on Rm�

These theorems can be applied to many important stochastic programming mod�
els� We refer to the reservoir system design models described in 
��� and 
���� In
these cases we were able to show that some fairly complex optimization problems
were convex programming problems�

The above theorems have important theoretical consequences as well� For exam�
ple� let us consider the function of the variables x�� x� � R given by

P �x� � 	 � x��������

where 	 is a random variable� Jagannathan 
��� shows that if 	 has a uniform or
exponential distribution then this function is logarithmic concave in R�� Now from
Theorem � it follows that the function given by ����� is logarithmic concave if 	 has
an absolutely continuous distribution with logarithmic concave density� In fact if we
introduce the functions of the variables x�� x�� y de�ned by

g��x� y� � y � x�

g��x� y� � x� � y�

where x � R� is the vector having components x�� x�� then clearly

P �x� � 	 � x�� � P �g��x� 	�� � �� g��x� 	� � �

and our assertion follows�

�




Theorem ��� Let 	 be an absolutely continuous random variable having a quasi�
concave density and let c � �� d � � be constants and a � Rm be a constant vector�
Then the function of the variable vector x given by

P �	 � c � a�x � 	 � d����	�

is quasi�concave on Rm�

Proof� The proof is based on Theorem �� Since f is a quasi�concave function�
Theorem � implies that Z z�c

z�d

f�x� dx

is quasi�concave in �� � z ��� Thus

P �	 � c � z � 	 � d� � P �z � d � 	 � z � c� �

Z z�c

z�d
f�x� dx���
�

is quasi�concave in �� � z ��� The function given by ���	� arises from ���
� if we
replace z by a�x� Since a quasi�concave function of a linear function is quasi�concave�
our theorem is proved� �

Van de Panne and Popp 
	�� proved that 	�� � � � � 	n� 	 are random variables having
a joint normal distribution� then the set

fx j P �	�x� � � � �� 	nxn � 	� � pg

is convex on Rm provided p � �
� � In the original proof 	 was supposed to be a

constant� but the generalization to the above situation is trivial� A similar result
has been obtained for the case of random variables having stable distributions 
����
but independent and identically distributed random variables 	i are required� We
shall consider the more general function given by

P �Ax � 	������

in which some or all entries of the matrixA are allowed to be random as well� A will
be supposed to be an m 	 n matrix� its columns will be denoted by 	�� � � � � 	n and
for 	 we shall use the alternative notation 	 � �	n��� The following three theorems
are proved in 
���� 
�
��

Theorem ��� Suppose that the m�n��� components of the random vectors 	�� � � � �
	n�� have a joint normal distribution where the cross�covariance matrices of 	i and
	j are constant multiples of a 	xed covariance matrix C� i�e�

E
�	i � �i��	j � �j�
�� � sijC� i� j � �� � � � � n� ��

��



where
�i � E�	i�� i � �� � � � � n� ��

Then the set

fx j P �Ax � 	� � pg�����

is convex for every 	xed p � �
��

The assumption concerning the cross�covariances is a very special one� There are�
however� important cases where such a condition is satis�ed� If for example only one
of the vectors 	�� � � � � 	n�� is random� the others are constants and the components
of the random vector have a joint normal distribution� then the assumptions of
Theorem �� are valid�

Theorem ��� Let Ai denote the ith row of the random m 	 n matrix A and let
	i denote the ith component of 	� i � �� � � � � m� Suppose that the random �n � ���
component row vectors

�Ai��	i�� i � �� � � � � m

are independent� normally distributed and have covariance matrices which are con�
stant multiples of a 	xed covariance matrix C� Then the set ����� is convex for every
	xed p � �

��

Before formulating the third theorem� consider again the probability

G�x�� � � � � xn� � P �	�x� � � � �� 	nxn � 	��

If 	�� � � � � 	n are positive�valued random variables and the joint distribution of 
� �
log 	�� � � � � 
n � log 	n and 	 is logarithmic concave� then a simple application of
Theorem � shows that

