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1 Introduction

The problem we are dealing with in the present paper arose in stochastic programming.
A wide class of stochastic programming decision rules (see [8], [9]) lead to non-linear
optimization problems where concavity or quasi-concavity of some functions is desirable.
Let us consider the following special decision problem of this kind for illustration:

Minimize f(x) subject to the constraints:

(1.1) P{g1(x) ≥ β1, . . . , gm(x) ≥ βm} ≥ p, h1(x) ≥ 0, . . . , hM (x) ≥ 0.

Here β1, . . . , βm are random variables, p is a prescribed probability (0 < p < 1) and
g1(x), . . . , gm(x), h1(x), . . . , hM (x), −f(x) are concave functions1 in the entire space Rn,
where the vectors x are taken from. If we want to solve Problem (1.1) numerically then
the first thing is to discover the type of the function of the variable x ∈ Rn:
(1.2) h(x) = P{g1(x) ≥ β1, . . . , gm(x) ≥ βm}.

If this is concave or at least quasi-concave then the numerical solution of Problem (1.1)
is hopeful. We are interested in random variables β1, . . . , βm having a continuous joint
probability distribution. Examples show that in the most frequent and practically inter-
esting cases we cannot expect that the function (1.2) is concave. Surprisingly, however, a
special kind of quasi-concavity holds for a wide class of joint probability distributions of

∗This research was supported in part by the Institute of Economic Planning (Budapest).
1From the point of view of numerical solution it is enough to suppose that h1(x), . . . , hM (x) are quasi-

concave. A function h(x) defined in a convex set L is quasi-concave if for any x1, x2 ∈ L and 0 < λ < 1
we have h(λx1 + (1 − λ)x2) ≥ min{h(x1), h(x2)}.
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the random variables β1, . . . , βm. Notably, we show that under some conditions log h(x) is
a concave function in the entire space Rn. This unexpectedly good behaviour of function
(1.2) and problem (1.1) will result very likely in a frequent application of this and related
models.

The main theorem in our paper is Theorem 2 which is proved in Section 3. The basic
tools for the proof of this theorem are an integral inequality and the Brunn–Minkowski
theorem for convex combinations of two convex sets. The integral inequality states that
for any measurable non-negative functions f , g we have

(1.3)
∫ ∞

−∞
sup

x+y=2t
f(x)g(y) dt ≥

(∫ ∞

−∞
f2(x) dx

) 1
2
(∫ ∞

−∞
g2(y) dy

) 1
2

.

This will be proved in Section 2.

Let A and B be two convex sets of the space Rn. The Minkowski combination A+B of
A and B, and the multiple λA of A (for a real number λ) are defined by A+B = {a+b |
a ∈ A, b ∈ B} and λA = {λa | a ∈ A}.

Theorem of Brunn. If A and B are bounded convex sets in Rn and 0 < λ < 1, then
we have

(1.4) μ
1
n {λA+ (1 − λ)B} ≥ λμ

1
n {A} + (1 − λ)μ

1
n {B},

where μ denotes Lebesgue measure.

This theorem is sharpened by the

Theorem of Brunn–Minkowski. If the conditions of the theorem of Brunn are
fulfilled, moreover both A and B are closed and have positive Lebesgue measures, then
equality holds in (1.4) if and only if A and B are homothetic.

Our main theorem contains an inequality similar to that of Brunn. Instead of Lebesgue
measure more general measures are involved. Let P be a probability measure2 defined on
the Borel sets of Rn. We say that the measure P is logarithmic concave if for every convex
sets A, B of Rn we have

(1.5) P{λA+ (1 − λ)B} ≥ (P{A})λ(P{B})1−λ (0 < λ < 1).

In Section 4 we show that many well-known multivariate probability distributions have
this property because they satisfy the conditions of the main theorem.

Inequality (1.5) has an important consequence, namely that the P measure of the
parallel shifts of a convex set is a logarithmic concave function of the shift vector. This
will be shown in Section 3.

2We restrict ourselves to finite measures and, having in mind the applications of our theory, we consider
probability measures. The finiteness condition, however, can be dropped as it will be clear from the proofs.
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As for the practical applications of the theory presented in this paper the reader is
referred to the detailed study [9].

2 An integral inequality

In this section we prove the inequality (1.3). We formulate it now in the form of a theorem.

