Mathematical Programming 4 (1973) pp. 202-221

CONTRIBUTIONS TO THE THEORY OF
STOCHASTIC PROGRAMMING™* **

Andrds PREKOPA
Technological University and Hungarian Academy of Sciences,
Budapest, Hungary

Received: 13 November 1970
Revised manuscript received 4 January 1973

Abstract

Two stochastic programming decision models are presented. In the first
one, we use probabilistic constraints, and constraints involving conditional ex-
pectations further incorporate penalties into the objective. The probabilistic
constraint prescribes a lower bound for the probability of simultaneous occur-
rence of events, the number of which can be infinite in which case stochastic
processes are involved. The second one is a variant of the model: two-stage
programming under uncertainty, where we require the solvability of the second
stage problem only with a prescribed (high) probability. The theory presented
in this paper 1s based to a large extent on recent results of the author concerning
logarithmic concave measures.

1 Introduction

The stochastic programming decision problems are formulated so that we start from
a mathematical programming problem, then observe the random nature of some
parameters, and finally decide on a certain principle according to which we operate
our system under these circumstances. That mathematical programming problem
which is the starting point of the stochastic programming model construction will
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be called the underlying problem. The underlying problem we consider here is of
the following type

minimize go(z),
(1.1)
subject to uy(x) > 5y, t€T; gi(x)>0, i=1,...,N.
The set of subscripts T' can be finite or infinite. In the latter case, T" will be supposed
to be a finite interval.

Suppose now that certain parameters in the constraining functions w(x) and
bounds §; are random, and we want to formulate decision principle for the stochastic
system. The existing models can be considered static or dynamic, resp. reliability
type or penalty type from another point of view.

The first penalty type model was introduced by Dantzig [4] and Beale [1]. The
generalization of this given by Dantzig and Madansky [5] is at the same time the
first dynamic type stochastic programming model. Programming under probabilistic
constraints, i.e. the use or reliability type models, was introduced by Charnes,
Cooper and Symonds [3].

At first sight it might seem that the use of reliability and penalty type models
are alternative possibilities and exclude each other. Contrary to this opinion, we
are convinced that the best way of operating a stochastic system is to operate it
with a prescribed (high) reliability and at the same time use penalties to punish
discrepancies. This is the general framework of our model constructions.

The theory presented in this paper is based on recent results of the author con-
cerning “logarithmic concave measures”. A probability measure P defined on a
o-field of subsets of R™, containing all n-dimensional intervals, is said to be loga-
rithmic concave if for any pair A, B C R” of convex sets and for any 0 < A < 1, we
have

P{M+(1-N)B} > (P{A}NP{B}H)' ™, (1.2)
where 4 denotes Minkowski addition. In [10], we proved the following:

THEOREM 1.1. Let f be a probability density function in R™ having the following
form

f@) =9, zern, (1.3)

where () is a convex function in the entire space. Then the probability measure P,

defined by

P{G} = /Gf(a:) da, (1.4)

Jor all Lebesque measurable subsets G of R"™, is logarithmic concave.



It can be shown that if P is a logarithmic concave measure and A is a convex
set, then the function P{A + «} of the variable z is logarithmic concave (see [10,
Theorem 3]). In particular, if a probability measure is logarithmic concave, then the
distribution function F'(z) is a logarithmic concave point function since

Fle)=P{A+=2} for A={t:t<0}. (1.5)

In this paper, we present two stochastic programming models. The first one,
formulated in Section 2, contains probabilistic constraints, and constraints involving
conditional expectations; further a penalty is incorporated into the objective func-
tion. In Sections 3-5, we show that we are lead to a convex programming problem
under some conditions. The second one is a variant of the model: two-stage pro-
gramming under uncertainty. This is formulated in Section 6, while in Section 7 we
are dealing with the properties of this model. In Section &8, an algorithmic solution
of the models is given, and in Section 9 we give a numerical example for the first
model.

