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Abstract

A class of probabilistic constrained programming problems are considered where
the probabilistic constraint is of the form P{gi(x, ξ) ≥ 0, i = 1, . . . , r} ≥ p and the
functions gi, i = 1, . . . , r are concave. It is shown that the x-function on the left hand
side is logarithmic concave provided ξ has a logarithmic concave density. Special
cases are mentioned and algorithmic solution of problems containing such constraint
is discussed.

1 Remarks on logarithmic concave measures

The notion of logarithmic concave probability measure was introduced in [3]. Let P be
a probability measure defined on the measurable subsets of R

n. It is called logarithmic
concave if for every pair of convex sets A, B ⊂ R

n and for every 0 < λ < 1 the following
inequality holds

P{λA + (1 − λ)B} ≥ (P{A})λ(P{B})1−λ. (1.1)

It is proved in [3] that if P is a continuous probability measure the density of which is of
the following form

f(x) = e−Q(x), x ∈ R
n, (1.2)

where Q(x) is a convex function in the entire n-dimensional space, then P is a logarithmic
concave measure. The value +∞ is also allowed for the function Q.

It follows from (1.1) that if D is an arbitrary convex subset of R
n then the function

P{D + x} =
∫

D+x
f(z) dz, x ∈ R

n (1.3)

is logarithmic concave in the entire space (see [3]).
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A non-negative function h(x) defined in a convex set C ⊂ R
n is called logarithmic con-

cave if for every x1,x2 ∈ C and 0 < λ < 1 we have h (λx1+(1−λ)x2) ≥ [h(x1)]λ[h(x2)]1−λ.
If in particular D = {z | z ≤ 0} then

P{D + x} =
∫
z≤x

f(z) dz = F (x), x ∈ R
n, (1.4)

where F (x) is the probability distribution function belonging to the probability density
f(x) and we see that F (x) is logarithmic concave in the entire space. Examples for
logarithmic concave multivariate probability distributions are the normal, the Wishart,
the Dirichlet and the beta distributions (see [3]).

It is easy to see that the statement concerning the function (1.3) can be converted. If P
is a continuous, logarithmic concave probability measure in R

n and its probability density
f(x) is continuous in an open convex set C, then f(x) is logarithmic concave in C.

In fact if x1,x2 ∈ C and D is a spherical neighbourhood of the point 0, then

λ(D + x1) + (1 − λ)(D + x2) = D + [λx1 + (1 − λ)x2] (1.5)

and D + x1, D + x2, D + [λx1 + (1− λ)x2] are spherical neighbourhoods of the points x1,
x2, λx1 + (1 − λ)x2. In view of (1.5) and the logarithmic concavity of the P measure, we
have

P{D + [λx1 + (1 − λ)x2]} ≥ (P{D + x1})λ(P{D + x2})1−λ. (1.6)

Dividing on both sides by the volume of D and let the radius of D tend to zero we obtain
the required inequality

f(λx1 + (1 − λ)x2) ≥ (f(x1))λ(f(x2))1−λ. (1.7)

2 The class of stochastic programming models

Let gi(x,y), i = 1, . . . , r be concave functions in R
n+q where x is an n-component y

is a q-component vector. Let further ξ be a q-component random vector the probability
distribution of which is logarithmic concave in R

q. We consider constraints of the following
type

P{gi(x, ξ) ≥ 0, i = 1, . . . , r} ≥ p. (2.1)

The most important fact concerning this is expressed by the following

Theorem Under the conditions mentioned above, the x-function standing on the left
hand side of (2.1) is logarithmic concave in the entire space R

n.

Proof. Consider the sets depending on the n-component parameter x:

H(x) = {y | gi(x,y) ≥ 0, i = 1, . . . , r}. (2.2)
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Let L be the set of those x vectors for which H(x) is not empty. We prove that L is
convex and H(x), x ∈ L is a concave family of sets i.e. if x1, x1 ∈ L and 0 < λ < 1, then

H(λx1 + (1 − λ)x2) ⊃ λH(x1) + (1 − λ)H(x2). (2.3)

In fact if y1 ∈ H(x1), y2 ∈ H(x2), then

gi(x1,y1)≥ 0,
i = 1, . . . , r.

gi(x2,y2)≥ 0,
(2.4)

Taking into account the concavity of the functions g1, . . . , gr, we obtain

gi(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)
≥ λgi(x1,y1) + (1 − λ)gi(x2,y2) ≥ 0, i = 1, . . . , r. (2.5)

This implies the convexity of L and the inequality (2.3). We remark that the sets H(x)
are convex. This is a consequence of the inequality (2.3).