Theorem 1. Let f , g be two non-negative Lebesgue measurable functions defined on
the real line R1. Then the function

(2.1) r(t) = sup
x+y=2t

f(x)g(y)

is also measurable and we have

(2.2)
∫ ∞

−∞
r(t) dt ≥

(∫ ∞

−∞
f2(x) dx

) 1
2
(∫ ∞

−∞
g2(y) dy

) 1
2

(where the value +∞ is also allowed for the integrals).

Proof. First we prove the assertion for such functions f , g which are constant on the
subintervals [

0,
1
n

)
,

[
1
n
,
2
n

)
, . . . ,

[
n− 2
n

,
n− 1
n

)
,

[
n− 1
n

, 1
]

of the interval [0, 1] and vanish elsewhere. Let a1, . . . , an and b1, . . . , bn denote the values
of f and g on these subintervals, respectively. Then we have∫ 1

0
r(t) dt = [A2 + max(A2, A3) + · · · + max(A2n−1, A2n) +A2n]

1
2n
,

where

(2.3) Am = max
i+j=m

1≤i, j≤n

aibj (m = 2, 3, . . . , 2n),

and ∫ 1

0
f2(x) dx =

1
n

n∑
i=1

a2
i ,

∫ 1

0
g2(y) dy =

1
n

n∑
i=1

b2i .

Thus the inequality to be proved reduces to the inequality

(2.4)
1
2
[A2 + max(A2, A3) + · · · + max(A2n−1, A2n) +A2n] ≥

(
n∑
i=1

a2
i

) 1
2
(

n∑
i=1

b2i

) 1
2
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for any sequences of non-negative numbers a1, . . . , an; b1, . . . , bn.

First we consider the case

(2.5) a1 ≥ a2 ≥ · · · ≥ an, b1 ≥ b2 ≥ · · · ≥ bn.

This implies A2 ≥ A3 ≥ · · · ≥ A2n. It is enough to prove (2.4) for the special case
a1 = b1 = 1. We prove then that

(2.6) 2A2 +A3 + · · · +A2n−1 +A2n ≥
n∑
i=1

a2
i +

n∑
i=1

b2i

which is stronger than the required inequality because

1
2

(
n∑
i=1

a2
i +

n∑
i=1

b2i

)
≥
(

n∑
i=1

a2
i

) 1
2
(

n∑
i=1

b2i

) 1
2

.

Let us arrange the numbers a2, . . . , an, b2, . . . , bn according to their order of magnitude.
We may suppose that the first number is a2. If some a’s are equal we keep among these
the original ordering and the same is done to the b’s. If ai = bj for some i > 2 and
j > 1 then the ordering between these two numbers is bj , ai. Let ar be the first among
a3, . . . , an which is smaller than or equal to b2. It is possible, of course, that such an ar
does not exist, i.e. an > b2. In this case anbm−n ≥ b2bm−n ≥ b2m−n (m = n + 2, . . . , 2n),
thus (2.6) follows then from the relations A2 = a1b1 = 1, Am ≥ am−1b1 = am−1 ≥ a2

m−1

(m = 3, . . . , n + 1), Am ≥ anbm−n (m = n + 2, . . . , 2n). In the case that ar exists the
following reasoning applies. We associate with each bj the nearest a to the left: let ai(j)
be this number. Similarly, we associate with each ap the nearest b to the left: let bq(p) be
this number. We have

ai(j)bj ≥ b2j (j = 2, . . . , n), apbq(p) ≥ a2
p (p = r, . . . , n).

It is easy to see that for any j and p satisfying 2 ≤ j ≤ n, r ≤ p ≤ n, the relation
i(j) + j �= p + q(p) holds. In fact there is no ap between ai(j) and bj. Consequently ap is
either to the right from bj in which case we have q(p) ≥ j, p > i(j) or p ≤ i(j) in which
case q(p) < j. A second remark is that the numbers i(j) + j (j = 2, . . . , n) are different
from each other and the same holds for the numbers p + q(p) (p = r, . . . , n). From these
we conclude that

A3 +A4 + · · · +A2n ≥ A2
3 + · · · +A2

r +Ar+1 + · · · +A2n

≥ a2
2 + · · · + a2

r−1 +
2∑
p=r

apbq(p) +
n∑
j=2

ai(j)bj ≥ a2
2 + · · · + a2

r−1 +
n∑
p=r

a2
p +

n∑
j=2

b2j .

