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Abstract

Let τ be the number of elements of a sample taken from a population uniformly
distributed in [0, 1]. Let α ≥ 0 be a number such that λ = n α ≤ 1. Subdivide
an interval of length 1 − λ into n parts by n − 1 independently and uniformly dis-
tributed points. Denote δ1, . . . , δn the lengths of these subintervals. Using the nota-
tions Fn(t, λ) = δ1 + . . . + δτ + τα, the generalizations of the theorems of Smirnov

are expressed by (4.14), (4.15), where Gm(t, μ) is defined similarly to Fn(t, λ) and
these two stochastic processes are supposed to be independent. These theorems were
already published in [7], the proofs are given here. Applications to inventory problems
are also mentioned.

1 Introduction

Let A and B be two factories which agree that in the course of the time interval [0, T ]
factory B transports an amount of a certain material for the production at factory A. Let
ηt denote the amount of material transported up to time t and ξt denote the amount of
the same material used by factory A up to t provided there is no shortage between 0 and
t where 0 ≤ t ≤ T . Both ηt and ξt are stochastic processes. At time t = 0 factory A has
an initial stock which we denote by M . We wish to determine this initial stock by the
following principle

minimize M
subject to the constraint

P

{
inf

0≤t≤T
(M + ηt − ξt) > 0

}
≥ 1 − ε,

(1.1)

where ε > 0 is a fixed probability near zero in practice. The probability on the left hand
side in (1.1) is obviously a monotonically non-decreasing function of the variable M . If
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this function is continuous and increasing, then the solution of problem (1.1), i.e. the
optimal M is given by the only one solution of the following equation

P

{
inf

0≤t≤T
(M + ηt − ξt) > 0

}
= 1 − ε. (1.2)

Equation (1.2) was called in [7] the “reliability equation” of the above-mentioned inventory
problem. This inventory problem does not use costs with respect to which a minimization
is carried out in conventional inventory models but the probability of the no shortage
case is prescribed. The reason of the construction of this model was the difficulty of the
determination of the costs in very many practical cases.

In [7] we considered the solution of the reliability equation (1.2) under some assumptions
in connection with the stochastic processes ξt, ηt. First we suppose that factory A uses this
material with constant intensity i.e. the consumption is ct during the time interval [0, t]
where c is a positive constant and that ηT = cT i.e. the total input is equal to the total
consumption provided there is no shortage during the time interval [0, T ]. We suppose also
that the input process ηt is generated in the following way: the material is transported at
n occasions which are the elements of the ordered sample t∗1 ≤ · · · ≤ t∗n where t1, . . . , tn
i.e. the original sample is taken from the population uniformly distributed in the interval
[0, T ]. The subdivision of the material among these occasions is stochastically independent
of the sample t1, . . . , tn and is done so that there exists a constant α ≥ 0 denoting the
amount what is surely transported at any of the occasions t∗i , i = 1, . . . , n further we
subdivide an interval with length cT − nα (this number is supposed to be non-negative)
by n−1 independent and uniformly distributed random points into n random subintervals
with lengths δ1, . . . , δn, finally we assign to t∗1, . . . , t

∗
n as arriving amounts the following:

α + δ1, . . . , α + δn. (1.3)

The sum of the numbers (1.3) is equal to cT . We may suppose that T = 1 and c = 1, since
this can always be attained by a suitable choice of the units. Let further λ denote the
value nα which is the rate of uniformity in the transported amounts. We have 0 ≤ λ ≤ 1.
Instead of the notation ηt we shall use the notation Fn(t, λ) as well which contains n and
λ and is in accordance with the usual notation of the sampling probability distribution
function to which Fn(t, λ) reduces in case of λ = 1. The reliability equation (1.2) can be
written in the following equivalent form

P

{
sup

0≤t≤1
(t − Fn(t, λ)) < M

}
= 1 − ε. (1.4)

