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Introduction

In the present paper terminology “total” is used for a generalization of the Burkill integral
and multiplicative integral, respectively. The functions, the totals of which are considered,
take their values from a Banach algebra B with a unity. This means a Banach space B in
which for every pair f € B, g € B a product fg € B is defined such that ||fg| < || f] 9]
and if h € B, then f(g+ h) = fg+ fh, (9+h)f = gf + hf, finally there is an e € B with
the properties ef = fe = f, ||e]| = 1. It is proved that under some conditions the additive
(and multiplicative) total of a multiplicative (and additive, resp.) set function exists. The
theorems of this type are useful in solving some functional equations (see e.g. [3] and
§ 6) and studying the properties of multiplicative set functions by tracing the problems to
those formulated in terms of additive set functions.

The multiplicative integral (on the real axis for matrix-valued functions) has been intro-
duced by V. VOLTERRA [12], [13], [14] and considered by several authors: L. SCHLESINGER
[8], [9], [10], [11], G. RascH [7], R.L DOBRUSIN [3]; G. BIRKHOFF [2] has given a gener-
alization of this integral by using more general notions instead of matrices. The additive
integral (on the real axis for matrix-valued functions) has been considered by M. FRECHET
[4] and R. L. DOBRUSIN [3]. The theorems proved in the present paper are analogous
to those of DOBRUSIN [3] and will be used in the theory of stochastic set functions.! In
§ 6 we anticipate an example from this as in this special case (Example 1) the relevant
statements can be proved at once by the aid of the present paper.

§ 1. Notions and notations

Throughout the paper the basic space will be denoted by H which is supposed to be metric
and compact. We suppose that we are given a class of sets I consisting of some subsets
of H and satisfying the following conditions:
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a) K is a semi-ring, i.e. if A € K, Ay € K, then A14; € K and if A; C Ay, then
there exists a finite number of sets C1,Co,...,C), such that C; € £ (i = 1,2,...,n),
CiCr=0if i #kand Ay — Ay =), C;.2 We suppose furthermore that this can
be done always so that n < R, where R is a positive integer independent of the sets
Ay, As.

b) If h € H, then {h} € K.

c) If A € K, then for every positive integer r and every € > 0 there is a decomposition
Ay, As, ..., A, of the set A into pairwise disjoint sets of K such that max d(Ag) < e
SKRST

A finite sequence of sets Ay, Ag, ..., A, for which A; € K (i = 1,2,...,7), AjA, =0
if i # kand A =3, _, Ar € K, will be called a decomposition of the set A (or briefly
decomposition) and will be denoted by 3 = {41, A, ..., A }. If 31 = {Agl)}, 32 = {AEQ)}
are two decompositions and every AZ@) can decomposed by means of some Agl), then we
write 32 C 31. We shall use the following definitions:

DEFINITION 1 Let us suppose that to every decomposition 3 = {41, As,..., A, } there
corresponds a permutation P(3) = (4;,, 4i,, ..., 4;,) of the sets of 3 such that if 3; C 32
and P(31) is given by (A(l) AN 7Ag)), then in P(32) first come those sets of 3o which

WAl
) (M) o

decompose Az(l1 , then those which decompose A; ~ etc.

A correspondence between the decompositions and permutations described above will
be called a permutation function.

DEFINITION 2 Let f(A) (A € K) be a set function with values in the Banach algebra
B. If for every pair A, Ay of disjoint sets of I, for which A = A; + Ay € K, the relation

(%) f(A) = f(A1) + f(A2)
holds, then the set function f(A) will be called additive. (x) implies that f(0) = 0.
DEFINITION 3 Let g(A) (A € K) be a set function with values in the Banach algebra 5.

If there is a permutation function P such that for every system Aj, Ao, ..., A, of disjoint
sets of IC, for which A =37, _; Ay € K, the relation

g9(A) = I ] 9(4i,)
k=1

holds where 3 = {41, As,...,A,} and P(3) = (Ai, Ay, ..., Ai,.), then the set function
g(A) will be called multiplicative. We suppose in this case that f(0) = e.

2This notion of semi-rings, which is more general than that of P. HALMOS (cf. Measure theory, Chapter 1,
§ 4), is due to A. CSASZAR.