This proves (2.6) because A2 = a1b1 = 1.
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Now we prove that if we perform independent permutations on the numbers (2.5) then
the left hand side of (2.4) becomes the smallest at the original non-increasing ordering.
Let us consider the following scheme (illustrated in the case n = 3):

(2.7)

a1b1 A2

a1b2 a2b1 A3

a1b3 a2b2 a3b1 A4

a2b3 a3b2 A5

a3b3 A6

with the row maxima at the right hand side. If in the sequence a1, . . . , an we interchange
ai and aj then this means in the scheme (2.7) that the ith and jth northeast-southwest
rows are interchanged. The situation is similar if we interchange bi and bj in the sequence
b1, . . . , bn. Under such transformations the horizontal rows interchange some elements.
The following assertion is true, however. The kth largest horizontal row maximum in the
original scheme is not larger then the kth largest horizontal row maximum of another
scheme obtained from the original by some (independent) permutations of the skew rows.
In other terms, if B2, . . . , B2n are the horizontal row maxima of the transformed scheme
and B∗

2 , . . . , B
∗
2n denote the same numbers but arranged according to their magnitude, i.e.

B∗
2 ≥ B∗

3 ≥ · · · ≥ B∗
2n, then

(2.8) Ai ≤ B∗
i (i = 2, . . . , 2n).

In (2.8) we already took into account that A2 ≥ A3 ≥ · · · ≥ A2n. To prove this statement,
suppose that the kth largest horizontal row maximum in the original scheme is realized
by the element apbq. Then in the rectangle

(2.9)

a1b1 a2b1 . . . apb1
a1b2 a2b2 . . . apb2
. . . . . . . . . . . . . . . . . . . . .
a1bq a2bq . . . apbq

which stands skew in the scheme, all numbers are greater than or equal to apbq. We remark
that k = p+ q− 1. Now it is easy to see that under any permutations of the skew rows of
the original scheme, the numbers (2.9) cannot be condensed into less than k = p + q − 1
rows. This means

B∗
k+1 ≥ Ak+1(= apbq) (k = 1, . . . , 2n − 1),

which are the required inequalities.

We arrived at the final step of the proof of the inequality (2.4). From relation (2.8) we
conclude

A2 +
2n∑
i=2

Ai ≤ B∗
2 +

2n∑
i=2

B∗
i = B∗

2 +
2n∑
i=2

Bi.
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On the other hand we have for an arbitrary sequence of numbers B2, . . . , B2n,

B∗
2 +B2 + · · · +B2n =≤ B2 + max(B2, B3) + · · · + max(B2n−1, B2n) +B2n,

where B∗
2 is the largest among B2, . . . , B2n. Hence it follows for our non-negative numbers

1
4

[
A2 +A2n +

2n−1∑
i=2

max(Ai, Ai+1)

]2

=
1
4

[
A2 +

2n∑
i=2

Ai

]2

≤ 1
4

[
B2 +B2n +

2n−1∑
i=2

max(Bi, Bi+1)

]2

.

This means that the left hand side of (2.4) is the smallest at the original permutations of
the sequences a1, . . . , an; b1, . . . , bn.

If f , g are continuous functions in some closed intervals and are equal to 0 elsewhere
then these can be uniformly approximated by such functions for which we already proved
the integral inequality (2.2). Thus (2.2) holds for these functions f , g too.

If f and g are continuous on the entire real line then first we define

fT (x) = f(x) if |x| ≤ T, and fT (x) = 0 otherwise,
gT (y) = g(y) if |y| ≤ T, and gT (y) = 0 otherwise.

It follows that
r(t) = sup

x+y=2t
f(x)g(y) ≥ max

x+y=2t
fT (x)gT (y) = rT (t).

So we have

∫ ∞

−∞
r(t) dt ≥

∫ ∞

−∞
rT (t) dt ≥

(∫ ∞

−∞
f2
T (x) dx

) 1
2
(∫ ∞

−∞
g2
T (y) dy

) 1
2

,

and hence we infer that (2.2) also holds.

Let us now prove the theorem for arbitrary non-negative Lebesgue measurable func-
tions. It is enough to consider functions which are bounded and equal to zero outside the
interval [0, 1]. We may also suppose that both f and g have a finite number of different
values. In fact every measurable bounded function can be uniformly approximated by
such functions with arbitrary precision.

