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Introduction

In the present paper terminology “total” is used for a generalization of the Burkill integral
and multiplicative integral, respectively. The functions, the totals of which are considered,
take their values from a Banach algebra B with a unity. This means a Banach space B in
which for every pair f ∈ B, g ∈ B a product fg ∈ B is defined such that ‖fg‖ ≤ ‖f‖ ‖g‖
and if h ∈ B, then f(g + h) = fg + fh, (g + h)f = gf + hf , finally there is an e ∈ B with
the properties ef = fe = f , ‖e‖ = 1. It is proved that under some conditions the additive
(and multiplicative) total of a multiplicative (and additive, resp.) set function exists. The
theorems of this type are useful in solving some functional equations (see e.g. [3] and
§ 6) and studying the properties of multiplicative set functions by tracing the problems to
those formulated in terms of additive set functions.

The multiplicative integral (on the real axis for matrix-valued functions) has been intro-
duced by V. Volterra [12], [13], [14] and considered by several authors: L. Schlesinger
[8], [9], [10], [11], G. Rasch [7], R.L Dobrušin [3]; G. Birkhoff [2] has given a gener-
alization of this integral by using more general notions instead of matrices. The additive
integral (on the real axis for matrix-valued functions) has been considered by M. Fréchet
[4] and R. L. Dobrušin [3]. The theorems proved in the present paper are analogous
to those of Dobrušin [3] and will be used in the theory of stochastic set functions.1 In
§ 6 we anticipate an example from this as in this special case (Example 1) the relevant
statements can be proved at once by the aid of the present paper.

§ 1. Notions and notations

Throughout the paper the basic space will be denoted by H which is supposed to be metric
and compact. We suppose that we are given a class of sets K consisting of some subsets
of H and satisfying the following conditions:

1A. Prékopa, On stochastic set functions. III, Acta Math. Acad. Sci. Hung., 8 (1957), 375–400.
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a) K is a semi-ring, i.e. if A1 ∈ K, A2 ∈ K, then A1A2 ∈ K and if A1 ⊆ A2, then
there exists a finite number of sets C1, C2, . . . , Cn such that Ci ∈ K (i = 1, 2, . . . , n),
CiCk = 0 if i �= k and A2 − A1 =

∑n
i=1 Ci.2 We suppose furthermore that this can

be done always so that n ≤ R, where R is a positive integer independent of the sets
A1, A2.

b) If h ∈ H, then {h} ∈ K.

c) If A ∈ K, then for every positive integer r and every ε > 0 there is a decomposition
A1, A2, . . . , Ar of the set A into pairwise disjoint sets of K such that max

1≤k≤r
d(Ak) ≤ ε.3

A finite sequence of sets A1, A2, . . . , Ar, for which Ai ∈ K (i = 1, 2, . . . , r), AiAk = 0
if i �= k and A =

∑r
k=1 Ak ∈ K, will be called a decomposition of the set A (or briefly

decomposition) and will be denoted by z = {A1, A2, . . . , Ar}. If z1 = {A(1)
i }, z2 = {A(2)

i }
are two decompositions and every A

(2)
i can decomposed by means of some A

(1)
i , then we

write z2 � z1. We shall use the following definitions:

Definition 1 Let us suppose that to every decomposition z = {A1, A2, . . . , Ar} there
corresponds a permutation P(z) = (Ai1 , Ai2 , . . . , Air ) of the sets of z such that if z1 � z2

and P(z1) is given by (A(1)
i1

, A
(1)
i2

, . . . , A
(1)
ir

), then in P(z2) first come those sets of z2 which

decompose A
(1)
i1

, then those which decompose A
(1)
i2

etc.

A correspondence between the decompositions and permutations described above will
be called a permutation function.

Definition 2 Let f(A) (A ∈ K) be a set function with values in the Banach algebra
B. If for every pair A1, A2 of disjoint sets of K, for which A = A1 + A2 ∈ K, the relation

(∗) f(A) = f(A1) + f(A2)

holds, then the set function f(A) will be called additive. (∗) implies that f(0) = 0.

Definition 3 Let g(A) (A ∈ K) be a set function with values in the Banach algebra B.
If there is a permutation function P such that for every system A1, A2, . . . , Ar of disjoint
sets of K, for which A =

∑r
k=1 Ak ∈ K, the relation

g(A) =
r∏

k=1

g(Aik)

holds where z = {A1, A2, . . . , Ar} and P(z) = (Ai1 , Ai2 , . . . , Air), then the set function
g(A) will be called multiplicative. We suppose in this case that f(0) = e.

2This notion of semi-rings, which is more general than that of P. Halmos (cf. Measure theory, Chapter 1,
§ 4), is due to Á. Császár.

3If B ⊆ H , then d(B) denotes the diameter of the set B, i.e. d(B) = sup ρ(h1, h2), where h1 ∈ B,
h2 ∈ B and ρ(h1, h2) is the distance between h1 and h2.
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If B is commutative, then we do not require the existence of a permutation function
P. All the statements in this paper are to be taken in the sense that if B is commutative,
then we omit the requirements regarding to the permutation function.

Definition 4 A set function α(A) (A ∈ K) with values in B is called of bounded
variation if there is a number K such that for every system A1, A2, . . . , Ar of disjoint sets
of K we have

(∗∗)
r∑

k=1

‖α(Ak)‖ ≤ K.