The consumption process can also be modelized in a similar way as we modelized the
input process. In this case we denote it by Gm(t, μ) instead of ξt where the roles of m and
μ are similar to those of n and λ. In this case the reliability equation is the following

P

{
sup

0≤t≤1
(Gm(t, μ) − Fn(t, λ)) < M

}
= 1 − ε. (1.5)

We remark that the functions of M on the left hand sides in (1.4) and (1.5) are continuous,
increasing, equal to 0 at M = 0 and to 1 at M = 1. Thus in both cases there are unique
solutions with respect to M if 0 < ε < 1.
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In [7] we gave asymptotic solutions for the equations (1.4), (1.5), which are based on
some generalizations of the order statistical theorems of Smirnov. We published only the
statements of the generalizations, not their proofs and the purpose of the present paper is
to complete this insufficiency. The proofs use known technique in stochastic processes, this
was the reason why they were left out. However, taking into account the fact that these
models became widely used, the necessity of the publication of the proofs was emphasized
by several experts.

The first version of this model was that special case of (1.4) when λ = 1. This was
considered by the author of this paper and M. Ziermann. For this special case classical
order statistical results could be applied to obtain the solution of the reliability equation.
This model formulation and the application of the classical results were published sepa-
rately in English and in Hungarian in [7] and [10]. For the sake of completeness we recall
these here too. If λ = 1 then we have

P

{
sup

0≤t≤1
(t − Fn(t, 1)) < M

}

= 1 − M

[n(1−M)]∑
j=0

(
n

j

)(
1 − μ − j

n

)n−j (
μ +

j

n

)j−1

, (1.6)

as it is proved e.g. in [1] and [2]. Thus the solution of the reliability equation (1.4) is given
by the solution (with respect to M) of the following equation

M

[n(1−M)]∑
j=0

(
n

j

)(
1 − μ − j

n

)n−j (
μ +

j

n

)j−1

= ε. (1.7)

An asymptotic solution of (1.4) can be obtained by the

First theorem of Smirnov. If Fn(t) is the sampling probability distribution function
of a sample of size n taken from a continuously distributed population with probability
distribution function F (t), then

lim
n→∞P

{√
n sup

t
(F (t) − Fn(t)) < y

}

= lim
n→∞P

{√
n sup

t
(Fn(t) − F (t)) < y

}
=
{

1 − e−2y2
, if y > 0,

0, if y ≤ 0.
(1.8)

Applying this theorem to the probability distribution function

F (t) =

⎧⎨
⎩

0, if t ≤ 0,
t, if 0 ≤ t ≤ 1,
1, if t ≥ 1,

(1.9)

we see that Fn(t, 1) is the same as Fn(t) in (1.8) and we can write

lim
n→∞P

{√
n sup

0≤t≤1
(t − Fn(t, 1)) < y

}
= 1 − e−2y2

if y > 0. (1.10)
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For a finite n supposing approximate equality in (1.10) and putting y =
√

n M , we obtain
from the approximate equality

1 − e−2(
√

nM)2 ≈ 1 − ε,

the approximate solution

M ≈
(

1
2n

log
1
ε

) 1
2

. (1.11)

Finally we formulate the second theorem of Smirnov which will also be generalized for
the sake of the solution of the reliability equation (1.5).

Second theorem of Smirnov. Let Fn(t) and Gm(t) be two sampling probability
distribution functions of two independent samples taken from the same continuously dis-
tributed population. Then we have

lim
m→∞
n→∞

P

{√
mn

m + n
sup

t
(Gm(t) − Fn(t)) < y

}
=
{

1 − e2y2
, if y > 0,

0, if y ≤ 0.
(1.12)

In Section 2 we deduce the covariance functions of the stochastic processes Fn(t, λ)− t
and Gm(t, μ)− Fn(t, λ). In Section 3 the limits of the finite dimensional distributions are
given for the above-mentioned stochastic processes provided m,n → ∞. In Section 4 the
theorems of Smirnov are generalized and in Section 5 our theorems are applied for the
reliability equations (1.4), (1.5).