2 Programming under probabilistic constraint and con-
straints involving conditional expectations with pe-
nalty incorporated into the objective

We consider the underlying problem (1.1) and formulate the stochastic programming
decision model in the following way:

minimize {go(a:) + th /O:m)[z — uy ()] dFt(z)} ;

subject to  P{us(x) > By, t=1,...,m} > p, (2.1)
E{ﬁt_ut(m)|ﬁt_ut(w)>0}§lt7 t:17"'7m7
gi(e) >0, i=1,... N,

if T'is a finite set, T'= {1,...,m}. If T'is an interval, the problem is formulated as

minimize {go(m) + /T/ut(m)[z — uy(x)] dFy(2) dG(t)} ,

subject to  P{ui(x) > B¢, t € T} > p, (2.2)
E{f: —ui(z) | e —ue(x) >0} < L, t €T,
gi(e) >0, i=1,...,N.



Problem (2.1) is obviously a special case of Problem (2.2). In (2.1), ¢1,...,¢m
are nonnegative numbers, while in (2.2), G(¢) is a nonnegative, nondecreasing and
bounded function defined on T'. Fy(z) is the probability distribution function of the
random variable f5;, Fi(z) = P{f; < z}, —00 < z < 0.

E is the symbol of expectation. Whenever penalty is used to punish deviation of
the form §; — us(x) > 0, or we work with the conditional expectation E{3; — u() |
B¢ — ug(x) > 0}, we always suppose in the whole paper that the expectation of
exists.

The functions wi(x), t € T, —go(x) are supposed to be concave with continuous
gradient in an open convex set . Consider the case where T is an interval. We
suppose that u, (@) and Vu,(x) are piecewise continuous in ¢t € T for any « € H.
We suppose furthermore that the stochastic process J; is separable and is piecewise
weakly continuous in 7. Weak continuity of 3; at the point 7 means that 3, is the
limit in probability of 5; whenever t — 7. It follows that (see [6, Theorem 2.2,
p. 54]) the joint occurrence of the events u;(x) > f;, t € T, is again an event.

We suppose that all random variables 3;, ¢t € T, are continuously distributed, and
denote by fi(z) the probability density belonging to Fi(z). As Fi(z) is continuous
in z for every t, the piecewise weak continuity of the stochastic process G; implies
the piecewise continuity of the function F;(z) with respect to ¢ for any real z. We
suppose further that the function

/0;)[2 —us(z)] dF(2) (2.3)

is piecewise continuous in ¢t € T for any fixed @ € H. This implies the existence of
the integral (also in the Riemann—Stieltjes sense) in the objective of Problem (2.2).
It is easy to see that the additional term in the objective of Problem (2.1) is convex
and has continuous gradient in H.

3 The gradient of the objective of Problem (2.2)

In this section, we prove the following;:

THEOREM 3.1. The additional term in the objective of Problem (2.2) is a convex

function on H. If furthermore there exist functions wgl)(a}), wgz)(a:) of the variables
t €T, x € H such that for every fixed ® € H and for every sufficiently small



Az # 0, we have

u (e + Ax;) — u(@
d A; (@) < (), LeT,
IVu(e + Az) — V()| < wP(z), tet,

(1) (2)

where w;’ (x), w;”’ (x) have finite integrals over T for any @ € H, Az; is the vector
the ith component of which is equal to Az while the others are zero, and the norm
is the Fuclidean norm, then the additional term has continuous gradient in H.

Proof. The convexity of the integrand can be proved easily. Integration with
respect to ¢ does not disturb this property, hence the additional term is convex.

The difference quotient of the additional term is the following;:

. u(x+Ax;)
(A7) /T /W) [us(@) — 21/i(2) d=dG()

_I_/T us(x + AA:I:;) - ut(m)[Ft(ut(a: + Az;)) — 1]dG(1). (3.1)

The first term can be majorated as

. us(x+Vx;)
(A7) /T / @A) 4z 460

<),

The integrand on the right-hand side tends to 0 as Az — 0, and for small Ax
(1)

values it is smaller than or equal to w; ’(«) uniformly in ¢. Hence by the Dominated
Convergence Theorem, the integral on the right-hand side tends to zero as Az — 0.
(1)

The integrand in the second term in (3.1) is also dominated by w,; ’(x), hence by
the same theorem the limit exists whenever Az — 0.

w(x + Ax;) —
Az

u(2) [Fous(z + Aw;)) — Ft(ut(a:))]‘ dG(1).