The function standing on the left hand side of (2.1) can be expressed in the following
way

P{gi(x, ξ) ≥ 0, i = 1, . . . , r} = P{ξ ∈ H(x)}, if x ∈ L. (2.6)

Let x1,x2 ∈ L and 0 < λ < 1. We have by (2.3) and the logarithmic concavity of the
probability distribution of ξ that

P{ξ ∈ H(λx1 + (1 − λ)x2)}
≥ P{ξ ∈ λH(x1) + (1 − λ)H(x2)}
≥ (P{ξ ∈ H(x1)})λ(P{ξ ∈ H(x2)})1−λ. (2.7)

Thus the function is logarithmic concave in the convex set L. On the other hand our
function is equal to zero outside L hence it is logarithmic concave in the entire space R

n.
Thus the Theorem is proved. �

Now we consider the following problem

h0(x) = P{gi(x, ξ) ≥ 0, i = 1, . . . , r} ≥ p,
hi(x) ≥ 0, i = 1, . . . ,m,
minG(x),

⎫⎬
⎭ (2.8)

where h1, . . . , hm are concave or logarithmic concave in R
n, G(x) is convex in R

n, p is a
prescribed probability for which 0 < p < 1 and g1, . . . , gr, have the property described in
the beginning of this section. Problem (2.8) is equivalent to a convex programming prob-
lem since we can take the logarithm of each constraint function which is only logarithmic
concave and not necessarity concave without changing the problem at all. Remarkable
is the fact that in the first constraint we may have inequalities for nonlinear functions
inside the parantheses. Special examples of problem (2.8) are given below. In the first
two examples we pay attention only to the probabilistic constraint.
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Example 1 Let g1(x), . . . , gr(x) be concave functions in R
n and define the functions

g1(x,y), . . . , gr(x,y) as follows

gi(x,y) = gi(x) − yi, i = 1, . . . , r. (2.9)

In this case our probabilistic constraint reduces to the following

P{gi(x, ξ) ≥ 0, i = 1, . . . , r}
= P{gi(x) ≥ ξi, i = 1, . . . , r} ≥ p. (2.10)

Problems containing such constraint are considered in [4] and [5].

Example 2 Suppose that the random variables η1, . . . , ηr can be expressed as the
mixed quadratic function of the deterministic n-vector x and the stochastic q-vector ξ i.e.
we can represent them as follows

ηi =
(
x
ξ

)′
Ai

(
x
ξ

)
+ b′

ix + d′
iξ + ki + εi, i = 1, . . . , r, (2.11)

where A1, . . . , Ar are (n+q)x(n+q) negative semi-definite matrices, b1, . . . ,br,d1, . . . ,dr

are constant vectors, k1, . . . , kr are constants, ε1, . . . , εr are random variables independent
of each other and of the random vector ξ. We introduce the constraint

P{ηi − ti ≥ 0, i = 1, . . . , r} ≥ p, (2.12)

where t1, . . . , tr are certain prescribed constants and p is a prescribed probability. Since
all functions of the variables x, y, z:

gi(x,y, z) =
(
x
y

)′
Ai

(
x
y

)
+ b′

ix + d′
iy + ki − ti + zi,

i = 1, . . . , r

⎫⎬
⎭ (2.13)

are concave, it follows that the x-function on the left hand side of (2.12) is logarithmic
concave in the entire n-dimensional space provided ξ has a continuous distribution with
logarithmic concave density in R

q further the residual random variables ε1, . . . , εr have
continuous distributions with logarithmic concave densities. In fact in this case the com-
ponents of ξ together with the components of ε′ = (ε1, . . . , εr) have a continuous joint
density in R

q+r. Furthermore

ηi − ti = gi(x, ξ, ε), i = 1, . . . , r, (2.14)

thus our statement is implied by the Theorem of this paper.

