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Abstract

Two stochastic programming decision models are presented� In the �rst
one� we use probabilistic constraints� and constraints involving conditional ex�
pectations further incorporate penalties into the objective� The probabilistic
constraint prescribes a lower bound for the probability of simultaneous occur�
rence of events� the number of which can be in�nite in which case stochastic
processes are involved� The second one is a variant of the model� two�stage
programming under uncertainty� where we require the solvability of the second
stage problem only with a prescribed �high� probability� The theory presented
in this paper is based to a large extent on recent results of the author concerning
logarithmic concave measures�

� Introduction

The stochastic programming decision problems are formulated so that we start from
a mathematical programming problem� then observe the random nature of some
parameters� and 
nally decide on a certain principle according to which we operate
our system under these circumstances� That mathematical programming problem
which is the starting point of the stochastic programming model construction will
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The Netherlands under the title �Programming under probabilistic constraints and programming
under constraints involving conditional expectations�	
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be called the underlying problem� The underlying problem we consider here is of
the following type

minimize g��x�
����

subject to ut�x � �t� t � T � gi�x � �� i � �� � � � � N�

The set of subscripts T can be 
nite or in
nite� In the latter case� T will be supposed
to be a 
nite interval�

Suppose now that certain parameters in the constraining functions ut�x and
bounds �t are random� and we want to formulate decision principle for the stochastic
system� The existing models can be considered static or dynamic� resp� reliability
type or penalty type from another point of view�

The 
rst penalty type model was introduced by Dantzig �	� and Beale ���� The
generalization of this given by Dantzig and Madansky ��� is at the same time the

rst dynamic type stochastic programming model� Programming under probabilistic
constraints� i�e� the use or reliability type models� was introduced by Charnes�
Cooper and Symonds ����

At 
rst sight it might seem that the use of reliability and penalty type models
are alternative possibilities and exclude each other� Contrary to this opinion� we
are convinced that the best way of operating a stochastic system is to operate it
with a prescribed �high reliability and at the same time use penalties to punish
discrepancies� This is the general framework of our model constructions�

The theory presented in this paper is based on recent results of the author con�
cerning �logarithmic concave measures�� A probability measure P de
ned on a
��
eld of subsets of Rn� containing all n�dimensional intervals� is said to be loga�

rithmic concave if for any pair A�B � Rn of convex sets and for any � � � � �� we
have

Pf�A� ��� �Bg � �PfAg��PfBg���� ����

where � denotes Minkowski addition� In ����� we proved the following�

Theorem ���� Let f be a probability density function in Rn having the following

form

f�x � e�Q�x�� x � Rn� ����

where Q is a convex function in the entire space� Then the probability measure P �

de�ned by

PfGg �
Z
G

f�x dx� ���	

for all Lebesgue measurable subsets G of Rn� is logarithmic concave�
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It can be shown that if P is a logarithmic concave measure and A is a convex
set� then the function PfA � xg of the variable x is logarithmic concave �see ����
Theorem ��� In particular� if a probability measure is logarithmic concave� then the
distribution function F �x is a logarithmic concave point function since

F �x � PfA� xg for A � ft � t � �g� ����

In this paper� we present two stochastic programming models� The 
rst one�
formulated in Section �� contains probabilistic constraints� and constraints involving
conditional expectations� further a penalty is incorporated into the objective func�
tion� In Sections ���� we show that we are lead to a convex programming problem
under some conditions� The second one is a variant of the model� two�stage pro�
gramming under uncertainty� This is formulated in Section �� while in Section � we
are dealing with the properties of this model� In Section �� an algorithmic solution
of the models is given� and in Section � we give a numerical example for the 
rst
model�

� Programming under probabilistic constraint and con�
straints involving conditional expectations with pe�
nalty incorporated into the objective