If Ai ⊆ A (i = 1, 2, . . . , r), then the smallest K for which relation (∗∗) holds will be
denoted by Varα(A).

Definition 5 A set function α(A) (A ∈ K) with values in B is said to be v-continuous
if for every sequence B1, B2, . . . of sets of K, for which lim

k→∞
Bk = 0 and lim

k→∞
d(Bk) = 0,

the relation
lim

k→∞
Varα(Bk) = 0

holds.

Definition 6 Let α(A) (A ∈ K) be a set function with values in B. Suppose that
there exists a β(B) such that for every ε > 0 a number δ > 0 can be found with the
property ∥∥∥∥∥

r∑
k=1

α(Ak) − β(B)

∥∥∥∥∥ ≤ ε,

provided that max
1≤k≤r

d(Ak) ≤ δ where A1, A2, . . . , Ar is a decomposition of the set B ∈ K.

In this case we say that the additive total of α(A) exists in B and we denote it by

β(B) = SB α(dA).

Definition 7 Let α(A) (A ∈ K) be a set function with values in B. Suppose that
there exists a permutation function P and a γ(B) ∈ B such that for every ε > 0 a number
δ > 0 can be found with the property∥∥∥∥∥

r∏
k=1

α(Aik ) − γ(B)

∥∥∥∥∥ ≤ ε,

provided that max
1≤k≤r

d(Ak) ≤ δ where (Ai1 , Ai2 , . . . , Air) is the permutation corresponding

to the decomposition z = {A1, A2, . . . , Ar} of the set B ∈ K. In this case we say that the
multiplicative total of α(A) exists in B relative to the permutation function P. This total
will be denoted by

γ(B) = P�Bα(dA).
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It is easy to see that both totals are uniquely determined and

SA1+A2α(dA) = SA1α(dA) + SA2α(dA),

P�A1+A2+...+Arα(dA) = P�Ai1
α(dA) · P�Ai2

α(dA) · · · P�Air
α(dA),

where Ai ∈ K (i = 1, 2, . . . , r), AiAk = 0 if i �= k and (Ai1 , Ai2 , . . . , Air) is the permutation
given by P, provided that the totals on both sides exist. If α1(A) and α2(A) are two set
functions defined on K and both are additively totalizable in B, then the same holds for
α(A) = c1α1(A) + c2α2(A) and

SB α(dA) = c1SB α1(dA) + c2SB α2(dA),

where c1, c2 are constants. An analogous relation holds also for the multiplicative total
if B is commutative. In this case if the multiplicative totals of α1(A) and α2(A) exist in
B ∈ K, then that of α(A) = α1(A)α2(A) in B exists too and

�B α(dA) =�B α1(dA)�B α2(dA).

§ 2. Preliminary lemmas

In this § we prove some simple inequalities for Banach algebras and lemmas for additive
and multiplicative set functions.

Lemma 1 If fi ∈ B, gi ∈ B (i = 1, 2, . . . , n) and

∥∥∥∥∥
j∏

i=1

fi

∥∥∥∥∥ ≤ K,

∥∥∥∥∥∥
n∏

i=j

gi

∥∥∥∥∥∥ ≤ K (j = 1, 2, . . . , n),

where K is a constant, then

(1)

∥∥∥∥∥
n∏

i=1

fi −
n∏

i=1

gi

∥∥∥∥∥ ≤ K2
n∑

i=1

‖fi − gi‖.

Proof. Since
n∏

i=1

fi −
n∏

i=1

gi =
n∑

i=1

f1 . . . fi−1(fi − gi)gi+1 . . . gn,

it follows that∥∥∥∥∥
n∏

i=1

fi −
n∏

i=1

gi

∥∥∥∥∥ ≤
n∑

i=1

‖f1 . . . fi−1‖ ‖fi − gi‖ ‖gi+1 . . . gn‖ ≤ K2
n∑

i=1

‖fi − gi‖.
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Lemma 2 Let f1, f2, . . . , fn be such elements of B that
n∑

i=1

‖fi‖ ≤ c < 1.

In this case if r < n, then∥∥∥∥∥∥
n∏

i=1

(e + fi) −
⎛
⎝e +

n∑
i=1

fi +
∑

1≤i1<i2≤n

fi1fi2 . . . fir + · · ·

+
∑

1≤i1<i2...<ir≤n

fi1fi2 . . . fir

⎞
⎠
∥∥∥∥∥∥ ≤ 1

1 − c

(
n∑

i=1

‖fi‖
)r+1

.(2)

Proof. Let us start from the identity
n∏

i=1

(e + fi) = e +
n∑

i=1

fi +
∑

1≤i1<i2≤n

fi1fi2 + · · · + f1f2 . . . fn.