2 The covariance functions of the stochastic processes

Fn(t, λ) − t = u(t) and Gm(t, μ) − Fn(t, λ) = v(t)

Consider n − 1 independently and in [0, 1] uniformly distributed random points. The
probability density of the jth point to the left is equal to the following

(n − 1)!
(j − 1)!(n − 1 − j)!

xj−1(1 − x)n−1−j, 0 ≤ x ≤ 1, j = 1, . . . , n − 1. (2.1)

The expectation belonging to this equals

(n − 1)!
(j − 1)!(n − 1 − j)!

∫ 1

0
xj(1 − x)n−1−j dx =

j

n
. (2.2)

The joint density of the jth and kth random points (j < k) is the following

(n − 1)!
(j − 1)!(k − j − 1)!(n − 1 − k)!

yj−1
1 (y2 −y1)k−j−1(1−y2)n−1−k, 0 ≤ y1 ≤ y2 ≤ 1. (2.3)

A simple integration shows that the covariance of the jth and kth random points equals

1
n + 1

j

n

(
1 − k

n

)
. (2.4)
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Using these facts we show now that

E {Fn(t, λ)} = t, (2.5)

or what is the same, the expectation of u(t) is equal to zero. In fact we have

Fn(t, λ) = δ1 + · · · + δτ + τα, (2.6)

where τ is a random variable taking on values 0, 1, . . . , n with probabilities1

P {τ = k} =
(

n

k

)
tk(1 − t)n−k (2.7)

and τ is independent of δ1, . . . , δn. The random variable

1
1 − nα

(δ1 + · · · + δk) (2.8)

has the probability density (2.1) (with j = k) if n α < 1. Thus

E {Fn(t, λ)} = E {δ1 + · · · + δτ + τα}

=
n∑

k=1

E {δ1 + · · · + δτ + τα | τ = k}P {τ = k}

=
n∑

k=1

E {δ1 + · · · + δk + kα}
(

n

k

)
tk(1 − t)n−k

=
n∑

k=1

(
k

n
(1 − nα) + kα

)(
n

k

)
tk(1 − t)n−k = t

(2.9)

which applies to the case n α < 1 and also to the case n α = 1.

Next we calculate the covariance of the random variables u(s), u(t) where

0 ≤ s ≤ t ≤ 1.

We use (2.6) and the following equality

Fn(s, λ) = δ1 + · · · + δσ + σα, (2.10)

where σ has the probability distribution

P {σ = j} =
(

n

j

)
sj(1 − s)n−j, (2.11)

1If τ = 0 then Fn(t, λ) = 0 by definition.
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further σ and τ are independent of δ1, . . . , δn. Thus

E {Fn(s, λ)Fn(t, λ)}
= E {(δ1 + · · · + δσ + σα)(δ1 + · · · + δτ + τα)}
=

∑
1≤j≤k≤n

E {(δ1 + · · · + δj + jα)(δ1 + · · · + δk + kα)}

×P {σ = j, τ = k}
=

∑
1≤j≤k≤n

E

{(
δ1 + · · · + δj − (1 − nα)

j

n

)(
δ1 + · · · + δk − (1 − nα)

k

n

)}

×P {σ = j, τ = k} +
∑

1≤j≤k≤n

jk

n2
P {σ = j, τ = k}. (2.12)

We remark that in (2.12)

P {σ = j, τ = k} =
n!

j!(k − j)!(n − j)!
sj(t − s)k−j(1 − t)n−k. (2.13)

The second to the last row in (2.12) contains a covariance. By (2.4) this is equal to the
following