The measurability of r(t) = supx+y=2t f(x)g(y) will be proved as follows. The space R2

can be subdivided into a finite number of disjoint rectangular Lebesgue measurable sets
E1, . . . , EN each of which has the property that the function of two variables f(x)g(y) is
constant on it. The sets

Hi = {t | 2t = x+ y, (x, y) ∈ Ei} (i = 1, . . . , N)
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are clearly measurable. If E1, . . . , EN are arranged so that the values of f(x)g(y) follow
each other according to the order of magnitude where the largest value is the first, then
r(t) is constant on the sets

Hi\
N⋃

j=i+1

Hj (i = 1, . . . , N − 1), and HN ,

which proves the measurability of r(t).

Let F be the class of functions defined on [0, 1] consisting of all non-negative step
functions and all functions which can be obtained in the following way: take any non-
negative step function h(x), any sequence of intervals I1, I2, . . . with finite sum of lengths
and define

(2.10) k(x) = 0 if x ∈
∞⋃
k=1

Ik, and k(x) = h(x) otherwise.

This class of functions has the property that for any pair f , g in F , inequality (2.2) holds.
This statement is trivial for step functions. If f and g are in F and one of them or both
are not step functions then

f(x) = lim
i→∞

fi(x), g(y) = lim
i→∞

gi(y),

where fi, gi are defined so that on the right hand side of (2.10) we put h = f resp. h = g
and write

⋃i
k=1 Ik instead of

⋃∞
k=1 Ik. It follows that

sup
x+y=2t

f(x)g(y) = max
x+y=2t

f(x)g(y) = lim
i→∞

max
x+y=2t

fi(x)gi(y),

whence we conclude∫ 1

0
sup

x+y=2t
f(x)g(y) dt = lim

i→∞

∫ 1

0
max
x+y=2t

fi(x)gi(y) dt

≤ lim
i→∞

(∫ 1

0
f2
i (x) dx

) 1
2
(∫ 1

0
g2
i (y) dy

) 1
2

=
(∫ 1

0
f2(x) dx

) 1
2
(∫ 1

0
g2(y) dy

) 1
2

.

As the next and final step in the proof we show that every Lebesgue measurable and
finitely valued function defined in [0, 1] is the limit in measure of a sequence of functions
fi ∈ F (i = 1, 2, . . .), where

(2.11) fi(x) ≤ f(x) (0 ≤ x ≤ 1; i = 1, 2, . . .).

To prove this we denote by d1, . . . , dn (d1 < · · · < dn) the values of the function f
and by D1, . . . ,Dn those measurable sets where f takes on these values. Let us cover
Dj = [0, 1]\Dj by a sequence of intervals

I
(j)
i1 , I

(j)
i2 , . . . (i = 1, 2, . . . ; j = 1, . . . , n),
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where the sum of the lengths of these intervals tends to the Lebesgue measure of Dj as
i→ ∞. Let us define fi in the following manner

(2.12) fi(x) = dj if x �∈
∞⋃
k=1

I
(j)
ik (j = 1, . . . , n) and fi(x) = 0 otherwise.

For every i = 1, 2, . . . we have fi ∈ F , (2.11) is fulfilled, and the sequence (2.12) converges
to f in measure.

If the sequence gi (i = 1, 2, . . .) is defined in a similar way in connection with g then
we conclude∫ 1

0
sup

x+y=2t
f(x)g(y) dt ≥

∫ 1

0
sup

x+y=2t
fi(x)gi(y) dt

≥
(∫ 1

0
f2
i (x) dx

) 1
2
(∫ 1

0
g2
i (y) dy

) 1
2

→
(∫ 1

0
f2(x) dx

) 1
2
(∫ 1

0
g2(y) dy

) 1
2

.

This completes the proof of Theorem 1. �

3 The main theorems

The main result of this paper is the following

Theorem 2. Let Q(x) be a convex function defined on the entire n-dimensional space
Rn. Suppose that Q(x) ≥ a, where a is some real number. Let ψ(z) be a function de-
fined on the infinite interval [a,∞). Suppose that ψ(z) is non-negative, non-increasing,
differentiable, and −ψ′(z) is logarithmic concave3. Consider the function f(x) = ψ(Q(x))
(x ∈ Rn) and suppose that it is a probability density4, i.e.

(3.1)
∫
Rn

f(x) dx = 1.

Denote by P{C} the integral of f(x) over the measurable subset C of Rn. If A and B are
any two convex sets in Rn, then the following inequality holds:

(3.2) P{λA+ (1 − λ)B} ≥ (P{A})λ(P{B})1−λ (0 < λ < 1).