It follows from this that∥∥∥∥∥∥
n∏

i=1

(e + fi) −
⎛
⎝e +

n∑
i=1

fi +
∑

1≤i1<i2≤n

fi1fi2 + · · ·

+
∑

1≤i1<i2...<ir≤n

fi1fi2 · · · fir

⎞
⎠
∥∥∥∥∥∥

≤
∑

1≤i1<i2<...<ir+1≤n

‖fi1‖ ‖fi2‖ · · · ‖fir+1‖ + · · · + ‖f1‖ ‖f2‖ · · · ‖fn‖

≤
(

n∑
i=1

‖fi‖
)r+1

+ · · · +
(

n∑
i=1

‖fi‖
)n

≤ 1

1 −
n∑

i=1

‖fi‖

(
n∑

i=1

‖fi‖
)r+1

≤ 1
1 − c

(
n∑

i=1

‖fi‖
)r+1

what was to be proved. �

For r = 0 and r = 1 we obtain as special cases of Lemma 2 the inequalities∥∥∥∥∥
n∏

i=1

(e + fi) − e

∥∥∥∥∥ ≤ 1
1 − c

n∑
i=1

‖fi‖,(3)

∥∥∥∥∥
n∏

i=1

(e + fi) −
(

e +
n∑

i=1

fi

)∥∥∥∥∥ ≤ 1
1 − c

(
n∑

i=1

‖fi‖
)2

.(4)
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Lemma 3 If α(A) (A ∈ K) is a set function of bounded variation with values in the
Banach algebra B, then there exists a countable set H1 ⊆ H such that α(h) = 0 if h ∈
H − H1 (we use the notation α(h) for α({h})).

Proof. Since α(A) is of bounded variation, the set of those h’s for which ‖α(h)‖ ≥ 1
n

,
is finite. If n runs over the positive integers, then we obtain all the points h for which
‖α(h)‖ > 0. Thus Lemma 3 is proved. �

Lemma 4 Let α(A), (A ∈ K) be a multiplicative set function with values in the Banach
algebra B for which K = Varα−e(H) < ∞. If B1 ∈ K, B2 ∈ K, B1 ⊆ B2 and B2 − B1 =∑r

k=1 Ck where Ck ∈ K (k = 1, 2, . . . , r), then

Varα−e(B2 − B1) ≤ (K + 1)2r
r∑

k=1

Varα−e(Ci).

Proof. Let A1, A2, . . . , An be a system of disjoint sets of K,
n∑

k=1

Ak ⊆ B2 − B1.

In this case

Ak =
r∑

i=1

AkCi (k = 1, 2, . . . , n).

If zk = {AkC1, AkC2, . . . , AkCr} and P(zk) = (AkCi1, AkCi2, . . . , AkCir), then

α(Ak) =
r∏

l=1

α(AkCil).

Since ‖α(B)‖ ≤ ‖α(B) − e‖ + 1 ≤ K + 1 (B ∈ K), it follows that∥∥∥∥∥∥
r∏

l=r1

α(AkCil)

∥∥∥∥∥∥ ≤ (K + 1)r,

∥∥∥∥∥
r1∏

l=1

α(AkCil)

∥∥∥∥∥ ≤ (K + 1)r,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1 ≤ r1 ≤ r).

Hence, applying the inequality (1), we get
n∑

k=1

‖e − α(Ak)‖ ≤
n∑

k=1

(K + 1)2r
r∑

l=1

‖e − α(AkCl)‖ ≤ (K + 1)2r
r∑

l=1

Varα−e(Cl).

Thus Lemma 4 is proved. �
If α is additive, then we have the stronger relation

Varα(B2 − B1) ≤
r∑

k=1

Varα(Ci).
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Lemma 5 Let us suppose that the set function α(A) (A ∈ K) with values in the Banach
algebra B is multiplicative (and additive, resp.), K = Varα−α(0)(H) < ∞ and α(A)−α(0)
is v-continuous. Then for every ε > 0 there can be found a δ > 0 such that if U ∈ K is a
set with d(U) ≤ δ and ‖α(h) − α(0)‖ ≤ ε for h ∈ U , then

(5) Varα−α(0)(U) ≤ 2(K + 1)2Rε.

Proof. Contrary to the assertion let us suppose that there exists an ε0 > 0 and a
sequence of sets Uk for which

lim
k→∞

d(Uk) = 0, ‖α(h) − α(0)‖ ≤ ε0

if h ∈∑∞
k=1 Uk and

(6) Varα−α(0)(Uk) > 2(K + 1)2Rε0.

Since H is a compact metric space, we may suppose without restricting the generality that
all the sequences hk, where hk ∈ Uk (k = 1, 2, . . .), are convergent. Let h′ denote their
common limit element. We can distinguish two cases.

In the first case h′ is contained at most in a finite number of sets Un. This implies that
lim

n→∞Un = 0 and thus, since α − α(0) is v-continuous,

lim
n→∞Varα−α(0)(Un) = 0

which contradicts (6).

In the second case, if h′ is contained in infinitely many Un, then we choose a number
N such that

Varα−α(0)(UN − h′) < ε0.

The possibility of this assured by Lemma 4 and the v-continuity of α−α(0). According to
(6) there exists in UN a system of disjoint sets A1, A2, . . . , Ar that satisfies the inequality

r∑
k=1

‖α(Ak) − α(0)‖ > 2(K + 1)2Rε0.

The element h′ is contained at most in one of the sets Ai. If h′ /∈∑r
i=1 Ai, then

2ε0(K + 1)2R <
r∑

k=1

‖α(Ak) − α(0)‖ ≤ Varα−α(0)(UN − h′) < ε0

which is a contradiction. On the other hand, if h′ ∈ Am, then there exist disjoint sets
C1, C2, . . . , Cn (n ≤ R) of the class of sets K such that

Am = {h′} +
n∑

k=1

Ck.
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Now, let α be multiplicative. Applying Lemma 4 for B2 = Am, B1 = 0, we get

‖e − α(Am)‖ ≤ (K + 1)2R

(
n∑

k=1

Varα−e(Ck) + ‖e − α(h′)‖
)

.