G�ez� � � � � � ezn� � P ��e���z� � � � �� e�n�zn � 	 � ��

is logarithmic concave in z comprising the components z�� � � � � zn� Since every set of
positive numbers x�� � � � � xn can be represented in the form ez� � � � � � ezn � this result
is important from the point of view of mathematical programming� The portfolio
selection problem with log normally distributed returns seems to be one possible
�eld of application� For the formulation of the general theorem we need further
notation�

Let aij � i � �� � � � � m� j � �� � � � � n be the elements of the matrix A and for the
sake of simplicity suppose that the columns of A are numbered so that those which
contain random variables come �rst� Let r be the number of these columns and
introduce the following notation�

��



J denotes the set of those ordered pairs �i� j� for which aij is a random variable�
� � i � m� � � j � r�

L denotes the set of those subscripts i for which 	i is random variable� where
� � i � m�

Theorem ��� Suppose that the random variables aij �i� j� � J are positive with
probability � and the constant aij� � � i � m� � � j � r� �i� j� �� J are non�negative�
Suppose further that the joint distribution of the random variables

�ij � �i� j� � J� �i� i � L

is a logarithmic concave probability distribution� where �ij � log aij� �i� j� � J�
�i � log 	i� i � L� Under these conditions the function

G�ex�� � � � � exr � xr��� � � � � xn�

is logarithmic concave on Rn� where G is the function de	ned by ������

The proofs of the last three theorems are based on special cases of Theorem ��

The following theorem helps in checking quasi�concavity of probability distribu�
tion functions� A function g de�ned on an m�dimensional interval is said to be
concave in the positive direction if for every x� y belonging to this interval satisfying
x � y we have

g��x� ��� ��y� � �g�x� � ��� ��g�y��

where � � � � ��

Theorem ��� Let F �x� y� be a probability distribution function on Rm� where x is
an m��component vector� y is an m��component vector and � � m�� m� � m � ��
m� � m� � m� If F �x� y� is concave in the positive direction with respect to x

�respectively y� in an m��dimensional �respectively m��dimensional� interval� then
F �x� y� is quasi�concave on the Cartesian product of these intervals�

This theorem is proved in 
���� In order to show how one can apply it� let us
consider the two�dimensional extreme�value distribution 
�	� given by

F �x� y� � exp
�e�x � e�y � d�ex � ey�����

where �� � x� y � � and d is a constant� � � d � �� It is easy to see that
for �xed values of the remaining argument� F �x� y� is concave in the �nite intervals
fx j x � �g and fy j y � �g� respectively� Hence by Theorem ��� the function
F �x� y� is quasi�concave in the two�dimensional interval f�x� y j x � �� y � �g�

Finally� we formulate a consequence of Anderson�s Theorem �Theorem �� which
states that a certain set is star shaped� A set K in Rm is said to be star shaped with
respect to the point b � Rm if the intersection of K and the ray fb� �z j � � �g is
an interval for every �xed z � Rm�

��



Theorem �	� Let 	 � Rm be a random vector having an absolutely continuous
probability distribution� Suppose that the probability density f of 	 is quasi�concave
and satis	es the equality f��z� � f�z� for every z � Rm� Then the set

K � fx j P �	 � c � Ax � 	 � d� � pg

is of a star shape with respect to any x� which satis	es Ax� �
�
��d� c�� provided K

is not empty and such an x� exists� Here c � �� d � � are constant vectors� A is an
m	 n constant matrix and p is a 	xed probability level� � � p � ��

Proof� Theorem � implies that the set

L �

�
z j P

	
z �

�

�
�c� d� � 	 � z �

�

�
�c� d�



� p

�

is star shaped with respect to the origin� Hence the set

L�
�

�
�d� c� � fz j P �z � d � 	 � z � c� � pg � fz j P �	 � c � z � 	 � d� � pg

is star shaped with respect to the point �
��d� c�� Since

K �

�
x j Ax � L�

�

�
�d� c�

�
� fx� � x j Ax � Lg

and fx j Ax � Lg is obviously star shaped with respect to the origin� our theorem
is proved� �

The star shaped property of the set of feasible vectors may be helpful when
developing an algorithm for solving the relevant stochastic programming problem�
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