31f B C H, then d(B) denotes the diameter of the set B, i.e. d(B) = supp(hi,hz), where h; € B,
h2 € B and p(h1, h2) is the distance between hi and hs.



If B is commutative, then we do not require the existence of a permutation function
P. All the statements in this paper are to be taken in the sense that if B is commutative,
then we omit the requirements regarding to the permutation function.

DEFINITION 4 A set function a(A) (A € K) with values in B is called of bounded
variation if there is a number K such that for every system Aj, Ao, ..., A, of disjoint sets
of K we have

() > lla(An)] < K.

k=1

If A; € A (i =1,2,...,7), then the smallest K for which relation (x*) holds will be
denoted by Var,(A).

DEFINITION 5 A set function a(A4) (A € K) with values in B is said to be v-continuous
if for every sequence B, B, ... of sets of I, for which klim B, = 0 and klim d(Bg) = 0,
— 00 — 00
the relation
lim Vary(Bg) =0

k—o0

holds.

DEFINITION 6 Let a(A) (A € K) be a set function with values in B. Suppose that
there exists a G(B) such that for every ¢ > 0 a number 6 > 0 can be found with the

property

r

> a(Ar) - B(B)

k=1

<e

i

provided that max d(Ag) < where Ay, Ag, ..., A, is a decomposition of the set B € K.
SKRST
In this case we say that the additive total of a(A) exists in B and we denote it by

B(B) = Sg a(dA).

DEFINITION 7 Let a(A) (A € K) be a set function with values in B. Suppose that
there exists a permutation function P and a y(B) € B such that for every € > 0 a number
d > 0 can be found with the property

<e¢

)

[T a4i) —~(B)
k=1

provided that max d(Ag) < where (A;,, Aiy, ..., A, ) is the permutation corresponding
T

to the decomposition 3 = {A;, Aa, ..., A} of the set B € K. In this case we say that the
multiplicative total of «(A) exists in B relative to the permutation function P. This total
will be denoted by

v(B) = pl 1ga(dA).



It is easy to see that both totals are uniquely determined and

S ia,a(dA) = Su,a(dA) + Sa,a(dA),
P|_|A1+A2+---+Ara(d‘4) = Pl_lAila(dA) ) Pl_lAiga(dA) T 77|—|Aira(d‘4)a
where A; e K (i =1,2,...,7r), ;A =0if i # k and (4;,, A;,, ..., 4;.) is the permutation
given by P, provided that the totals on both sides exist. If a1(A) and ag(A) are two set

functions defined on K and both are additively totalizable in B, then the same holds for
a(A) = cra1(A) + oz (A) and

SB Oé(dA) = ClsB Oél(dA) + CQSB OéQ(dA),
where c¢1, co are constants. An analogous relation holds also for the multiplicative total
if B is commutative. In this case if the multiplicative totals of a;(A) and aa(A) exist in

B € K, then that of a(A) = a1 (A)ae(A) in B exists too and

[z a(dA) =T a1(dA) T g as(dA).

§ 2. Preliminary lemmas

In this § we prove some simple inequalities for Banach algebras and lemmas for additive
and multiplicative set functions.

LEMMA 1 If fieB, g€ B (i=1,2,...,n) and

J
11
=1

n

SKu Hgl SK (j:]-727°°°7n)7
i=j

where K is a constant, then

(1)

n n
15— 119
i=1 i=1

n
<K Nfi—aill.
=1

PROOF. Since

I1A-T1e=>_rfi- fir(fi— 9)gis1 - gn,
=1 =1 =1

it follows that

n

Hfi_ﬁgi

=1 i=1

n

n
<Y WA Sl i = gill llgivr - gnll < K2 Nfi = aill-

i=1 i=1




LEMMA 2 Let f1, fo,..., fn be such elements of B that

n
Slfil<e<t.
=1

In this case if r < n, then

n

H(€+fi)_ €+Zfi+ Z Jisfig oo fir +- -
i=1

i=1 1<i1<ia<n

n r+1
(2) + > fiskig - fin ||| < 1ic (Z”fi”) -
=1

1< <2...<tr<n

PROOF. Let us start from the identity

n

[e+m=ec+d fi+ > fafot-+fifo fn

i=1 =1 1<i1<iz2<n

It follows from this that

n n
[T+ —{etDd i+ D fufut--
=1 =1 1<i1<12<n
+ > fisfia -+ fir
1<41<12...<r<n
< Z (20 7 e [ 7R (A o | | Y R W Y
1< <2< . <irgp1<Nn
n r+1 n n
< <Z\|fi\|> bt (Z\Ifi\l)
=1 =1
1 n r+1
1 (z HfiH)
1- Z Ifill M=
=1
<

1 n r+1
< — (anz-n)
i=1

what was to be proved.