Remark 1. Condition (3.1) implies that ψ(z) → 0 as z → ∞. Otherwise f(x) would
have a positive lower bound contradicting the finiteness of the integral (3.1)

3A function h(x) defined on a convex set K is said to be logarithmic concave if for any x, y ∈ K and
0 < λ < 1 we have h(λx + (1 − λ)y) ≥ [h(x)]λ[h(y)]1−λ.

4It would be enough to suppose that the integral of f(x) is finite on the entire space Rn.
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Remark 2. We supposed that Q(x) is bounded from below. Dropping this assumption
and allowing z to vary on the entire real line, where we suppose that ψ(z) satisfies the
same conditions as before, we can deduce from the other assumptions of Theorem 2 that
Q(x) is bounded from below.

For if Q(x) were unbounded from below then for every real number b the set

(3.3) {x | Q(x) ≤ b}
would be unbounded and convex. Consequently the Lebesgue measure of (3.3) would
equal infinity. Now the function ψ(z) cannot vanish everywhere because of (3.1). Thus if
Q(x) is unbounded from below then f(x) is greater than or equal to a positive number on
a set of infinite Lebesgue measure. This contradicts (3.1).

Remark 3. We may allow Q(x) to take on the value ∞. In this case we require that
ψ(∞) = 0.

Proof of Theorem 2. Consider the one parameter family of sets

(3.4) E(v) = {x | f(x) ≥ v} = {x | Q(x) ≤ ψ−1(v)} (v > 0),

and the corresponding Lebesgue measures f(v) = μ{E(v)} (v > 0). As the integral of
f(x) is finite over the entire space Rn it follows that the measures F (v) are finite for every
v. Furthermore all non-empty sets E(v) (v > 0) are convex, thus they must be bounded
as well. Finally, the sets (3.4) are closed because Q(x) is continuous. The integral of f(x)
on Rn can be expressed in the form

(3.5)
∫
Rn

f(x) dx = −
∫ ∞

0
v dF (v) =

∫ ∞

0
F (v) dv,

where we have used partial integration and the following formulas

F (v) = 0 (v > ψ(a)), lim
v→0

vF (v) = 0.

The first relation is trivial, the proof of the second relation is given below. For any ε > 0
we have

−
∫ ∞

0
v dF (v) ≥ −

∫ ∞

ε
v dF (v) = εF (ε) +

∫ ∞

ε
F (v) dv ≥

∫ ∞

ε
F (v) dv.

Thus the integral on the right hand side of (3.5) is finite. Taking this into account we see
from the line above that limε→0 εF (ε) exists. This limit cannot be positive as

∫ ε
0 F (v) dv

is finite.

Let us introduce the notations

K(v) = {x | Q(x) ≤ v}, L(v) = μ{K(v)} (−∞ < v <∞),
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where μ is again the symbol of Lebesgue measure. Then, for every v > 0, E(v) =
K(ψ−1(v)) and F (v) = L(ψ−1(v)). Using this notation we can rewrite (3.5) in the form∫

Rn

f(x) dx =
∫ ∞

0
F (v) dv =

∫ ψ(a)

0
L(ψ−1(v)) dv.

Applying the transformation z = ψ−1(v) and observing that ψ−1(0) = ∞, we obtain that∫
Rn

f(x) dx =
∫ ∞

a
L(z)[−ψ′(z)] dz.

The above reasoning can be applied for an arbitrary measurable subset C of Rn with
the difference that instead of E(v), K(v) we have to work with the intersections E(v)∩C
and K(v) ∩ C. Introducing the notation L(C, v) = μ{K(v) ∩ C}, we can write

(3.6)
∫
C
f(x) dx =

∫ ∞

a
L(C, z)[−ψ′(z)] dz

By the convexity of the function Q(x) we have for any v1 ≥ a, v2 ≥ a and 0 < λ < 1,

(3.7) K(λv1 + (1 − λ)v2) ⊃ λK(v1) + (1 − λ)K(v2).

Let A and B be any convex sets in Rn. Considering the Minkowski sum λA + (1 − λ)B
with the same λ as in (3.7), it is easy to see that

K(λv1 + (1 − λ)v2) ∩ [λA+ (1 − λ)B] ⊃ λ[K(v1) ∩A] + (1 − λ)[K(v2) ∩B].