We consider the underlying problem ���� and formulate the stochastic programming
decision model in the following way�

minimize

�
g��x �

mX
t��

qt

Z �

ut�x�
�z � ut�x� dFt�z

�
�

subject to Pfut�x � �t� t � �� � � � � mg � p� ����

Ef�t � ut�x j �t � ut�x � �g � lt� t � �� � � � � m�

gi�x � �� i � �� � � � � N�

if T is a 
nite set� T � f�� � � � � mg� If T is an interval� the problem is formulated as

minimize

�
g��x �

Z
T

Z �

ut�x�
�z � ut�x� dFt�z dG�t

�
�

subject to Pfut�x � �t� t � Tg � p� ����

Ef�t � ut�x j �t � ut�x � �g � It� t � T�

gi�x � �� i � �� � � � � N�
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Problem ���� is obviously a special case of Problem ����� In ����� q�� � � � � qm
are nonnegative numbers� while in ����� G�t is a nonnegative� nondecreasing and
bounded function de
ned on T � Ft�z is the probability distribution function of the
random variable �t� Ft�z � Pf�t � zg� �� � z ���

E is the symbol of expectation� Whenever penalty is used to punish deviation of
the form �t�ut�x � �� or we work with the conditional expectation Ef�t�ut�x j
�t � ut�x � �g� we always suppose in the whole paper that the expectation of �t
exists�

The functions ut�x� t � T � �g��x are supposed to be concave with continuous
gradient in an open convex set H � Consider the case where T is an interval� We
suppose that ut�x and rut�x are piecewise continuous in t � T for any x � H �
We suppose furthermore that the stochastic process �t is separable and is piecewise
weakly continuous in T � Weak continuity of �t at the point 	 means that �� is the
limit in probability of �t whenever t � 	 � It follows that �see ��� Theorem ����
p� �	� the joint occurrence of the events ut�x � �t� t � T � is again an event�

We suppose that all random variables �t� t � T � are continuously distributed� and
denote by ft�z the probability density belonging to Ft�z� As Ft�z is continuous
in z for every t� the piecewise weak continuity of the stochastic process �t implies
the piecewise continuity of the function Ft�z with respect to t for any real z� We
suppose further that the functionZ �

ut�x�
�z � ut�x� dFt�z ����

is piecewise continuous in t � T for any 
xed x � H � This implies the existence of
the integral �also in the Riemann�Stieltjes sense in the objective of Problem �����
It is easy to see that the additional term in the objective of Problem ���� is convex
and has continuous gradient in H �

� The gradient of the objective of Problem �����

In this section� we prove the following�

Theorem ���� The additional term in the objective of Problem ���� is a convex

function on H� If furthermore there exist functions w
���
t �x� w

���
t �x of the variables

t � T � x � H such that for every �xed x � H and for every su�ciently small

	



�x �� �� we have ����ut�x��xi� ut�x

�x

���� � w
���
t �x� t � T�

krut�x��xi�rut�xk � w
���
t �x� t � T�

where w
���
t �x� w

���
t �x have �nite integrals over T for any x � H� �xi is the vector

the ith component of which is equal to �x while the others are zero� and the norm

is the Euclidean norm� then the additional term has continuous gradient in H�

Proof� The convexity of the integrand can be proved easily� Integration with
respect to t does not disturb this property� hence the additional term is convex�

The di�erence quotient of the additional term is the following�

��x��
Z
T

Z ut�x��xi�

ut�x�
�ut�x� z�ft�z dz dG�t

�

Z
T

ut�x��xi� ut�x

�x
�Ft�ut�x��xi� �� dG�t� ����

The 
rst term can be majorated as�������x��
Z
T

Z ut�x�rxi�

ut�x�
�ut�x� z�ft�z dz dG�t

�����
�
Z
T

����ut�x��xi� ut�x

�x
�Ftut�x��xi� Ft�ut�x�

���� dG�t�

The integrand on the right�hand side tends to � as �x � �� and for small �x

values it is smaller than or equal to w
���
t �x uniformly in t� Hence by the Dominated