For » = 0 and r = 1 we obtain as special cases of Lemma 2 the inequalities

3) [T+ 7~ < = S U5,
=1 =1
n n n 2
a [0 (e 00)| < 2 ()
=1 i=1 i=1




LEMMA 3 If a(A) (A € K) is a set function of bounded variation with values in the
Banach algebra B, then there exists a countable set Hy C H such that a(h) = 0 if h €
H — Hy (we use the notation a(h) for a({h})).

1
PROOF. Since a(A) is of bounded variation, the set of those h’s for which ||a(h)|| > —,

n
is finite. If n runs over the positive integers, then we obtain all the points A for which
|la(R)|| > 0. Thus Lemma 3 is proved. O

LEMMA 4 Let a(A), (A € K) be a multiplicative set function with values in the Banach
algebra B for which K = Vary_o(H) < co. If B € K, By € K, B; C By and By — By =
> peq Cr where C, € K (k=1,2,...,7), then

Varg_o(By — B1) < (K + 1)) Var,_(C)).
k=1

PROOF. Let Ay, As,..., A, be a system of disjoint sets of IC,

n
> A, CB,- B
k=1

In this case .
Ap =) A (k=12,...,n).
i=1

If 31, = {ArC1, ApCo, ..., ACr} and P(3) = (ArCyy, AkCiy, . .., ArCh, ), then
a(Ay) =[] a(4xCy).
=1

Since ||a(B)|| < ||a(B) —e]| +1 < K 41 (B € K), it follows that

ﬁ Oé(AkCil) < (K + 1)T,

l=r1

T1

[ «ArCi)| < (K +1)r,
=1 )

Hence, applying the inequality (1), we get

olle—a(A) <D (K +1)° ) fle— a(AxGr)|| < (K +1)* Y Vara—e(Ch).
k=1 k=1 =1 I=1
Thus Lemma 4 is proved. O

If « is additive, then we have the stronger relation

Varg(By — B1) < Y _ Vara(Cy).
k=1



LEMMA 5 Let us suppose that the set function a(A) (A € K) with values in the Banach
algebra B is multiplicative (and additive, resp.), K = Var,_q)(H) < oo and a(A) — a(0)
is v-continuous. Then for every € > 0 there can be found a § > 0 such that if U € K is a
set with d(U) < ¢ and ||a(h) — «(0)|| < e for h € U, then

(5) Varg_a(0)(U) < 2(K +1)*Fe.

ProoF. Contrary to the assertion let us suppose that there exists an g > 0 and a
sequence of sets U, for which

lim d(U) =0, [a(h) — a(0)] < &

if h € Y72, Uy and
(6) Varg_a(o) (Ur) > 2(K +1)*e.

Since H is a compact metric space, we may suppose without restricting the generality that
all the sequences hy, where hy, € Uy (k = 1,2,...), are convergent. Let h' denote their
common limit element. We can distinguish two cases.

In the first case h’ is contained at most in a finite number of sets U,,. This implies that

lim U,, = 0 and thus, since o — «(0) is v-continuous,
n—oo

lim Var,_q)(Un) =0

n—oo

which contradicts (6).

In the second case, if A’ is contained in infinitely many U,, then we choose a number

N such that
Vara,a(o)(UN - h/) < €p.-

The possibility of this assured by Lemma 4 and the v-continuity of o — «(0). According to
(6) there exists in Uy a system of disjoint sets Aq, Ao, ..., A, that satisfies the inequality

D la(Ar) = a(0)] > 2(K + 1)
k=1
The element ' is contained at most in one of the sets A;. If b’ ¢ >"7_| A;, then
20(K + 1?7 <> [la(Ar) — a(0)]| < Varg_q@)(Un — ') <&
k=1

which is a contradiction. On the other hand, if h’ € A,,, then there exist disjoint sets
C1,Cq,...,Cp (n < R) of the class of sets K such that