By the Theorem of Brunn,

(3.8) [L(λA+ (1 − λ)B, λv1 + (1 − λ)v2)]
1
n ≥ λ[L(A, v1)]

1
n + (1 − λ)[L(B, v2)]

1
n .

We shall use the following consequence of (3.8):

(3.9) L(λA+ (1 − λ)B, λv1 + (1 − λ)v2) ≥ [L(A, v1)]λ[L(B, v2)]1−λ.

The function −ψ′(z) is logarithmic concave in the interval z ≥ a; hence for any v1 ≥ a,
v2 ≥ a we have

(3.10) −ψ′
(

1
2
(v1 + v2)

)
≥ [−ψ′(v1)]

1
2 [−ψ′(v2)]

1
2 .

Putting λ = 1
2 in (3.9) and multiplying the inequalities (3.9), (3.10) we obtain

L

(
1
2
A+

1
2
B,

1
2
v1 +

1
2
v2

)[
−ψ′

(
1
2
v1 +

1
2
v2

)]

≥ {L(A, v1)[−ψ′(v1)]} 1
2 {L(B, v2)[−ψ′(v2)]} 1

2 .
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It follows from this that

(3.11) L

(
1
2
A+

1
2
B, z

)
[−ψ′(z)] ≥ sup

v1+v2=2z
{L(A, v1)[−ψ(v1)]} 1

2 {L(B, v2)[−ψ′(v2)]} 1
2 .

Now we apply Theorem 1 for the functions on the right hand side of (3.11). First taking
into account (3.11) we conclude the following result∫ ∞

a
L

(
1
2
A+

1
2
B, z

)
[−ψ′(z)] dz

≥
∫ ∞

a
sup

v1+v2=2z
{L(A, v1)[−ψ′(v1)]}

1
2{L(B, v2)[−ψ′(v2)]}

1
2 dz

≥
{∫ ∞

a
L(A, v1)[−ψ′(v1)] dv1

} 1
2
{∫ ∞

a
L(B, v2)[−ψ′(v2)] dv2

} 1
2

.

In view of (3.6) this means

P

{
1
2
A+

1
2
B

}
=
∫

1
2
A+ 1

2
B
f(x) dx ≥

[∫
A
f(x) dx

] 1
2
[∫

B
f(x) dx

] 1
2

= [P{A}] 1
2 [P{B}] 1

2 .

(3.12)

Thus inequality (3.2) is proved for λ = 1
2 .

The assertion for the case of an arbitrary λ can be deduced from here by a continuity
argument. First we remark that if A1, A2, A3, A4 are arbitrary convex sets in Rn then
(3.12) implies

P

{
1
4
A1 +

1
4
A2 +

1
4
A3 +

1
4
A4

}
= P

{
1
2

(
1
2
A1 +

1
2
A2

)
+

1
2

(
1
2
A3 +

1
2
A4

)}

≥
[{

1
2
A1 +

1
2
A2

}] 1
2
[
P

{
1
2
A3 +

1
2
A4

}] 1
4

≥ [P{A1}]
1
4 [P{A2}]

1
4 [P{A3}]

1
4 [P{A4}]

1
4 .

A similar inequality holds for any convex sets Ci (i = 1, . . . , 2N ), where N is a positive
integer. Define the sets

Ai = A (i = 1, . . . , j), Bi = B (i = 1, . . . , k),

where we suppose that j + k is a power of 2, furthermore

(3.13) lim
j,k→∞

j

j + k
= λ.

Let j + k = 2N . It follows that

P

{
A1 + · · · +Aj +B1 + · · · +Bk

2N

}
= P

{
j

2N
A1 + · · · +Aj

j
+

k

2N
B1 + · · · +Bk

k

}
(3.14)

= P

{
j

2N
A+

k

2N
B

}
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because A and B are convex sets. On the other hand we have

P{2−N (A1 + · · · +Aj +B1 + · · · +Bk)} ≥
(

j∏
i=1

P{Ai}
)2−N (

k∏
i=1

P{Bi}
)2−N

(3.15)
= (P{A})j2−N

(P{B})k2−N
.

Comparing (3.14) and (3.15) we conclude

(3.16) P

{
j

2N
A+

k

2N
B

}
≥ (P{A})j2−N

(P{B})k2−N
.

Taking into account (3.16) and the continuity in λ of the function P{λA+ (1− λ)B}, we
see that (3.2) holds for arbitrary 0 < λ < 1. Thus the proof of Theorem 2 is complete.