The gradient of the objective function of Problem (2.2) is the following:

Vgol(z) + /T Vug(x)[Fy(u(2)) — 1] dG(2). (3.2)

The continuity in « of the second term follows easily from the suppositions. Thus
Theorem 3.1 is proved. O



4 Properties of the probabilistic constraints of Prob-
lems (2.1) and (2.2)

In this section, we show that the functions standing on the left-hand sides of the
probabilistic constraints in (2.1) and (2.2) are logarithmic concave under some con-
ditions.

THEOREM 4.1. Let T be a finite set or a finite interval. Suppose that for u(x),
Bt, t € T, the conditions mentioned in Section 2 are satisfied. Suppose furthermore
that the finite-dimensional distributions of the stochastic process (3 are logarithmic
concave probability measures. Then the function P{ui(x) > f;, t € T}, is logarith-
mic concave in x € H.

Proof. Let t{,...,ty be a finite parameter subset of T'. Let further @,y € H
and 0 < A < 1. Then the concavity of the functions wu, (), ¢ = 1,..., N, and the
logarithmic concavity of the joint distribution function of 3, ¢ =1,..., N, implies

P{u,(Az+ (1 - Ny) >, i=1,...,N}
> POy (@) + (1- Mg (9) > s i = 1,00, N}
> [Plug (@) > By i = 1o, NIPPLun (9) > B 1= 1, , NJI
(4.1)

If T is a finite set, then the theorem is proved. Let T be a finite interval. Since
logarithmic concavity is preserved when taking the limit and

—+00
provided f1,t,. .. is a dense sequence in 7" (see [6, Theorem 2.2, p. 54]) our theorem
is proved. O

One important example for the stochastic process f3;, where the finite dimensional
distributions are logarithmic concave measures, is the Gaussian process.

5 The constraints involving conditional expectations

The constraints
E{ﬁt - ut(a:) | ﬁt - ut(a:) > 0} S lt7 t € 1—77 (51)
can be written in the equivalent form

he(ug(z)) <l,,  teT, (5.2)



where

/:O(v — 2)dF(v) /:o vdFy(v)

hi(z) = —h0) =T O z. (5.3)

The use of a constraint (3.2) is advised only under the following two conditions:

(a) h¢(z) is a nonincreasing function of z,

(b) lim{hs(z) : z = 00} =0.

The reason of (a) is that h(us(2)) measures the deviation of the type 8, —u,(x) > 0,
and if for two programs @1, €2 we have (@) < u(x2), ie.

Br — uwi(®1) > B — wi(22),

then it is natural to require hy(ui(x1)) > hi(ui(22)). The reason of (b) is that we
shall be able to use arbitrary small /; in (5.1). In view of (a), the constraint (5.2)
can be written as

ur(z) > b (1), tefT, (5.4)

provided h;'(z) is conveniently defined (if ¢ is the smallest number 2 for which

hi(z) = d, then h;'(d) = ¢).

We remark that if 3; has an expectation, then the function (5.3) is continuous
for every z for which Fy(z) < 1. If Fi(2) reaches the value 1 for finite z and 2o is the
smallest z for which Fi(z) = 1, then we define Fi(z) = 0 for z > zp, and it is easy
to see that the function (5.3) is continuous also at the point z = zy. In all cases we
have lim{h:(z) : 2 = —oo} = 0.

If a constraint of the type (5.1) is used and conditions (a), (b) are satisfied,
then we convert it into the equivalent form on the basis of tabulated values of the
functions (5.3).

There remains to consider the problem for which probability distributions con-
ditions (a) and (b) are satisfied. In connection with this we prove the following:

THEOREM 5.1. Let 3 be a continuously distributed random variable with loga-
rithmic concave probability density and suppose that E{} exists. Then the function
of the variable z

h(z) =E{f =z |5 —-2>0}

is a nonincreasing function on the entire real line.!

V. Zolotariev (Steklov Institute, Moscow) participated in the development of this theorem. The
present proof is due to author of this paper.