Ap =1{W}+) Ch
k=1



Now, let a be multiplicative. Applying Lemma 4 for By = A,,, B1 = 0, we get

le — a(Am)ll < (K +1)°F <Z Vara—e(Ck) + [le - Oé(h’)H> -

k=1

Using this relation we conclude
2K +1)%Eeg <Z||e—a (A

= Z le = a(Ar) || + [le — a(Am)]|

k#m

S (E+DM Y lle— (A + ) Vara—e(Cy)

k#m k=1
+lle— a(h’)ll>
(K + 1)*(Vara—e(Uy — h') + [le — a(R)]))

<
< 2e0(K + 1)

If « is additive, then
2(K +1)° €0<ZH0¢ (Ap)l

- Z (ARl + [ Am) |

k#m

<Y (A +Z [(Cr) | + [[e(W)]]
k#m

< Var(Uy — 1) + Ha( ol

< 2e0 < 260(K + 1)2E,

In both cases we arrived at contradictions, hence our lemma is proved. O

LEMMA 6 If a(B) (a(B) € B, B € K) is a set function of bounded variation, then for
every system By, Ba, ..., B, of disjoint sets of K

r

[1(e+a(By)

k=1

SKla

where K1 is a constant.

1
PROOF. Let us select from the above product those a(By)’s for which ||a(By)|| > 3

The number of these elements is at most N; = [2 Var,(H)|. After this we form a maximal



number of groups of the remaining «a(B;)’s such that in every group the sum of the norms

11
fall in the interval {Z, 5] . The number of these groups is at most Ny = [4 Var,(H)]. The

sum of the norms of the remaining elements does not exceed 1 Hence,

r

H(€+ a(By))

k=1

< 2V (Var, (H) + )M = K. O

LEMMA 7 Let us suppose that the set function a(A) (A € K) with values in the Banach
algebra B is multiplicative (and additive, resp.), K = Var,_,(o)(H) < 0o and a(A)—a(0) is
v-continuous. If By, By ... is a sequence of sets of K, h € By, (k=1,2,...), klim d(Bg) =
0, then

lim fla(By) — a(h)] = 0.

k—o0

ProOOF. Let By = {h} + S ° ™ c® ek (i=1,2,...,R k=12,...) (we may
always choose R such sets since if we had r < R, then we should complete this system by
R — r void sets) and let a be multiplicative. Applying Lemma 6 for a — e instead of «,
moreover, using the inequality (1) we obtain

R R
la(By) —a(h)| < K23 a(CF) — el| < K2 >~ Vara_o(C).
=1 i=1

Since klim Ci(k) =0(i=1,2,...,R) and a(A) — e is v-continuous,

lim Var,_(C")=0 (i=1,2,...,R)

k—o0
which proves the assertion.
Let us now consider the case of an additive «. Since a(0) = 0, we get

R

S ae®)

i=1

R
< Z Vara(Ci(k)).

i=1

la(Br) — a(h)|| =

The right-hand side tends to 0 when k& — oo, hence our statement is completely proved.
a

8 3. The additive total

In this § our purpose is to prove the following

THEOREM 1 Let f(A) - (f(A) € B) be a multiplicative set function defined on the
elements of the class of sets K. Suppose that K = Vary_.(H) is finite and the set function
f(A) — e is v-continuous. In this case the additive total

9(B) = Sp(f(dA) —¢)



exists for every B € K and

(7) Vary(B) < Vary_.(B).

PRrROOF. For the proof of the Theorem we need two lemmas.

LEMMA 8 For every h € H and every € > 0 there can be found a § > 0 such that

if Ay, A, ..., A, are pairwise disjoint sets of the class of sets K with the property that
A=31_1A, €K, he Aand d(A) <9, then

<e.

(8) Hf(A) —e—> (f(Ar) —e)

k=1

PROOF6 OF LEMMA 8 Let § be such a number that satisfies the conditions in Lemma 5

for m instead of €. The number é can be chosen so small that the sphere with

the centre h and the radius § does not contain an b’ € H (h' # h) with || f(h') —¢|| >

m. We choose furthermore ¢ so small that || f(B) — f(h)|| < i ifhe Bek,

d(B) < 6. By Lemma 7 this is always possible. Let h € A;. Obviously

Hf(A) —e— Y (f(Ar) = )| < If(A) = F(AD] + Varj_o(A—h)

k=1

< |IF(A) = FR)I +1f(A) = f(h)[| + Vary_c(A = h).