Using this relation we conclude

2(K + 1)2Rε0 <

r∑
k=1

‖e − α(Ak)‖

=
∑
k �=m

‖e − α(Ak)‖ + ‖e − α(Am)‖

≤ (K + 1)2R

⎛
⎝∑

k �=m

‖e − α(Ak)‖ +
n∑

k=1

Varα−e(Ck)

+‖e − α(h′)‖
)

≤ (K + 1)2R(Varα−e(UN − h′) + ‖e − α(h′)‖)
≤ 2ε0(K + 1)2R.

If α is additive, then

2(K + 1)2Rε0 <

r∑
k=1

‖α(Ak)‖

=
∑
k �=m

‖α(Ak)‖ + ‖α(Am)‖

≤
∑
k �=m

‖α(Ak)‖ +
n∑

k=1

‖α(Ck)‖ + ‖α(h′)‖

≤ Varα(UN − h′) + ‖α(h′)‖
≤ 2ε0 ≤ 2ε0(K + 1)2R.

In both cases we arrived at contradictions, hence our lemma is proved. �

Lemma 6 If α(B) (α(B) ∈ B, B ∈ K) is a set function of bounded variation, then for
every system B1, B2, . . . , Br of disjoint sets of K∥∥∥∥∥

r∏
k=1

(e + α(Bk))

∥∥∥∥∥ ≤ K1,

where K1 is a constant.

Proof. Let us select from the above product those α(Bk)’s for which ‖α(Bk)‖ ≥ 1
2
.

The number of these elements is at most N1 = [2Varα(H)]. After this we form a maximal
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number of groups of the remaining α(Bi)’s such that in every group the sum of the norms

fall in the interval
[
1
4
,
1
2

]
. The number of these groups is at most N2 = [4 Varα(H)]. The

sum of the norms of the remaining elements does not exceed
1
4
. Hence,∥∥∥∥∥

r∏
k=1

(e + α(Bk))

∥∥∥∥∥ ≤ 2N2+1(Varα(H) + 1)N1 = K1. �

Lemma 7 Let us suppose that the set function α(A) (A ∈ K) with values in the Banach
algebra B is multiplicative (and additive, resp.), K = Varα−α(0)(H) < ∞ and α(A)−α(0) is
v-continuous. If B1, B2 . . . is a sequence of sets of K, h ∈ Bk (k = 1, 2, . . .), lim

k→∞
d(Bk) =

0, then
lim

k→∞
‖α(Bk) − α(h)‖ = 0.

Proof. Let Bk = {h} +
∑R

i=1 C
(k)
i , C

(k)
i ∈ K (i = 1, 2, . . . , R; k = 1, 2, . . .) (we may

always choose R such sets since if we had r < R, then we should complete this system by
R − r void sets) and let α be multiplicative. Applying Lemma 6 for α − e instead of α,
moreover, using the inequality (1) we obtain

‖α(Bk) − α(h)‖ ≤ K2
1

R∑
i=1

‖α(C(k)
i ) − e‖ ≤ K2

1

R∑
i=1

Varα−e(C
(k)
i ).

Since lim
k→∞

C
(k)
i = 0 (i = 1, 2, . . . , R) and α(A) − e is v-continuous,

lim
k→∞

Varα−e(C
(k)
i ) = 0 (i = 1, 2, . . . , R)

which proves the assertion.

Let us now consider the case of an additive α. Since α(0) = 0, we get

‖α(Bk) − α(h)‖ =

∥∥∥∥∥
R∑

i=1

α(C(k)
i )

∥∥∥∥∥ ≤
R∑

i=1

Varα(C(k)
i ).

The right-hand side tends to 0 when k → ∞, hence our statement is completely proved.
�

§ 3. The additive total

In this § our purpose is to prove the following

Theorem 1 Let f(A) · (f(A) ∈ B) be a multiplicative set function defined on the
elements of the class of sets K. Suppose that K = Varf−e(H) is finite and the set function
f(A) − e is v-continuous. In this case the additive total

g(B) = SB(f(dA) − e)
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exists for every B ∈ K and

(7) Varg(B) ≤ Varf−e(B).

Proof. For the proof of the Theorem we need two lemmas.

Lemma 8 For every h ∈ H and every ε > 0 there can be found a δ > 0 such that
if A1, A2, . . . , Ar are pairwise disjoint sets of the class of sets K with the property that
A =

∑r
k=1 Ak ∈ K, h ∈ A and d(A) ≤ δ, then

(8)

∥∥∥∥∥f(A) − e −
r∑

k=1

(f(Ak) − e)

∥∥∥∥∥ ≤ ε.

Proof of Lemma 8 Let δ be such a number that satisfies the conditions in Lemma 5
for

ε

4R(K + 1)4R
instead of ε. The number δ can be chosen so small that the sphere with

the centre h and the radius δ does not contain an h′ ∈ H (h′ �= h) with ‖f(h′) − e‖ >
ε

4R(K + 1)4R
. We choose furthermore δ so small that ‖f(B) − f(h)‖ ≤ ε

4
if h ∈ B ∈ K,

d(B) ≤ δ. By Lemma 7 this is always possible. Let h ∈ Al. Obviously∥∥∥∥∥f(A) − e −
r∑

k=1

(f(Ak) − e)

∥∥∥∥∥ ≤ ‖f(A) − f(Al)‖ + Varf−e(A − h)

≤ ‖f(A) − f(h)‖ + ‖f(Al) − f(h)‖ + Varf−e(A − h).