Proof. Let f, F be the density and the distribution functions, respectively, of the
random variable 5. As h(z) = 0 if F(z) = 1, it is enough to consider such z values
for which F(z) < 1. Since E{3} exists, it follows that the integrals below exist and

/ zf(z)de = / [1 — F(z)]dz + z[1 = F(2)].
Using this, we derive the equality

/:o(x — ) f(x) de /:0[1 — F(2)]da

G P I w2y

(5.5)

Let G(z) and —g(z) denote the numerator resp. the denominator on the right-
hand side in (5.5). Then h(z) — G(z)/(—g(z)) and G'(z) = ¢g(z). By Theorem 1.1,
1 — F(z) is logarithmic concave on the entire real line. In fact, if A = (0, 00), then
1 — F(z) = P{A + z}, and the function on the right-hand side has the mentioned
property. Again by Theorem 1.1, GG(z) is also logarithmic concave in R. Thus
d logG(z)/dz = ¢g(2)/G(z) must be nonincreasing, which proves that h(z) is also
nonincreasing.

We required also that lim{h(z) : z — oo} = 0. We prove now that if 3 has
a normal distribution, then this condition is also satisfied. We may suppose that

E{3} = 0 and E{3?} = 1. The function h(z) has the form

_ (2
"= T80

_27

where

o= e |52 e = [ s

-0 < z < 00.

Since h(z) > 0 for every z, it follows that
>z, —o00 < z < 00,

hence applying the I’Hospital rule for the right-hand side of (5.5), we obtain

lim A(z) = lim (1 — ®(2))/¢(z) =0.

Z—r 00 Z—r 00

We may introduce a constraint involving conditional expectation also in the case
where the technological coefficients are also random. If the good situation is the



fulfillment of the inequality o’z = ajzy + ...+ ayz, > (3, where ay,...,qa, are
random variables, then we can measure deviations into the wrong direction by the
quantity E{f —a'z : 3 —a’z > 0} but in some other ways too. An example is the
following: First we define

5— G —az
- VJ(2'Vz)
where 2’ = (1,21,...,2,), V is the covariance matrix of the random variables £,
—oq, ..., —0y, and then introduce the measure of deviation together with its upper
bound as follows:
E{é6|é >0} <, [ >0. (5.6)

If the random variables have a joint normal distribution with expectations E{g} = d,
E{o;} = a;, t = 1,...,n, and a is the vector with components a;, then (5.6) has
the following form:

h(t)y=E{é6|é >0}
_E ﬁ—d—(a—a)’a:_l_ d—adz ﬁ—d—(a—a)’a:_l_ d—a'z 50
e Y/ e | Y/ P R/ e
CE{y—t|y—t>0} <l 1=22=d (5.7)
- Ry =5 ~/ZVa) ‘
We shall show that for normally distributed random variables conditions (a), (b) are
satisfied. Thus if 3, —aq,...,—a, have a joint normal distribution, then v has an
N(0, 1) distribution for any @ vector, hence (5.7) can be converted into the equivalent

form
R ()(2'Vz)+d—ad'z <0, (5.8)

and on the left-hand side there stands a convex function of the variable z € R™.

6 A variant of the model: two stage programming under
uncertainty

The original two stage programming under uncertainty model [5] is formulated con-
cerning the following underlying problem: minimize ¢’z subject to the constraints
Az = b, Te = B, « > 0, which is a special case of (1.1). We suppose that 8 is a
random vector and consider the so called second-stage problem

My=p8-Tz, y>0, minq'y, (6.1)



where x is fixed, 3 is random but it is also fixed at some realization. The optimum
value depends on 3, hence it is also a random variable. The first-stage problem
specifying @ is the following;:

Ax = b, x>0,

(6.2)
min{c'z + E{minqg'y : My =3~ Tz, y > 0}}.

The second-stage problem must be solvable for any realization of the random vector
B. This shows that in some cases this model imposes a very strong condition con-
cerning the structure of the second-stage problem. If e.g. 3 has a nondegenerated
normal distribution, then the set of realizations of 3 is the entire space and the
right-hand side of the first constraint in (6.1) varies also in the entire space. In our
modification of this very important model formulation it will not be required that
the second-stage problem be solvable for all realizations of 3. Before presenting the
modification we have to make some remarks.