Let C1,Cy,...,Cy (n < R) be a system of disjoint sets of K for which A—{h} =>"}_, Cj.
According to Lemmas 4 and 5

Varp_o(A—h) < (K +1)*F ;w,«_e(cm < (K + 1>QRW <.
On the other hand, we have chosen § in such a way that
A = <= IFA) = FIl < =,
hence our lemma is proved. O

LEMMA 9 Let B € K. To every € > 0 there can be found a number 6 > 0 such
that if A1, Ag,..., A, (A € K; k = 1,2,...,7) is a system of disjoint subsets of B,

lrgkaic d(Ar) < 6 and Agﬁl),Ag),...,Agk) is a decomposition of the set Ay into pairwise

disjoint sets of K, then

9)

10



Proor orF LEMMA 9. We may suppose that the sets Ag) are so numbered that
if 35 = {410, AP AUy then P(i) = (AN, AP AU Since the variation of

f(A)—eisequal to K, the number of the points h € H for which || f(h)—e|| > m
2

is at most —— (K + I)QR. If such a point exists in B, then we renumber the sets Ay so that
€

K2(K +1)2R
M).By

those sets, which contain these points, be A1, Ao, ..., 4; (l <r I<
€

Lemma 8 § can be chosen so small that

Tk
10 Ap) —e— AN _oll<s & <= (k=12
If there are sets which do not contain such points and these are A;4q,...,A,, then we
choose 0 so small that besides (10) the following inequality holds:
\Y Ap) < — k=1+1,1+2,...,7).
arf— ( k) 4K ( + L0+ 2 7T)
By Lemma 5 this is possible since the sets A;11, A;19,..., A4, do not contain points h

. £ . . . (i) .
with || f(h) — €| > SK(E T 1% Applying the inequality (4) for f; = f(4;’) —e (i =

rr) we get (we may suppose that 0 < e < 2K)

F(A) —e =S (F(AD) - Hf D) —e= 2 (F(AY) )

‘ 3

i=1 i=1
rk» 2
<2 (Z HEOE eu>
i=1
(11) < 2(Varj_o(Ap))? < Q&Varf_e(Ak).

Our statement follows from the inequalities (10) and (11).

After these preparations we can complete the proof of Theorem 1. We point out
that if B € K is a fixed set and 3, = {A,} is a sequence of decompositions of B with
lim max d(Anr) = 0, then the sequence
n—oo

Z(f(Ank) - 6)

k
satisfies the Cauchy’s convergence criterion. For this purpose we consider two decomposi-
tions Ay, Ag,..., A, and A}, A5, ..., A, of the set B into pairwise disjoint sets of IC with

max d(Ay) < 5 max d(Ak.) <4 where 0 is the same number as in Lemma 9. If § is so
1<k<r 1<k<r’

small that (9) is satisfied with 5 instead of €, then, considering the superposition of the
two decompositions, a well-known argument shows that

r r’

D (F(AR) —e) =D (f(A) —e)

k=1 k=1

<e

and thus S B(f(dA) — e) exists. The relation (7) can be proved in an obvious way. O

11



§ 4. The multiplicative total

In this section we prove the following

THEOREM 2 Let g(B) (g(B) € B) be an additive set function defined on the elements
of the class of sets KC. Suppose that Var,(H) < oo and the set function g(B) (B € K) is
v-continuous. In this case for any permutation function P and for every A € K the total

F(A) = p[4(g(dB) +e)
exists and
(12) Vary_.(A) < L Varg(A),

where L is a constant independent of the set A.

ProoF. First we prove two lemmas.

LEMMA 10 For every h € H and € > 0 there can be found a 6 > 0 such that if
Bi,Bs, ..., B, are disjoint sets of K with B=Y,_, By, € K, he B, d(B) <4, then

T

9(B) +e¢—[](9(Br) +e¢)
k=1

(13) <e.