Let C1, C2, . . . , Cn (n ≤ R) be a system of disjoint sets of K for which A−{h} =
∑n

k=1 Ck.
According to Lemmas 4 and 5

Varf−e(A − h) ≤ (K + 1)2R
n∑

k=1

Varf−e(Ck) ≤ (K + 1)2R nε

2R(K + 1)2R
≤ ε

2
.

On the other hand, we have chosen δ in such a way that

‖f(A) − f(h)‖ ≤ ε

4
, ‖f(Al) − f(h)‖ ≤ ε

4
,

hence our lemma is proved. �

Lemma 9 Let B ∈ K. To every ε > 0 there can be found a number δ > 0 such
that if A1, A2, . . . , Ar (Ak ∈ K; k = 1, 2, . . . , r) is a system of disjoint subsets of B,
max

1≤k≤r
d(Ak) ≤ δ and A

(1)
k , A

(2)
k , . . . , A

(rk)
k is a decomposition of the set Ak into pairwise

disjoint sets of K, then

(9)
r∑

k=1

∥∥∥∥∥f(Ak) − e −
rk∑
i=1

(f(A(i)
k ) − e)

∥∥∥∥∥ ≤ ε.
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Proof of Lemma 9. We may suppose that the sets A
(i)
k are so numbered that

if zk = {A(1)
k , A

(2)
k , . . . , A

(rk)
k }, then P(zk) = (A(1)

k , A
(2)
k , . . . , A

(rk)
k ). Since the variation of

f(A)−e is equal to K, the number of the points h ∈ H for which ‖f(h)−e‖ >
ε

8K(K + 1)2R

is at most
8K2

ε
(K+1)2R. If such a point exists in B, then we renumber the sets Ak so that

those sets, which contain these points, be A1, A2, . . . , Al

(
l ≤ r, l ≤ 8K2(K + 1)2R

ε

)
. By

Lemma 8 δ can be chosen so small that

(10)

∥∥∥∥∥f(Ak) − e −
rk∑
i=1

(f(A(i)
k ) − e)

∥∥∥∥∥ ≤ ε

2
ε

8K2(K + 1)2R
≤ ε

2l
(k = 1, 2, . . . , l).

If there are sets which do not contain such points and these are Al+1, . . . , Ar, then we
choose δ so small that besides (10) the following inequality holds:

Varf−e(Ak) ≤ ε

4K
(k = l + 1, l + 2, . . . , r).

By Lemma 5 this is possible since the sets Al+1, Al+2, . . . , Ar do not contain points h

with ‖f(h) − e‖ >
ε

8K(K + 1)2R
. Applying the inequality (4) for fi = f(A(i)

k ) − e (i =

1, 2, . . . , rk) we get (we may suppose that 0 < ε ≤ 2K)∥∥∥∥∥f(Ak) − e −
rk∑
i=1

(f(A(i)
k ) − e)

∥∥∥∥∥ =

∥∥∥∥∥
rk∏
i=1

f(A(i)
k ) − e −

rk∑
i=1

(f(A(i)
k ) − e)

∥∥∥∥∥
≤ 2

(
rk∑
i=1

‖f(A(i)
k ) − e‖

)2

≤ 2(Varf−e(Ak))2 ≤ 2
ε

4K
Varf−e(Ak).(11)

Our statement follows from the inequalities (10) and (11).

After these preparations we can complete the proof of Theorem 1. We point out
that if B ∈ K is a fixed set and zn = {Ank} is a sequence of decompositions of B with
lim

n→∞max
k

d(Ank) = 0, then the sequence∑
k

(f(Ank) − e)

satisfies the Cauchy’s convergence criterion. For this purpose we consider two decomposi-
tions A1, A2, . . . , Ar and A′

1, A
′
2, . . . , A

′
r′ , of the set B into pairwise disjoint sets of K with

max
1≤k≤r

d(Ak) ≤ δ, max
1≤k≤r′

d(A′
k) ≤ δ where δ is the same number as in Lemma 9. If δ is so

small that (9) is satisfied with
ε

2
instead of ε, then, considering the superposition of the

two decompositions, a well-known argument shows that∥∥∥∥∥
r∑

k=1

(f(Ak) − e) −
r′∑

k=1

(f(A′
k) − e)

∥∥∥∥∥ ≤ ε

and thus SB(f(dA) − e) exists. The relation (7) can be proved in an obvious way. �

11



§ 4. The multiplicative total

In this section we prove the following

Theorem 2 Let g(B) (g(B) ∈ B) be an additive set function defined on the elements
of the class of sets K. Suppose that Varg(H) < ∞ and the set function g(B) (B ∈ K) is
v-continuous. In this case for any permutation function P and for every A ∈ K the total

f(A) = P�A(g(dB) + e)

exists and

(12) Varf−e(A) ≤ L Varg(A),

where L is a constant independent of the set A.

Proof. First we prove two lemmas.

Lemma 10 For every h ∈ H and ε > 0 there can be found a δ > 0 such that if
B1, B2, . . . , Br are disjoint sets of K with B =

∑r
k=1 Bk ∈ K, h ∈ B, d(B) ≤ δ, then

(13)

∥∥∥∥∥g(B) + e −
r∏

k=1

(g(Bk) + e)

∥∥∥∥∥ ≤ ε.