Wets proved in [12] that the set of feasible x vectors is a convex polyhedron. (x
is feasible if Ax = b, @ > 0; further for every realization of 3 there exists a y > 0
satisfying T + My = [3.) We shall use his proof for the development of our theory.
Consider the convex polyhedral cone

C={z:2=My, y>0}. (6.3)
By the theorem of Weyl there exist vectors dy, ... ,d, such that
C={z:d2<0,i=1,...,v}. (6.4)

Let @ be a vector satisfying Az = b, @ > 0. Then problem (6.1) is solvable if
and only if 3 — T@ € C. Thus the condition of the solvability of the second-stage
problem is

dig <dTz, i=1,...,v. (6.5)

If this holds for every realization of 3, then @ is feasible. The probability of the
fulfillment of the events in (6.5) gives the probability of solvability of the second-
stage problem in case of the given & € R™.

Now we define the new second-stage problem as follows

My+yt -y =8-Tz,
y>0, y">0, gy >0, (6.6)
min{q'y +¢"'y" +q 'y},

10



where it is reasonable to suppose that g© > 0, g > 0. It is also reasonable to
choose g7 and ¢~ in such a way that we obtain automatically y* = 0, y~ = 0 if the
originally formulated second-stage problem is solvable. If the original second-stage
problem is not solvable, then the optimum value of (6.6) expresses a certain distance
between the given @ and the set defining the solvability,

{z . d\3<dTe, i=1,...,v}, (6.7)

where now 3 is fixed at some realization. Our model is formulated in the following
way:

Ax = b, x>0,
P{d;ﬂgd;Tw7 i:]‘?"'7v}2p7
E{d. - dTz |d, —d.Tz >0} <, i=1,...,0,
min{c's + B{u(z)}},

where p(x) is the random optimum value of the modified second-stage problem, p

(6.8)

is a given probability, 0 < p < 1, and [y, ... ,[, are given constants.

7 Properties of the model introduced in Section 6

In connection with problem (6.8), we have to analyze the functions in the proba-
bilistic constraint, in the constraints containing conditional expectations, and in the
objective function. Our aim is to show that problem (6.8) is a convex programming
problem (or equivalent to a convex programming problem) under some conditions.
First we prove:

THEOREM 7.1. Suppose that the random vector 3, standing in the probabilistic
constraint of problem (6.8), has continuous distribution and its probability density
is logarithmic concave in the entire space R™. Then as a function of =, P{d.3 <
diTz, i =1,...,v} is logarithmic concave on R".

Proof. If we define
A={z : diz<dTz, i=1,...,v},
B={z:dz<dTy, i=1,...,v},
C={z:dz<dTAz+(1-Ny), i=1,...,v},

where z,y € R" and 0 < A < 1, we have that C' > AA + (1 — A)B. Hence applying
Theorem 3.1 completes the proof. O

Concerning the random variables d.3, i = 1, ... ,v, we prove the following lemma.

11



LEMMA 7.2. If B is a continuously distributed random vector with logarithmic
concave density f(xz) and d # 0 is a constant vector having the same number of
components as 3, then the random variable d'3 has a logarithmic concave density.

Proof. We may suppose that d; # 0. The distribution function of d’3 is given
by

G = [ s@de=lal [ g0 iy,
d'z<z y1 <z
where we applied the transformation

dizy +dezo+ ..+ dpx, =y,

T2 = Y2,

Tm = Ym,

and D is the matrix of the coeflicients standing on the left-hand side. It follows that
the probability density ¢ of d’3 equals

o) = |d1|-1/ / F(D"'y) dys .. dyn,
—00 <y < 0.

Since all marginal densities belonging to a logarithmic concave density are logarith-
mic concave (see [11, Theorem 8]), it follows that ¢ is a logarithmic concave function
and the lemma is proved. O

Taking into account Theorem 5.1, the constraints involving conditional expecta-
tions in problem (6.8) can be converted into equivalent linear constraints provided
B3 has a logarithmic concave density.