Theorem 3. Let f(x) = ψ(Q(x)) be a probability density in Rn satisfying the condi-
tions of Theorem 2 and A ⊂ Rn a convex set. Then the function

(3.17) h(x) = P{A+ t} (t ∈ Rn)

is logarithmic concave in Rn.

Proof. Let t1, t2 be arbitrary vectors in Rn and let 0 < λ < 1. Then we have

λ(A+ t1) + (1 − λ)(A+ t2) = A+ [λt1 + (1 − λ)t2].

In fact if x ∈ A, y ∈ A then

λ(x + t1) + (1 − λ)(y + t2) = [λx + (1 − λ)y] + [λt1 + (1 − λ)t2]

and we supposed that A is convex. Thus by Theorem 2

P{A+ [λt1 + (1 − λ)t2]} = P{λ(A+ t1) + (1 − λ)(A+ t2)}
≥ (P{A+ t1})λ(P{A+ t2})1−λ,

which means that
h(λt1 + (1 − λ)t2) ≥ [h(t1)]λ[h(t2)]1−λ. �

Theorem 4. Let F (x) be a continuous multivariate probability distribution function
the probability density of which is of the form f(x) = ψ(Q(x)) and satisfies the conditions
of Theorem 2. Then F (x) is a logarithmic concave function in Rn.

Proof. Apply Theorem 3 to the set A = {z | z ≤ 0} and take into account that
F (x) = P{A+ x} for x ∈ Rn. �
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4 Examples of probability measures satisfying the condi-

tions of Theorem 1

The most important multivariate probability distribution is the normal distribution. Its
density is given by

(4.1) f(x) =
1

(2π)
n
2 |C| 12

e−
1
2
(x−m)′C−1(x−m) (x ∈ Rn),

where m ∈ Rn is an arbitrary vector and C is a positive definite matrix the determinant
of which is denoted by |C|. Vectors are considered as column matrices as well and the
prime means transpose. This function satisfies the conditions of Theorem 2. In fact f(x)
can be written as

f(x) = ψ(Q(x)) (x ∈ Rn)

with

(4.2) ψ(z) = Ke−z
α

(z ≥ 0) and Q(x) =
[
1
2
(x − m)′C−1(x − m)

]1/α

,

where α is any fixed number satisfying 1 ≤ α ≤ 2 further K is the constant standing on
the right hand side in (4.1). That ψ(z) has the required property, is trivial. Only Q(x)
needs a remark. It is well known that a function

(x′Dx)
1
2 (x ∈ Rn)

is convex in the entire space provided D is positive semidefinite. This implies the convexity
of Q(x) in (4.2).

Three further probability distributions will be discussed. In all cases we shall show
that the probability densities are logarithmic concave in the entire space Rn.

The probability density f(X) of the Wishart distribution is defined by

f(X) =
|X|N−p−2

2 e−
1
2

SpC−1X

2
N−1

2
pπ

p(p−1)
4 |C|N−1

2
∏p
i=1 Γ

(
N − i

2

)

if X is positive definite, and f(X) = 0 otherwise. Here C and X are p × p matrices, C
is fixed and positive definite while X contains the variables. In view of the symmetry
of the matrix, the number of independent variables is n = 1

2p(p + 1). We suppose that
N ≥ p + 2. It is well known that the set of positive definite5 p × p matrices is convex in
the n = 1

2p(p+ 1)-dimensional space.

5Any positive definite (or semi-definite) matrix is supposed to be symmetrical in this paper.
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We show that f(X) is logarithmic concave on this set6. To this it is enough to remark
that for any 0 < λ < 1 and any pair X1, X2 of positive definite matrices the inequality

(4.3) |λX1 + (1 − λ)X2| ≥ |X1|λ|X2|1−λ

holds, where we have a strict inequality if X1 �= X2 (see [1]).

The multivariate beta distribution has the probability density f(X) defined by

f(X) =
c(n1, p)c(n2, p)
c(n1 + n2, p)

|X| 12 (n1−p−1)|I −X| 12 (n2−p−1),

If X and I −X are positive definite, and f(X) = 0 otherwise (see [7]), where

1
c(k, p)

= 2
pk
2 π

p(p−1)
4

p∏
i=1

Γ
(
k − i+ 1

2

)
,

I is the unit matrix, I and X are of order p× p, p is a positive integer. We suppose that
n1 ≥ p+1, n2 ≥ p+1. The number of independent variables of the function f(X) is equal
to n = 1

2p(p+ 1).