Proof of Lemma 10. Let us suppose that h ∈ Bl. Using Lemma 6 and the inequality
(1) it follows that∥∥∥∥∥g(B) + e −

r∏
k=1

(g(Bk) + e)

∥∥∥∥∥
=

∥∥∥∥∥e(g(B) + e)e −
l−1∏
k=1

(g(Bk) + e)(g(Bl) + e)
r∏

k=l+1

(g(Bk) + e)

∥∥∥∥∥
≤ K2

1

(∥∥∥∥∥
l−1∏
k=1

(g(Bk) + e) − e

∥∥∥∥∥ +

∥∥∥∥∥
r∏

k=l+1

(g(Bk) + e) − e

∥∥∥∥∥+ ‖g(B) − g(Bl)‖
)

.

Let ε ≤ K2
1 . By Lemmas 5 and 7 (taking into account the remark made after Lemma 4)

δ can be chosen so that

(14) Varg(C − h) ≤ ε

4K2
1

,

moreover

(15) ‖g(C) − g(h)‖ ≤ ε

4K2
1

,

12



where C ∈ K, h ∈ C, d(C) < δ; then from (3) and (14) it follows∥∥∥∥∥
l−1∏
k=1

(g(Bk) + e) − e

∥∥∥∥∥+

∥∥∥∥∥
r∏

k=l+1

(g(Bk) + e) − e

∥∥∥∥∥
≤ 2

l−1∑
k=1

‖g(Bk)‖ + 2
r∑

k=l+1

‖g(Bk)‖ ≤ 2 Varg(B − h) ≤ ε

2K2
1

;

relation (15) implies that
‖g(B) − g(Bl)‖ ≤ ε

2K2
1

,

hence our assertion holds. �

Lemma 11 Let A ∈ K. To every ε > 0 there can be found a number δ > 0 such
that if B1, B2, . . . , Br (Bk ∈ K; k = 1, 2, . . . , r) is a system of disjoint subsets of A and
B

(1)
k , B

(2)
k , . . . , B

(rk)
k is a decomposition of the set Bk into pairwise disjoint sets of K,

d(Bk) ≤ δ, then

(16)
r∑

k=1

∥∥∥∥∥e + g(Bk) −
rk∏
i=1

(e + g(B(i)
k ))

∥∥∥∥∥ ≤ ε.

Proof of Lemma 11. If for a k we have Varg(Bk) ≤ 1
2
, then by the inequality (4) it

follows that∥∥∥∥∥e + g(Bk) −
rk∏
i=1

(e + g(B(i)
k ))

∥∥∥∥∥ ≤ 2

(
rk∑
i=1

‖g(B(i)
k )‖

)2

≤ 2(Varg(Bk))2.

The remaining part of the proof can be accomplished by the aid of Lemma 10 in a similar
way as we have proved Lemma 9 by the aid of Lemma 8.

In order to complete the proof of Theorem 2 let us consider the decompositions
{B1, B2, . . . , Br}, {B′

1, B
′
2, . . . , B

′
r′} of the set A into pairwise disjoint sets of K satis-

fying max
1≤k≤r

d(Bk) ≤ δ, max
1≤k≤r′

d(B′
k) ≤ δ where δ is a number fixed in Lemma 11. Let

{B′′
1 , B′′

2 , . . . , B′′
r′′} denote the superposition of these two decompositions. If δ is so small

that the inequality (16) holds for
ε

2K2
1

instead of ε, then

∥∥∥∥∥
r∏

k=1

(g(Bik ) + e) −
r′∏

k=1

(g(B′
jk

) + e)

∥∥∥∥∥ ≤
∥∥∥∥∥

r∏
k=1

(g(Bik ) + e) −
r′′∏

k=1

(g(B′′
nk

) + e)

∥∥∥∥∥
+

∥∥∥∥∥
r′∏

k=1

(g(B′
jk

) + e) −
r′′∏

k=1

(g(B′′
nk

) + e)

∥∥∥∥∥

13



≤ K2
1

r∑
k=1

∥∥∥∥∥∥g(Bik) + e −
∏

B′′
ns

⊆Bik

(g(B′′
ns

) + e)

∥∥∥∥∥∥

+ K2
1

r′∑
k=1

∥∥∥∥∥∥∥g(B′
jk

) + e −
∏

B′′
ns

⊆B′
jk

(g(B′′
ns

) + e)

∥∥∥∥∥∥∥
≤ ε

2
+

ε

2
= ε,

where the sequences ik, jk, nk are fixed by the permutation function P and in the products∏
B′′

ns
⊆Bik

,
∏

B′′
ns

⊆B′
jk

the factors are arranged according to the same order as they were in the

first row. Hence the existence of

f(A) = P�A(g(dB) + e)

follows in an obvious way.