The objective function of problem (6.8) does not require new investigation be-
cause problem (6.6), where the random optimum value comes from, is a special
second-stage problem of the type (6.1), hence the results concerning two-stage pro-
gramming under uncertainty are applicable here.

8 Solutions of the problems formulated in Sections 2
and 6

First we make some remarks concerning the gradients of the functions standing in
the probabilistic constraints of problems (2.1), (2.2) and (6.8).

12



In general, the gradient of the probability distribution function F(z) of a con-
tinuous distribution can be obtained as follows:

857;%):1?($]‘7 J=1, 00 =1, 14+ 1, .0 @) fi(e), i=1,...,n, (8.1)
where F'(- | -) stands for conditional distribution function and f;(z;) is the proba-
bility density of the conditioning variable. For many multivariate probability distri-
butions, the function F(- | -) is of the same type as F'(x). This is very important
from the point of view of computation because the same subroutine can be used to
compute the values of the gradient of F'(x), which is used to compute the values
of F(x). Let ®(z; R) denote the probability distribution function belonging to the
n-dimensional normal distribution, where the random variables have expectations
equal to zero, variances equal to 1 and R is their correlation matrix. In this case,
we obtain

0¢(z; R) _ & (xj — T

yJ=1 =10+ 1, .0 n; R | e(a),
dx; \/(1—7‘]22»)

i=1,...,m, (8.2)
where R; is the following (n — 1) X (n — 1) correlation matrix
Ri = (sin),
oy = Tjk = TjiThi
TV =V =)

The gradient of the function standing on the left-hand side in the probabilistic

(8.3)

Gok=1,...i—1i+1,... 0

constraint of problem (2.1) follows from this easily. This formula can be applied
even in the case where |R| = 0, i.e., the distribution is degenerated but all elements
of R outside the diagonal have absolute values less than 1. The function standing on
the left-hand side in the probabilistic constraint of problem (6.8) will be frequently
of this type. In fact, if d; # 0, and no pair from dy,...,d, is linearly dependent,
further if 3 has a nondegenerated normal distribution, then d}3,...,d,3 have
a joint normal distribution which satisfies the above requirements, but this joint
distribution is surely degenerated if r is greater than the dimension of 3. This
implies the continuity of the gradient of the mentioned function in (6.8) under the
above suppositions.

We consider now the function P{u,(x) > f;, t € T}, where ; is a Gaussian
process with E{3;} = 0, E{p?} = 1,t € T = [a,b]. Let t1,t5,... be a sequence of

13



elements of T, supposed to be dense in the same interval. Using (8.2), we have

GP{utj(a:) 2 ﬁt]7 ]: 17 7N}
Oz

N

(@) =t t)un (@) L

:;P{ \/(1_7‘2(@‘,@)) Zﬂ§])7]:1,...7]\77]7£@}
duy, () |

XQP(“M(’”))Wv E=1,...,n, (8.4)

where ﬁii), t € T,is again a Gaussian process with identically 0 expectation function
and identically 1 variance function. Its correlation function is given by

r(s,t) — r(ts, s)r(t;,t)

V=2 (t, s))y/(1 = r2(ti, 1))

where r(s,t) is the correlation function of the Gaussian process ;. The gradient of
the function P{u,(x) > 5, t € T'} is the limit of (8.4) when N — oo, provided the
differentiation with respect to the components of @ and the limit can be interchanged.
If T'is a finite set, T'= {t1,...,tn}, then (8.4) gives the gradient of the considered
function.

ri(s,t) = t=1,..., N, (8.5)

There are many nonlinear programming methods which can be applied for the
solution of our problems. We have computer experience concerning the solution
of problem (2.1) by the application of the method of feasible directions and the
sequential unconstrained minimization technique procedure. The convergence proof
of the former method [14, procedure P2, p. 74] was generalized in [9] for the case
of quasi-concave constraints under some regularity assumptions. Thus we can solve
the following problem:

minimize go(x)

subject to G(x) > pi, i€l ={1,...,m},

a’ngbiv iGIL:{lv"'7m2}7
where go(z) is convex and Gi(z),...,Gy, (2) are quasi-concave. The procedure
starts with an arbitrary feasible @q. If ®q,...,®x; are already determined, then we

solve the linear programming problem

Gi(zr) + VGi(zp) (2 — 28) + 0y > pi, i€ lo,
x> b, € 1y,
a;x > v € 1Ip, (8.6)
Vo(zr)(x — ) >y,
min y,