In the practical application ξ is frequently supposed to be a normally distributed ran-
dom vector and the residual variables are also supposed to be normally distributed in
which case the densities are logarithmic concave.
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Example 3 As the third and last example we consider a water reservoir system design
problem. We restrict ourselves to a relatively simple situation because the main purpose
here is to show the importance of our class of stochastic programming decision problems.
Suppose we have two possible sites for building reservoirs the purpose of which is to catch
the flood once in each year. This will therefore be a single period problem. We suppose
that the reservoirs are practically empty beginning of the floody period in each year.
The possible sites and the rivers are illustrated in Figure 1. Denote by K1 and K2 the
unknown capacities of the reservoirs, ξ1 and ξ2 the direct flood inflows into Reservoirs 1
and 2, respectively. The flood will be caught by the reservoirs if and only if the following
inequality holds

K1

K2

ξ 1

Figure 1:

ξ1 − min(ξ1,K1) + ξ2 ≤ K2. (2.15)

Let us introduce the following function of the four variables K1, K2, z1, z2:

g(K, z) = K2 + min(z1,K1) − z1 − z2, (2.16)

where K′ = (K1,K2), z′ = (z1, z2). Then (2.15) can be expressed as

g(K, ξ) ≥ 0, (2.17)

where ξ′ = (ξ1, ξ2). Formulating not only the probabilistic constraint but the complete
problem, we may write the following

P{g(K, ξ) ≥ 0} ≥ p,

0 ≤ K1 ≤ L1,

0 ≤ K2 ≤ L2,

min[G1(K1) + G2(K2)]

(2.18)
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Here L1, L2 are some fixed upper bounds, G1(K1) and G2(K2) are the reservoir building
cost functions and p is a fixed probability prescribed by ourselves somewhere near unity.
Since the function (2.16) is concave in the four variables, the K-function on the left hand
side in the first constraint is logarithmic concave provided ξ1, ξ2 have a continuous joint
distribution with logarithmic concave density. This is an immediate consequence of our
Theorem. If G1 and G2 are convex functions then (2.18) is a convex (or quasi-convex
if we do not take the logarithm in the first constraint) programming problem. More
sophisticated reservoir system design problems are discussed in [6].

3 On the algorithmic solution of problem (2.8)

Under the conditions introduced in Section 2, the function h0(x) standing on the left
hand side in the first constraint is logarithmic concave in the entire space R

n. It seems
therefore reasonable to apply the SUMT method with logarithmic penalty function for the
solution of Problem (2.8). The interior point SUMT method proceeds as follows. Take
any decreasing sequence rk for which rk > 0, k = 1, 2, . . . and lim

k→∞
rk = 0. Solve the

unconstrained minimization problem

minimize T (x, rk) = G(x) − rk

m∑
i=0

log hi(x). (3.1)

Denote by x(rk) the optimal solution of (3.1). Then under some regularity conditions we
have

lim
k→∞

G(x(dk)) = min
x∈S

G(x), (3.2)

where S is the set of feasible solutions of problem (2.8).

Denote by S0 the set of those x vectors for which the inequalities in (2.8) hold strictly.
Maintaining the conditions introduced in Section 2,we introduce also the following ones:

a) S0 is not empty,

b) the constraining functions are continuous,

c) the set {x | G(x) ≤ α, x ∈ S} is bounded for every finite value of α.

Under these conditions relation (3.2) holds true. In fact the functions G(x), − log hi(x),
i = 0, . . . ,m are convex by the assumptions and results of the previous section. Thus,
applying the theory presented in [1], our assertion follows.

When solving (3.1) we frequently have to obtain values of h0(x). This can be done by
simulation. Sometimes it is possible to evaluate the gradient of h0(x) too (see e.g. [4]).
There are, however, sophisticated cases where the evaluation of ∇h0(x) is very difficult,
like in Example 2 of the previous section. In such cases methods without derivatives are
advised (see [2]).
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