The proof of (12) can be accomplished as follows. By making use of Lemma 1 we get∥∥∥∥∥
rs∏

k=1

(g(B(ik)
s ) + e) − e

∥∥∥∥∥ ≤ K2
1

rs∑
k=1

‖g(B(ik)
s )‖ ≤ K2

1 Varg(Bs).

Hence it follows
‖f(Bs) − e‖ ≤ K2

1 Varg(Bs)

and
r∑

s=1

‖f(Bs) − e‖ ≤ K2
1

r∑
s=1

Varg(Bs) ≤ K2
1Varg(A)

whence
Varf−e(A) ≤ K2

1 Varg(A)

what was to be proved. �

§ 5. Connection between the additive and multiplicative to-

tals

According to Theorems 1 and 2 the indefinite additive (and multiplicative) total of a
multiplicative (and additive, resp.) and v-continuous set function is also v-continuous.
Hence it may be a starting function of further totalization. In this § we prove that the
latter total (with respect to some permutation function) coincides with the original one.
First we prove

14



Theorem 3 Let g(B) (g(B) ∈ B) be an additive set function defined on the elements
of the class of sets K and satisfying the conditions of Theorem 2. If A ∈ K and

(17) f(A) = P�A(g(dB) + e),

then the additive total of f(A) − e exists in every B ∈ K and

(18) g(B) = SB(f(dA) − e).

Proof. Let B1, B2, . . . , Br be a system of disjoint sets of K with the property that
A =

∑r
k=1 Bk ∈ K, max

1≤k≤r
d(Bk) ≤ δ. Relation (16) implies that in case of a small δ

(19)
r∑

k=1

‖e + g(Bk) − f(Bk)‖ ≤ ε

2
.

If we introduce the notation

g′(B) = SB(f(dA) − e),

then by (9), choosing δ small enough, we obtain

(20)
r∑

k=1

‖g′(Bk) − f(Bk) − e)‖ ≤ ε

2
.

Relations (19) and (20) imply

r∑
k=1

‖g(Bk) − g′(Bk)‖ ≤ ε.

It follows that

‖g(A) − g′(A)‖ =

∥∥∥∥∥
r∑

k=1

g(Bk) −
r∑

k=1

g′(Bk)

∥∥∥∥∥ ≤
r∑

k=1

‖g(Bk) − g′(Bk)‖ ≤ ε

and thus g(A) = g′(A). �
A similar theorem can be proved if we start from a multiplicative set function. In

advance we remind of Definition 3 that to every multiplicative set function a permutation
function is attached. Our statement is expressed in

Theorem 4 Let f(A) (f(A) ∈ B) be a multiplicative set function defined on the ele-
ments of the class of sets K and satisfying the conditions of Theorem 1. If B ∈ K and

(21) g(B) = SB(f(dA) − e),

moreover P is a permutation function attached to f , then P�A(g(dB)+e) exists for every
A ∈ K and

(22) f(A) = P�A(g(dB) + e).

15



Proof. Let us introduce the notation

f ′(A) = P�A(g(dB) + e).

If A1, A2, . . . , Ar is a system of disjoint sets of K with the property that max
1≤k≤r

d(Ak) ≤ δ

and B =
∑r

k=1 Ak, then by formula (9) (for a small δ)

(23)
r∑

k=1

‖f(Ak) − e − g(Ak)‖ ≤ ε

2
.

According to (16) we get furthermore that if δ is small enough, then

(24)
r∑

k=1

‖e + g(Ak) − f ′(Ak)‖ ≤ ε

2
.

Hence, by (23) and (24),

(25)
r∑

k=1

‖f(Ak) − f ′(Ak)‖ ≤ ε.

Let P(z) = (Ai1 , Ai2 , . . . , Air ) be the permutation corresponding to z = {A1, A2, . . . , Ar}.
By Lemma 6 there exists a K1 such that∥∥∥∥∥

j∏
k=1

f(Aik)

∥∥∥∥∥ =

∥∥∥∥∥
j∏

k=1

[f(Aik) − e) + e]

∥∥∥∥∥ ≤ K1,

∥∥∥∥∥∥
r∏

k=j

f ′(Aik)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
r∏

k=j

[f ′(Aik) − e) + e]

∥∥∥∥∥∥ ≤ K1.

(26)

Taking into account (25) and (26) and applying Lemma 1 we obtain

‖f(A) − f ′(A)‖ =

∥∥∥∥∥
r∏

k=1

f(Aik) −
r∏

k=1

f ′(Aik)

∥∥∥∥∥ ≤ K2
1ε,

hence f(A) = f ′(A). �
The last two theorems show that the indefinite total of an additive (and multiplicative,

resp.) set function entirely determines the original set function.

§ 6. Examples

1. The weighted random point distribution

Let us consider a random selection of a finite number of points of H where each selected
point is weighted with a (positive or negative) integer. We suppose that the sum of
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the weights in a set A ∈ K is a random variable which we denote by ξ(A). We sup-
pose furthermore that if A1, A2, . . . , Ar are disjoint sets of K, then the random variables
ξ(A1), ξ(A2), . . . , ξ(Ar) are independent. Let us introduce the notation

(27) Pk(A) = P(ξ(A) = k).

The sequences P (A) = (. . . , P−2(A), P−1(A), P0(A), P1(A), P2(A), . . .) are elements of the
Banach algebra B of the sequences the corresponding series of which are absolutely con-
vergent with the norm of the sum of the absolute values. If the product of two elements
(. . . , a−1, a0, a1, . . .), (. . . , b−1, b0, b1, . . .) of B is the convolution

(28)

( ∞∑
k=−∞

an−kbk; n = 0,±1,±2, . . .