14



denote by z} an optimal solution, minimize go(z) on the feasible part of the ray
x, + Az} — zx), A > 0, and define @34y as an arbitrary minimizing point. The
gradients in case of problems (1.1) and (1.2) are given in this section and in Section 3.

The application of the SUMT methods offers particularly good posibilities if we
use logarithmic penalty function. In fact, our functions standing in the constraints
are logarithmic concave for a wide class of the random variables 3, ¢ € T'; thus the
penalty function will be convex, which simplifies its minimization.

When solving problem (6.8), the explicit knowledge of the vectors dy,...,d, is
supposed. We remark that the values of the functions and their gradients standing
in the probabilistic constraints of problems (2.1), (2.2) and (6.8) can be obtained
by simulation. The same holds for E{u} standing in the objective function of prob-
lem (6.8).

9 A numerical example and sensitivity analysis of the
constraining functions with respect to correlations

We consider the following problem:

Ploi+ 22— 32> B1, 201+ a3 —4 2> B2} > 0.8, (9.1)
vy +4wy >4, by +a2 25, 1 >0, 13 >0,
min (3z; + 2z2),
where 31, (, have joint normal distribution with E{8;} = E{8;} = 0, E{3?} =
E{32} = 1, further E{3,3;} = r = 0.2. We apply the method of feasible directions.

Given a feasible @y, the direction finding problem is the following (where Li(z) =
14 23— 3, La(®) =221 + 22 — 4):

b(Li(@r), L2(1); 0,2) + G — @) + Oy > p,
€T + 4$2 2 47 5$1 + i) 2 57 €T 2 07 i) 2 07 (92)
Fk(w - CIZk) <Y, min Y,

where G, and Fy are the following gradient vectors

- (Ll(azk) - 0.2L2($k)) o Lo(x)) + ® (Lz(wk) - 0~2L1(93k)) o(L1 (@)

o (Ll(mk)ol(\)/zh(wk)) o)) + B (Lz(:nk)ol(\;zh(wk)) (L (®1))

()
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Altogether, 30 iterations have been performed. The program was run on a CDC
3300 computer. The values of the bivariate normal distribution were obtained by
simulation. Most of the computer time was consumed by this. As the solution we
obtained? z1opt = 1.055, T30pt = 3.200 and f(xopt) = 9.565. The same problem
was solved by the SUMT, interior point method. The computer time was less than
in the former case.

Another, much larger problem was also solved on the same computer, where the
number of linear inequality constraints was 50, the number of variables was also 50
and there was one probabilistic constraint constructed out of 4 constraints of the
underlying problem with normally distributed and dependent random variables 3y,
B9, 03, B4. The objective function was linear. The problem was solved by the method
of feasible directions combined with the simulation of the normal distribution, in 25
minutes. Seven iterations had to be performed, and in this case more time was spent
for the nonlinear programming procedure than for the simulation.?

Finally, we mention a useful formula concerning the derivative of the normal
distribution function. We consider ¢(z1,..., zm; R), ®(21,..., 2m; R), where R =
(rik). 1t is well-known that (see e.g. [8])

od ey Zmy R & Fm
(1,002 ) :/ / ©(21, 22, Uy« « vy Upps R) dus .. ditg,. (9.3)

87‘12

A similar formula holds for the case of r;. It follows from (9.3) that

OP(21,... 2 R)  0®(21,..., 2, R)

87‘12 - 82’1 82’2
0 22 — T2~ Zm — FimZ1
= — ..., ———— R
822 (\/(1 _ r%2)7 1 \/1 _ r%m 1 1 @(21)7

where Ry is the correlation matrix defined by (8.5). The derivative on the right-hand
side can be obtained by (8.4).
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