It is clear that the set of positive definite matrices X for which I −X is also positive
definite, is convex. The function f(X) is zero outside this set and is logarithmic concave
on this set which can be seen very easily on the basis of (4.3).

Finally we consider the Dirichlet distribution (see e.g. [11]) the probability density of
which is given by the formula

f(x) = Kxp1−1
1 . . . xpn−1

n (1 − x1 · · · − xn)pn+1−1

if xi > 0 (i = 1, . . . , n), x1 + · · · + xn < 1, and f(x) = 0 otherwise. Here we have set

K =
Γ(p1 + · · · + pn+1)
Γ(p1) · · ·Γ(pn+1)

. The logarithm of this function in the positivity domain is

(4.4) log f(x) = logK +
n∑
i=1

(pi − 1) log xi + (pn+1 − 1) log(1 − x1 − · · · − xn).

We suppose that pi ≥ 1 (i = 1, . . . , n+ 1). This implies that the function (4.4) is concave.
In fact the second term is trivially concave while log(1 − x1 − · · · − xn) is an increasing
and concave function of a linear function. Hence the assertion.

6If a function is logarithmic concave on a convex set and equal to zero elsewhere then the function is
logarithmic concave in the entire space.
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5 Application to stochastic programming

Let us now return to Problem (1.1) and consider the x-function in the first constraint
which is given separately in (1.2). We show if the random variables β1, . . . , βm have a
continuous joint distribution satisfying the conditions of Theorem 2, then the function h(x)
is logarithmic concave in the entire space Rn. We recall that the functions g1(x), . . . , gm(x)
are supposed to be concave in Rn.

Let x,y ∈ Rn and 0 < λ < 1. In view of the concavity of the functions g1(x), . . . , gm(x)
we have

gi(λx + (1 − λ)y) ≥ λgi(x) + (1 − λ)gi(y) (i = 1, . . . ,m).

The function P{β1 ≤ z1, . . . , βm ≤ zm} of the variables z1, . . . , zm is logarithmic concave
by Theorem 4, and also a probability distribution function; hence it is monotonic non-
decreasing in all variables. Taking these into account we conclude

h(λx + (1 − λ)y) = P{g1(λx + (1 − λ)y) ≥ β1, . . . , gm(λx + (1 − λ)y) ≥ βm}
≥ P{λg1(x) + (1 − λ)g1(y) ≥ β1, . . . , λgm(x) + (1 − λ)gm(y) ≥ βm}
≥ [P{g1(x) ≥ β1, . . . , gm(x) ≥ βm}]λ[P{g1(y) ≥ β1, . . . , gm(y) ≥ βm}]1−λ
= [h(x)]λ[h(y)]1−λ,

what was to be proved. �
Considering Problem (1.1), we may take the logarithm of both sides of the first con-

straint. Then we obtain a convex programming problem. For some reason we may leave
it in the original form (the computational solution may prefer this form), then we have
a quasi-convex programming problem because a logarithmic concave function is always
quasi-concave. Any of these versions can be solved by non-linear programming methods
(see e.g. [4], [8], [12]). We emphasize again that this short remark concerning the applica-
tion of the theory presented in this paper is just for illustration and to disclose the origin
of the problem.
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Author’s remarks:

1. The right statement of Theorem 1 is that if f , g are non-negative, Borel measurable
functions defined on R, then the function r is Lebesgue measurable and the inequality
(2.2) holds true.

The proof of this theorem requires only modification of the one presented in the paper:

(a) In the paragraph beginning with “Let us now prove...” replace Borel for Lebesgue.

(b) Five lines below write: “The Lebesgue measurability of ...”.

(c) In the next line replace Borel for Lebesgue.

(d) Four lines below write “... are clearly Lebesgue measurable”.

2. A more elegant way to state Theorem 2 is the following:

Theorem 2. Let f(x) = exp(−Q(x)), x ∈ Rn be a p.d.f., where Q(x) is a convex
function on Rn and A, B convex subsets of Rn. Then for every 0 < λ < 1 the following
inequality holds true:

P{λA+ (1 − λ)B} ≥ (P{A})λ(B{B})1−λ.
No change is required in the proof.

3. Ref. [9] appeared in Math. Programming 4 (1973), 202–221.
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