)
,

then B is commutative and has as unity element that one for which the member cor-
responding to the index 0 is equal to 1 and the others are 0. In this case P (A) is a
multiplicative set function. We may establish a more stronger statement, namely

(29) P (A) = P (A1)P (A2) . . . = lim
n→∞

n∏
k=1

P (Ak)

if Ai ∈ K (i = 1, 2, . . .), AiAk = 0 for i �= k and A =
∑∞

i=1 Ai ∈ K.

We shall show that P (A) − e is of bounded variation and v-continuous. Since

‖P (A) − e‖ =
∑
k �=0

Pk(A) + 1 − P0(A) = 2(1 − P0(A)),

we have to prove the assertion for the real-valued set function 1−P0(A). Let us first extend
the definition of ξ(A) to R(K) which is the smallest ring4 containing K. Let A1, A2, . . . be
a sequence of disjoint sets of R(K). Since we have selected only a finite number of points
from H, the sequence of independent random variables

∞∑
k=1

ξ(Ak)

converges with probability 1. Hence, by the three series theorem of Kolmogorov or
simply by the Borel–Cantelli lemma,

∞∑
k=1

(1 − P0(Ak)) < ∞.

On the other hand, 1−P0(A) is completely subadditive in the following sense: if A1, A2, . . .
is a sequence of disjoint sets of K for which A =

∑∞
k=1 Ak ∈ R(K), then

1 − P0(A) ≤
∞∑

k=1

(1 − P0(Ak)).

4A class of sets R is called a ring if A + B ∈ R, A − B ∈ R, provided that A ∈ R, B ∈ R. This
extension is obviously possible and relation (29) will be satisfied also in R(K).
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In fact, the event ξ(A) �= 0 implies that at least one of ξ(A1) �= 0, ξ(A2) �= 0, . . . occurs.
Hence, by Lemma 4 of [5], 1 − P0(A) is of bounded variation and by Lemma 1 of [5]
Var1−P0(A) (A ∈ R(K)) is a bounded measure. This last property implies that 1−P0(A)
is v-continuous. Thus the additive total

(30) Q(B) = SB(P (dA) − e)

exists for every B ∈ K. This implies obviously the existence of the totals

Q0(B) = SB(P0(dA) − 1),

Qk(B) = SBPk(dA) (k �= 0).
(31)

Since the convergence in (30) holds in the norm, it follows that

(32) Q0(B) = −
∑
k �=0

Qk(B).

Moreover, the relation

Qk(B) ≤ −Q0(B) ≤ Var1−P0(B) (B ∈ K)

implies that with Var1−P0(A) the additive set functions −Q0(B), Qk(B) (k = ±1,±2, . . .)
are also bounded measures. Finally, if h ∈ H, then

S{h}(1 − P0(dA)) = 1 − P0({h}) ≤ 1,

hence

(33) −Q0({h}) ≤ 1.

It is interesting to write all the solutions of (29) in a closed form, provided that the
sequence P (A) is a probability distribution. This can be done as follows. We start from a
sequence of bounded measures −Q0(B), Qk(B) (k = ±1,±2, . . .) satisfying (32) and (33).
Then every solution of (29) can be represented as

(34) P (A) =�A(e + Q(dB)) (A ∈ K),

where Q(B) = (. . . , Q−1(B), Q0(B), Q1(B), . . .). In fact, if P (A) is a solution of (29), then
the Q(B) defined by (30) has the mentioned properties, hence by Theorem 4 (34) holds.
Conversely, if Q(B) has the mentioned properties, then by Theorem 2 (34) exists and the
properties of Q(B) imply that P (A) is a probability distribution for every A ∈ K and
(29) holds. By Theorems 3 and 4 the correspondence between the set functions P (A) and
Q(B) is one-to-one.

It is not difficult to see that Qk(B) is the expected number of points weighted with k
in the set B. (This can be deduced immediately from the results of [6] too.) If there are
no h ∈ H such that 1 − P0({h}) > 0, then P (A) is a compound Poisson distribution, i.e.
it has the characteristic function

(35) exp
∑
k �=0

Qk(A)(eiku − 1).
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If all the random points are weighted by 1, then from (35) we obtain a Poisson distribution

(36) exp Q1(A)(eiu − 1).

The proof of (35) can be accomplished with the aid of the relation (34). Similar statements
are proved in [6].

2. The linear integer-valued Markov process

Let ξt be a Markov process on the linear interval a ≤ t ≤ b. We suppose that ξt can take
on only the values 1, 2, . . . , N . Let K be the semi-ring of all the subintervals of [a, b] (we
permit here closed, open, semi-closed, degenerated intervals equally). If the right-hand
and left-hand limits of the transition probability matrices P (t1, t2) exists when t1 or t2
tend to a limit, then we can correspond to every I ∈ K a matrix P (I). P (I) is an element
of the (non-commutative) Banach algebra of N -rowed quadratic matrices, where the norm
is the maximal value among the absolute column-sums. Obviously B has a unite element.
The set function P (I) is then multiplicative relative to the natural permutation of linear
intervals. Hence, if P (I) is of bounded variation and v-continuous, then we can write the
solution of the equation

(37) P (I1 + I2) = P (I1)P (I2) (I1 ∈ K, I2 ∈ K, I1 + I2 ∈ K)

in a closed form. We will not enter into the details since in the paper of Dobrušin [3] this
is profoundly investigated under somewhat general assumptions. An analogous treatment
can be given for the Markov processes having a countable number of possible states. To
this question the author will return later.

Finally, I express my thank to Á. Császár for his valuable remarks.
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