Proor or LEMMA 10. Let us suppose that h € B;. Using Lemma 6 and the inequality
(1) it follows that

T

9(B) + e~ [[(9(Br) +¢)

k=1
-1 r
= |leta(B) + e)e — [T (9(Bk) +e)(g(B) +e) T] (9(Bx) +e)
k=1 k=I+1

-1

[[(Br) +¢) e

k=1

r

I (B +e)—e

k=Il+1

+

gK%(

Let ¢ < K2. By Lemmas 5 and 7 (taking into account the remark made after Lemma 4)
0 can be chosen so that

+llg(B) —g(Bz)H> :

e
(14) Varg(C’ — h) S n,
moreover

£
1 — < =
(15) I9(C) 911 < -

12



where C € KC, h € C, d(C) < 6; then from (3) and (14) it follows

-1 r
[TaBr) +e)—e||+ || T] (9(Br) +¢) —e
k=1 k=Il+1
-1 r c
<2y NgBull +2 Y lo(Bi)ll <2 Varg(B —h) < 5
k=1 k=l+1 1
relation (15) implies that
€
B) —qg(B)| < —
I9(B) (Bl < 5727
hence our assertion holds. O

LEMMA 11 Let A € K. To every € > 0 there can be found a number § > 0 such
that if B1,Ba,...,By (Br € K; k= 1,2,...,71) is a system of disjoint subsets of A and
B,(Cl),B,(f),...,Blir’“) is a decomposition of the set By into pairwise disjoint sets of IC,
d(By) <9, then

T Tk

e+ g(By) - [[(e + 9(B)
=1

(16) <e.

k=1

1
Proor or LEMMA 11. If for a k we have Var,(Bj) < 3 then by the inequality (4) it
follows that

Tk

e+ 9(By) — [J(e +9(BY)
=1

Tk ‘ 2
<2 (Z IIQ(BS))H> < 2(Varg(By))*.
=1

The remaining part of the proof can be accomplished by the aid of Lemma 10 in a similar
way as we have proved Lemma 9 by the aid of Lemma 8.

In order to complete the proof of Theorem 2 let us consider the decompositions
{Bi,Bs,...,B.}, {B},Bj,...,Bl,} of the set A into pairwise disjoint sets of K satis-

fying max d(Bg) < 6, max d(Bj,) < & where § is a number fixed in Lemma 11. Let
1<k<r 1<k<r’

{B{,B3,...,Bl)} denote the superposition of these two decompositions. If § is so small
that the inequality (16) holds for %

5 instead of ¢, then

1

’ 11

[TBi) +e) = [T, + o) < |[1Bi) +e) = [ (a(Br,) +e)
k=1 k=1 k=1 k=1
+ (| [T(B;) +e) = T](e(Br,) +e)
k=1 k=1

13



<EPY |9Bi)+e— [ (a(Br)+e)
k=1 B!" CB;

ng =""1f

+ K> |lgBj)+e— J[ wBi)+e
k=1 By CB,
< 13 + g
— — =€
—_— 2 2 )

where the sequences iy, ji, ni are fixed by the permutation function P and in the products

H , H the factors are arranged according to the same order as they were in the
B SBiy, B, CBj,
first row. Hence the existence of

F(A) = pla(g(dB) +e¢)
follows in an obvious way.

The proof of (12) can be accomplished as follows. By making use of Lemma 1 we get

Ts

[Ta(BM) +e)—e

k=1

< KP) lg(BIW)|| < Kf Varg(By).
k=1

Hence it follows
I£(Bs) — el| < K7} Vary(Bs)

and . .
D IIF(By) —ell < KT)  Varg(By) < KiVarg(A)
s=1 s=1
whence
Vary_.(A) < Ki Vary(A)
what was to be proved. O

§ 5. Connection between the additive and multiplicative to-
tals

According to Theorems 1 and 2 the indefinite additive (and multiplicative) total of a
multiplicative (and additive, resp.) and v-continuous set function is also v-continuous.
Hence it may be a starting function of further totalization. In this § we prove that the
latter total (with respect to some permutation function) coincides with the original one.
First we prove
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THEOREM 3 Let g(B) (g(B) € B) be an additive set function defined on the elements
of the class of sets KC and satisfying the conditions of Theorem 2. If A € K and

(17) F(A) = pl 1a(g(dB) +e),

then the additive total of f(A) — e exists in every B € K and

(18) 9(B) = Sg(f(dA) —e).