Convergence Theorem� the integral on the right�hand side tends to zero as �x� ��

The integrand in the second term in ���� is also dominated by w
���
t �x� hence by

the same theorem the limit exists whenever �x� ��

The gradient of the objective function of Problem ���� is the following�

rg��x �

Z
T

rut�x�Ft�ut�x� �� dG�t� ����

The continuity in x of the second term follows easily from the suppositions� Thus
Theorem ��� is proved� �
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� Properties of the probabilistic constraints of Prob�
lems ����� and �����

In this section� we show that the functions standing on the left�hand sides of the
probabilistic constraints in ���� and ���� are logarithmic concave under some con�
ditions�

Theorem ���� Let T be a �nite set or a �nite interval� Suppose that for ut�x�
�t� t � T � the conditions mentioned in Section � are satis�ed� Suppose furthermore

that the �nite�dimensional distributions of the stochastic process �t are logarithmic

concave probability measures� Then the function Pfut�x � �t� t � Tg� is logarith�

mic concave in x � H�

Proof� Let t�� � � � � tN be a 
nite parameter subset of T � Let further x�y � H

and � � � � �� Then the concavity of the functions uti�x� i � �� � � � � N � and the
logarithmic concavity of the joint distribution function of �ti � i � �� � � � � N � implies

Pfuti��x� ��� �y � �ti� i � �� � � � � Ng
� Pf�uti�x � ��� �uti�y � �ti � i � �� � � � � Ng
� �Pfuti�x � �ti � i � �� � � � � Ng���Pfuti�y � �ti � i � �� � � � � Ng�����

�	��

If T is a 
nite set� then the theorem is proved� Let T be a 
nite interval� Since
logarithmic concavity is preserved when taking the limit and

Pfut�x � �t� t � Tg � lim
N��

futi�x � �ti� i � �� � � � � Ng �	��

provided t�� t�� � � � is a dense sequence in T �see ��� Theorem ���� p� �	� our theorem
is proved� �

One important example for the stochastic process �t� where the 
nite dimensional
distributions are logarithmic concave measures� is the Gaussian process�

	 The constraints involving conditional expectations

The constraints

Ef�t � ut�x j �t � ut�x � �g � lt� t � T� ����

can be written in the equivalent form

ht�ut�x � lt� t � T� ����
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where

ht�z �

Z �

z

�v � z dFt�v

�� Ft�z
�

Z �

z

v dFt�v

�� Ft�z
� z� ����

The use of a constraint ���� is advised only under the following two conditions�

�a ht�z is a nonincreasing function of z�

�b limfht�z � z ��g � ��

The reason of �a is that ht�ut�x measures the deviation of the type �t�ut�x � ��
and if for two programs x�� x� we have ut�x� � ut�x�� i�e�

�t � ut�x� � �t � ut�x��

then it is natural to require ht�ut�x� � ht�ut�x�� The reason of �b is that we
shall be able to use arbitrary small lt in ����� In view of �a� the constraint ����
can be written as

ut�x � h��t �lt� t � T� ���	

provided h��t �z is conveniently de
ned �if c is the smallest number z for which
ht�z � d� then h��t �d � c�

We remark that if �t has an expectation� then the function ���� is continuous
for every z for which Ft�z � �� If Ft�z reaches the value � for 
nite z and z� is the
smallest z for which Ft�z � �� then we de
ne Ft�z � � for z � z�� and it is easy
to see that the function ���� is continuous also at the point z � z�� In all cases we
have limfht�z � z � ��g � ��

If a constraint of the type ���� is used and conditions �a� �b are satis
ed�
then we convert it into the equivalent form on the basis of tabulated values of the
functions �����

There remains to consider the problem for which probability distributions con�
ditions �a and �b are satis
ed� In connection with this we prove the following�

Theorem ���� Let � be a continuously distributed random variable with loga�

rithmic concave probability density and suppose that Ef�g exists� Then the function

of the variable z
h�z � Ef� � z j � � z � �g

is a nonincreasing function on the entire real line��

�V	 Zolotariev �Steklov Institute Moscow� participated in the development of this theorem	 The
present proof is due to author of this paper	
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Proof� Let f � F be the density and the distribution functions� respectively� of the
random variable �� As h�z � � if F �z � �� it is enough to consider such z values
for which F �z � �� Since Ef�g exists� it follows that the integrals below exist andZ �

z

xf�x dx �

Z �

z

��� F �x� dx� z��� F �z��

Using this� we derive the equality

h�z �

Z �

z

�x� zf�x dx

�� F �z
�

Z �

z

��� F �x� dx

�� F �z
� ����

Let G�z and �g�z denote the numerator resp� the denominator on the right�
hand side in ����� Then h�z� G�z
��g�z and G��z � g�z� By Theorem ����
� � F �x is logarithmic concave on the entire real line� In fact� if A � ����� then
� � F �x � PfA � xg� and the function on the right�hand side has the mentioned
property� Again by Theorem ���� G�z is also logarithmic concave in R�� Thus
d logG�z
dz � g�z
G�z must be nonincreasing� which proves that h�z is also
nonincreasing�

We required also that limfh�z � z � �g � �� We prove now that if � has
a normal distribution� then this condition is also satis
ed� We may suppose that
Ef�g � � and Ef��g � �� The function h�z has the form

h�z �
��z

�� ��z
� z�

where

��z � ����� exp

�
��

�
z�
�
� ��z �

Z z

��

��x dx�

�� � z ���

Since h�z � � for every z� it follows that

��z

�� ��z
� z� �� � z ���

hence applying the l�Hospital rule for the right�hand side of ����� we obtain

lim
z��

h�z � lim
z��

��� ��z
��z � ��

We may introduce a constraint involving conditional expectation also in the case
where the technological coe�cients are also random� If the good situation is the
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ful
llment of the inequality ��x � �x� � � � � � nxn � �� where �� � � � � n are
random variables� then we can measure deviations into the wrong direction by the
quantity Ef� ���x � � ���x � �g but in some other ways too� An example is the
following� First we de
ne

� �
� � ��xp
�z�V z

�

where z� � ��� x�� � � � � xn� V is the covariance matrix of the random variables ��
��� � � � ��n� and then introduce the measure of deviation together with its upper
bound as follows�

Ef� j � � �g � l� l � �� ����

If the random variables have a joint normal distribution with expectations Ef�g � d�
Efig � ai� i � �� � � � � n� and a is the vector with components ai� then ���� has
the following form�

h�t � Ef� j � � �g

� E

�
� � d� ��� a�xp

�zV z
�

d� a�xp
�z�V z

���� � � d� ��� a�xp
�z�V z

�
d� a�xp
�z�V z

� �

�

� Ef� � t j � � t � �g � l� t �
a�x� dp
�z�V z

� ����

We shall show that for normally distributed random variables conditions �a� �b are
satis
ed� Thus if ����� � � � ��n have a joint normal distribution� then � has an
N��� � distribution for any x vector� hence ���� can be converted into the equivalent
form

h���l
p
�z�V z � d� a�x � �� ����

and on the left�hand side there stands a convex function of the variable x � Rn�


 A variant of the model� two stage programming under
uncertainty

The original two stage programming under uncertainty model ��� is formulated con�
cerning the following underlying problem� minimize c�x subject to the constraints
Ax � b� Tx � �� x � �� which is a special case of ����� We suppose that � is a
random vector and consider the so called second�stage problem

My � � � Tx� y � �� min q�y� ����

�



where x is 
xed� � is random but it is also 
xed at some realization� The optimum
value depends on �� hence it is also a random variable� The 
rst�stage problem
specifying x is the following�

Ax � b� x � ��
����

minfc�x�Efmin q�y � My � � � Tx� y � �gg�

The second�stage problem must be solvable for any realization of the random vector
�� This shows that in some cases this model imposes a very strong condition con�
cerning the structure of the second�stage problem� If e�g� � has a nondegenerated
normal distribution� then the set of realizations of � is the entire space and the
right�hand side of the 
rst constraint in ���� varies also in the entire space� In our
modi
cation of this very important model formulation it will not be required that
the second�stage problem be solvable for all realizations of �� Before presenting the
modi
cation we have to make some remarks�

Wets proved in ���� that the set of feasible x vectors is a convex polyhedron� �x
is feasible if Ax � b� x � �� further for every realization of � there exists a y � �

satisfying Tx�My � �� We shall use his proof for the development of our theory�
Consider the convex polyhedral cone

C � fz � z � My� y � �g� ����

By the theorem of Weyl there exist vectors d�� � � � �dv such that

C � fz � d�iz � �� i � �� � � � � vg� ���	

Let x be a vector satisfying Ax � b� x � �� Then problem ���� is solvable if
and only if � � Tx � C� Thus the condition of the solvability of the second�stage
problem is

d�i� � d�iTx� i � �� � � � � v� ����

If this holds for every realization of �� then x is feasible� The probability of the
ful
llment of the events in ���� gives the probability of solvability of the second�
stage problem in case of the given x � Rn�

Now we de
ne the new second�stage problem as follows

My � y� � y� � � � Tx�

y � �� y� � �� y� � �� ����

minfq�y � q��y� � q��y�g�

��



where it is reasonable to suppose that q� � �� q� � �� It is also reasonable to
choose q� and q� in such a way that we obtain automatically y� � �� y� � � if the
originally formulated second�stage problem is solvable� If the original second�stage
problem is not solvable� then the optimum value of ���� expresses a certain distance
between the given x and the set de
ning the solvability�

fx � d�i� � d�iTx� i � �� � � � � vg� ����

where now � is 
xed at some realization� Our model is formulated in the following
way�

Ax � b� x � ��
Pfd�i� � d�iTx� i � �� � � � � vg � p�

����
Efd�i � d�iTx j d�i � d�iTx � �g � li� i � �� � � � � v�

minfc�x�Ef��xgg�
where ��x is the random optimum value of the modi
ed second�stage problem� p
is a given probability� � � p � �� and l�� � � � � lv are given constants�

� Properties of the model introduced in Section 


In connection with problem ����� we have to analyze the functions in the proba�
bilistic constraint� in the constraints containing conditional expectations� and in the
objective function� Our aim is to show that problem ���� is a convex programming
problem �or equivalent to a convex programming problem under some conditions�
First we prove�

Theorem ���� Suppose that the random vector �� standing in the probabilistic

constraint of problem ����� has continuous distribution and its probability density

is logarithmic concave in the entire space Rm� Then as a function of x� Pfd�i� �
d�iTx� i � �� � � � � vg is logarithmic concave on Rn�

Proof� If we de
ne

A � fz � d�iz � diTx� i � �� � � � � vg�
B � fz � d�iz � diTy� i � �� � � � � vg�
C � fz � d�iz � diT ��x� ��� �y� i � �� � � � � vg�

where x�y � Rn and � � � � �� we have that C 	 �A� ��� �B� Hence applying
Theorem ��� completes the proof� �

Concerning the random variables d�i�� i � �� � � � � v� we prove the following lemma�

��



Lemma ���� If � is a continuously distributed random vector with logarithmic

concave density f�x and d �� � is a constant vector having the same number of

components as �� then the random variable d�� has a logarithmic concave density�

Proof� We may suppose that d� �� �� The distribution function of d�� is given
by

G�z �

Z
d
�
x�z

f�x dx � jd�j��
Z
y��z

f�D��y dy�

where we applied the transformation

d�x� � d�x� � � � �� dmxm � y��

x� � y��

���

xm � ym�

and D is the matrix of the coe�cients standing on the left�hand side� It follows that
the probability density g of d�� equals

g�y� � jd�j��
Z �

��

� � �

Z �

��

f�D��y dy� � � �dym�

�� � y� ���

Since all marginal densities belonging to a logarithmic concave density are logarith�
mic concave �see ���� Theorem ��� it follows that g is a logarithmic concave function
and the lemma is proved� �

Taking into account Theorem ���� the constraints involving conditional expecta�
tions in problem ���� can be converted into equivalent linear constraints provided
� has a logarithmic concave density�

The objective function of problem ���� does not require new investigation be�
cause problem ����� where the random optimum value comes from� is a special
second�stage problem of the type ����� hence the results concerning two�stage pro�
gramming under uncertainty are applicable here�

 Solutions of the problems formulated in Sections �
and 


First we make some remarks concerning the gradients of the functions standing in
the probabilistic constraints of problems ����� ���� and �����

��



In general� the gradient of the probability distribution function F �x of a con�
tinuous distribution can be obtained as follows�

�F �x

�xi
� F �xj � j � �� � � � � i� �� i� �� � � � � n j xifi�xi� i � �� � � � � n� ����

where F �
 j 
 stands for conditional distribution function and fi�xi is the proba�
bility density of the conditioning variable� For many multivariate probability distri�
butions� the function F �
 j 
 is of the same type as F �x� This is very important
from the point of view of computation because the same subroutine can be used to
compute the values of the gradient of F �x� which is used to compute the values
of F �x� Let ��x�R denote the probability distribution function belonging to the
n�dimensional normal distribution� where the random variables have expectations
equal to zero� variances equal to � and R is their correlation matrix� In this case�
we obtain

���x � R

�xi
� �

	
xj � rjixip
��� r�ji

� j � �� � � � � i� �� i� �� � � � � n � Ri



��xi�

i � �� � � � � n� ����

where Ri is the following �n � �� �n� � correlation matrix

Ri � �sjk�
����

sjk �
rjk � rjirkip

��� r�ji�
p
��� r�

ki

� j� k � �� � � � � i� �� i� �� � � � � n�

The gradient of the function standing on the left�hand side in the probabilistic
constraint of problem ���� follows from this easily� This formula can be applied
even in the case where jRj � �� i�e�� the distribution is degenerated but all elements
of R outside the diagonal have absolute values less than �� The function standing on
the left�hand side in the probabilistic constraint of problem ���� will be frequently
of this type� In fact� if di �� �� and no pair from d�� � � � �dv is linearly dependent�
further if � has a nondegenerated normal distribution� then d���� � � � �d

�
v� have

a joint normal distribution which satis
es the above requirements� but this joint
distribution is surely degenerated if r is greater than the dimension of �� This
implies the continuity of the gradient of the mentioned function in ���� under the
above suppositions�

We consider now the function Pfut�x � �t� t � Tg� where �t is a Gaussian
process with Ef�tg � �� Ef��t g � �� t � T � �a� b�� Let t�� t�� � � � be a sequence of

��



elements of T � supposed to be dense in the same interval� Using ����� we have

�Pfutj�x � �tj � j � �� � � � � Ng
�xk

�
NX
i��

P

�
utj�x� r�tj � tiuti�xp

��� r��tj � ti
� �

�i�
tj
� j � �� � � � � N� j �� i

�

���uti�x
�uti�x

�xk
� k � �� � � � � n� ���	

where �
�i�
t � t � T � is again a Gaussian process with identically � expectation function

and identically � variance function� Its correlation function is given by

ri�s� t �
r�s� t� r�ti� sr�ti� tp

��� r��ti� s
p
��� r��ti� t

� i � �� � � � � N� ����

where r�s� t is the correlation function of the Gaussian process �t� The gradient of
the function Pfut�x � �t� t � Tg is the limit of ���	 when N � �� provided the
di�erentiation with respect to the components ofx and the limit can be interchanged�
If T is a 
nite set� T � ft�� � � � � tNg� then ���	 gives the gradient of the considered
function�

There are many nonlinear programming methods which can be applied for the
solution of our problems� We have computer experience concerning the solution
of problem ���� by the application of the method of feasible directions and the
sequential unconstrained minimization technique procedure� The convergence proof
of the former method ��	� procedure P�� p� �	� was generalized in ��� for the case
of quasi�concave constraints under some regularity assumptions� Thus we can solve
the following problem�

minimize g��x

subject to Gi�x � pi� i � IC � f�� � � � � m�g�
a�ix � bi� i � IL � f�� � � � � m�g�

where g��x is convex and G��x� � � � � Gm�
�x are quasi�concave� The procedure

starts with an arbitrary feasible x�� If x�� � � � �xk are already determined� then we
solve the linear programming problem