Proor. Let Bi, Bo,..., B, be a system of disjoint sets of IC with the property that
A=3%_,Br ek, max d(By) < 4. Relation (16) implies that in case of a small §
SKRST

N ™

(19) > lle+g(Br) — f(Br)| <
k=1

If we introduce the notation
S B(f(dA) —e),

then by (9), choosing § small enough, we obtain

l\’)I(T)

(20) > g/ (Br) = f(Bi) —e)| <
k=1
Relations (19) and (20) imply
Z lg(Bx) — ¢/ (Bi)|| < e.
It follows that

lg(A) = g'(A)|l = <Y Ng(Be) =g (Bl < e

and thus g(A) = ¢'(A). O

A similar theorem can be proved if we start from a multiplicative set function. In
advance we remind of Definition 3 that to every multiplicative set function a permutation
function is attached. Our statement is expressed in

THEOREM 4 Let f(A) (f(A) € B) be a multiplicative set function defined on the ele-
ments of the class of sets K and satisfying the conditions of Theorem 1. If B € K and

(21) = Sp(f(dA) - o),

moreover P is a permutation function attached to f, then 7>|_|A(g(dB)—|—e) exists for every
Ae K and

(22) F(A) = pl 1a(g(dB) +e).

15



PROOF. Let us introduce the notation

F(4) = pl lalg(dB) +e).

If Ay, As,..., A, is a system of disjoint sets of K with the property that max d(Ag) <0
SRST

and B =), _, A, then by formula (9) (for a small 0)

. €
(23) Dol (AR) —e = g(AR)ll < 3
k=1
According to (16) we get furthermore that if ¢ is small enough, then
d €
(24) D lle+g(Ar) — F(AR) < 3
k=1
Hence, by (23) and (24),
(25) D OIfAR) = F(AR) <e.
k=1

Let P(3) = (Ai,, Aiy, - ., A;,) be the permutation corresponding to 3 = {A;, As, ...

By Lemma 6 there exists a K; such that

.

[f(AZk) - 6) —|—6] < K17

J
k=1

=~
Il
—

LI F )| = [T (Ai) —e) +el|| < K.
k=j k=j
Taking into account (25) and (26) and applying Lemma 1 we obtain

1£(A) = f'(AD]l = < Kfe,

[T - T] )
k=1 k=1

hence f(A) = f'(A).

ALY

g

The last two theorems show that the indefinite total of an additive (and multiplicative,

resp.) set function entirely determines the original set function.

§ 6. Examples

1. The weighted random point distribution

Let us consider a random selection of a finite number of points of H where each selected
point is weighted with a (positive or negative) integer. We suppose that the sum of

16



the weights in a set A € K is a random variable which we denote by &(A). We sup-

pose furthermore that if Ay, As, ..., A, are disjoint sets of I, then the random variables
€(A1),£(A2),...,&(A,) are independent. Let us introduce the notation
(27) Pp(A) =P(£(A) = k).

The sequences P(A) = (..., P_5(A),P_1(A),Py(A), Pi(A), P2(A),...) are elements of the
Banach algebra B of the sequences the corresponding series of which are absolutely con-
vergent with the norm of the sum of the absolute values. If the product of two elements
(...,a_1,a0,a1,...), (-..,b_1,bg,b1,...) of Bis the convolution

(28) ( > nibi; n:O,il,i2,...> ,

k=—o0

then B is commutative and has as unity element that one for which the member cor-
responding to the index 0 is equal to 1 and the others are 0. In this case P(A) is a
multiplicative set function. We may establish a more stronger statement, namely

(29) P(A) = P(A)P(A2)... = lim [T P(4)
1
if 4, e K(i=1,2,...), LA, =0fori#kand A=) 7", A € K.
We shall show that P(A) — e is of bounded variation and v-continuous. Since

[P(A) — el —ZPk ) +1—Fy(A) =2(1 - P(A)),
k£0

we have to prove the assertion for the real-valued set function 1—Py(A). Let us first extend
the definition of £(A) to R(K) which is the smallest ring* containing K. Let A1, Ao, ... be
a sequence of disjoint sets of R(K). Since we have selected only a finite number of points
from H, the sequence of independent random variables