Gi�xk �rGi�xk�x� xk � �iy � pi� i � IC �

a�ix � bi� i � IL�
����

rg��xk�x� xk � y�

min y�

�	



denote by x�k an optimal solution� minimize g��x on the feasible part of the ray
xk � ��x�k � xk� � � �� and de
ne xk�� as an arbitrary minimizing point� The
gradients in case of problems ���� and ���� are given in this section and in Section ��

The application of the SUMT methods o�ers particularly good posibilities if we
use logarithmic penalty function� In fact� our functions standing in the constraints
are logarithmic concave for a wide class of the random variables �t� t � T � thus the
penalty function will be convex� which simpli
es its minimization�

When solving problem ����� the explicit knowledge of the vectors d�� � � � �dv is
supposed� We remark that the values of the functions and their gradients standing
in the probabilistic constraints of problems ����� ���� and ���� can be obtained
by simulation� The same holds for Ef�g standing in the objective function of prob�
lem �����

� A numerical example and sensitivity analysis of the
constraining functions with respect to correlations

We consider the following problem�

Pfx� � x� � � � ��� �x� � x� � 	 � ��g � ���� ����

x� � 	x� � 	� �x� � x� � �� x� � �� x� � ��

min��x� � �x��

where ��� �� have joint normal distribution with Ef��g � Ef��g � �� Ef���g �
Ef���g � �� further Ef����g � r � ���� We apply the method of feasible directions�
Given a feasible xk� the direction 
nding problem is the following �where L��x �
x� � x� � �� L��x � �x� � x� � 	�

��L��xk� L��xk� �� ��G�
k�x� xk � �y � p�

x� � 	x� � 	� �x� � x� � �� x� � �� x� � �� ����

F k�x� xk � y� min y�

where Gk and F k are the following gradient vectors

Gk 	

�
BB�


�

�
L��xk�� ��
L��xk�

��
p
�

�
��L��xk�� � �

�
L��xk�� ��
L��xk�

��
p
�

�
��L��xk��

�

�
L��xk�� ��
L��xk�

��
p
�

�
��L��xk�� � �

�
L��xk� � ��
L��xk�

��
p
�

�
��L��xk��

�
CCA �

F k 	

�
�




�

��



Altogether� �� iterations have been performed� The program was run on a CDC
���� computer� The values of the bivariate normal distribution were obtained by
simulation� Most of the computer time was consumed by this� As the solution we
obtained� x� opt � ������ x� opt � ����� and f�xopt � ������ The same problem
was solved by the SUMT� interior point method� The computer time was less than
in the former case�

Another� much larger problem was also solved on the same computer� where the
number of linear inequality constraints was ��� the number of variables was also ��
and there was one probabilistic constraint constructed out of 	 constraints of the
underlying problem with normally distributed and dependent random variables ���
��� ��� �	� The objective function was linear� The problem was solved by the method
of feasible directions combined with the simulation of the normal distribution� in ��
minutes� Seven iterations had to be performed� and in this case more time was spent
for the nonlinear programming procedure than for the simulation��

Finally� we mention a useful formula concerning the derivative of the normal
distribution function� We consider ��z�� � � � � zm�R� ��z�� � � � � zm�R� where R �
�rik� It is well�known that �see e�g� ���

���z�� � � � � zm�R

�r��
�

Z z�

��

� � �

Z zm

��

��z�� z�� u�� � � � � um�R du� � � �dum� ����

A similar formula holds for the case of rik� It follows from ���� that

���z�� � � � � zm�R

�r��
�

���z�� � � � � zm�R

�z� �z�

�
�

�z�
�

�
z� � r��z�p
��� r���

� � � � �
zm � r�mz�p

�� r��m
�R�

�
��z��

where R� is the correlation matrix de
ned by ����� The derivative on the right�hand
side can be obtained by ���	�
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