> E(Ar)
k=1

converges with probability 1. Hence, by the three series theorem of KOLMOGOROV or
simply by the Borel-Cantelli lemma,

(e 9]

D (1= Py(4y)) < o0

k=1

On the other hand, 1— Py(A) is completely subadditive in the following sense: if Ay, As, ...
is a sequence of disjoint sets of K for which A =37 Ay € R(K), then

x
1—Py(A Zl—PoAk
k=1

4A class of sets R is called a ring if A+ B € R, A— B € R, provided that A € R, B € R. This
extension is obviously possible and relation (29) will be satisfied also in R(K).
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In fact, the event {(A) # 0 implies that at least one of (A1) # 0, {(A2) # 0, ... occurs.
Hence, by Lemma 4 of [5], 1 — Py(A) is of bounded variation and by Lemma 1 of [5]
Var;_p,(A) (A € R(K)) is a bounded measure. This last property implies that 1 — Py(A)
is v-continuous. Thus the additive total

(30) Q(B) = Sp(P(dA) - o)

exists for every B € K. This implies obviously the existence of the totals
Qo(B) = Sp(Py(d4) — 1),

Qn(B) = SpPu(dA)  (k #0).

Since the convergence in (30) holds in the norm, it follows that

(32) Qo(B) =) _Qu(B).
k+£0

(31)

Moreover, the relation
Qr(B) < —Qo(B) < Vari_p,(B) (BeKk)

implies that with Var;_p,(A) the additive set functions —Qo(B), Qx(B) (k = £1,+£2,...)
are also bounded measures. Finally, if h € H, then

Syt = R(dA) =1- Ry({h}) < 1,
hence

(33) —Qo({h}) < 1.

It is interesting to write all the solutions of (29) in a closed form, provided that the
sequence P(A) is a probability distribution. This can be done as follows. We start from a
sequence of bounded measures —Qo(B), Qx(B) (k= £1,£2,...) satisfying (32) and (33).
Then every solution of (29) can be represented as

(34) P(4)=lla(e+Q(B) (A€K),

where Q(B) = (...,Q-1(B),Qo(B),Q1(B),...). In fact, if P(A) is a solution of (29), then
the Q(B) defined by (30) has the mentioned properties, hence by Theorem 4 (34) holds.
Conversely, if Q(B) has the mentioned properties, then by Theorem 2 (34) exists and the
properties of Q(B) imply that P(A) is a probability distribution for every A € K and
(29) holds. By Theorems 3 and 4 the correspondence between the set functions P(A) and
Q(B) is one-to-one.

It is not difficult to see that Qx(B) is the expected number of points weighted with &
in the set B. (This can be deduced immediately from the results of [6] too.) If there are
no h € H such that 1 — Py({h}) > 0, then P(A) is a compound Poisson distribution, i.e.
it has the characteristic function

(35) exp 3 Qu(A) (e — 1),

k0
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If all the random points are weighted by 1, then from (35) we obtain a Poisson distribution

(36) exp Q1(A)(e™ —1).

The proof of (35) can be accomplished with the aid of the relation (34). Similar statements
are proved in [6].

2. The linear integer-valued Markov process

Let & be a Markov process on the linear interval a <t < b. We suppose that & can take
on only the values 1,2,..., N. Let K be the semi-ring of all the subintervals of [a,b] (we
permit here closed, open, semi-closed, degenerated intervals equally). If the right-hand
and left-hand limits of the transition probability matrices P(t;,t2) exists when ¢; or to
tend to a limit, then we can correspond to every I € K a matrix P(I). P(I) is an element
of the (non-commutative) Banach algebra of N-rowed quadratic matrices, where the norm
is the maximal value among the absolute column-sums. Obviously B has a unite element.
The set function P(I) is then multiplicative relative to the natural permutation of linear
intervals. Hence, if P(I) is of bounded variation and v-continuous, then we can write the
solution of the equation

(37) P(Il—i-fg) :P(Il)P(IQ) (Il EIC, I EIC, L+ 1 EIC)

in a closed form. We will not enter into the details since in the paper of DOBRUSIN [3] this
is profoundly investigated under somewhat general assumptions. An analogous treatment
can be given for the Markov processes having a countable number of possible states. To
this question the author will return later.

Finally, I express my thank to A. CsASzAR for his valuable remarks.
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