E

{(
δ1 + · · · + δj − (1 − nα)

j

n

)(
δ1 + · · · + δk − (1 − nα)

k

n

)}

= (1 − nα)2
1

n + 1
j

n

(
1 − k

n

)
(2.14)

hence (2.12), (2.13) and (2.14) imply

E {Fn(s, λ)Fn(t, λ)}
=

∑
1≤j≤k≤n

[
(1 − nα)2

1
n + 1

j

n

(
1 − k

n

)
+

jk

n2

]
P {σ = j, τ = k}. (2.15)

Incidentally we mention the following equalities

∑
k1+k2+k3=n

k1k2
n!

k1!k2!k3!
pk1
1 pk2

2 pk3
3 = n(n − 1)p1p2, (2.16)

∑
k1+k2+k3=n

k2
1

n!
k1!k2!k3!

pk1
1 pk2

2 pk3
3 = np1(1 − p1) + np2

1. (2.17)

These can be regarded well-known because the covariances and the variances of random
variables having polynomial joint distribution appear in them provided p1 ≥ 0, p2 ≥ 0,
p3 ≥ 0, p1 + p2 + p3 = 1.

If we apply (2.16) for p1 = s, p2 = 1 − t, then we obtain

∑
1≤j≤k≤n

j(n − k)
n!

j!(k − j)!(n − k)!
sj(t − s)k−j(1 − t)n−k = n(n − 1)s(1 − t). (2.18)
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We further apply (2.17) for p1 = s, p2 = t − s. Then we receive

∑
1≤j≤k≤n

jk
n!

j!(k − j)!(n − k)!
sj(t − s)k−j(1 − t)n−k

=
∑

1≤j≤k≤n

j(k − j)
n!

j!(k − j)!(n − k)!
sj(t − s)k−j(1 − t)n−k

+
∑

1≤j≤k≤n

j2 n!
j!(k − j)!(n − k)!

sj(t − s)k−j(1 − t)n−k

= n(n − 1)s(t − s) + ns(1 − s) + n2s2. (2.19)

From (2.15), (2.18) and (2.19) we conclude

E {Fn(s, λ)Fn(t, λ)} = (1 − nα)2
1

(n + 1)n2
n(n − 1)s(1 − t)

+
1
n2

[n(n − 1)s(t − s) + ns(1 − s) + n2s2] (2.20)

=
1
n

[
1 +

n − 1
n + 1

(1 − nα)2
]

s(1 − t) + st.

Taking into account (2.5), we have proved the following

Theorem 1. The covariance of the random variables Fn(s, λ) and Fn(t, λ) is equal to

1
n

[
1 +

n − 1
n + 1

(1 − λ)2
]

s(1 − t), (2.21)

where 0 ≤ s ≤ t ≤ 1.

The same formula holds for the stochastic process Gm(t, μ), we only have to replace
n and λ by m and μ in (2.21). Since the stochastic processes Gm(t, μ) and Fn(t, λ) are
totally independent, we have also proved

Theorem 2. The covariance of the random variables Gm(s, μ)−Fn(s, λ) and Gm(t, μ)−
Fn(t, λ) is equal to{

1
m

[
1 +

m − 1
m + 1

(1 − μ)2
]

+
1
n

[
1 +

n − 1
n + 1

(1 − λ)2
]}

s(1 − t), (2.22)

where 0 ≤ s ≤ t ≤ 1.

3 The finite dimensional distributions of the stochastic pro-

cesses Fn(t, λ) − t = u(t), Gm(t, μ) − Fn(t, λ) = v(t)

The purpose of this section is to prove the following
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Theorem 3. For every positive integer r, every t1, . . . , tr satisfying

0 < t1 < · · · < tr < 1

and every real x1, . . . , xr the following limit relations hold

lim
n→∞P

{√
n

1 + (1 − λ)2
u(ti)√

ti(1 − ti)
< xi, i = 1, . . . , r

}

= Φ(x1, . . . , xr;R), (3.1)

lim
m→∞
n→∞

P

{√
mn

m + n + m(1 − λ)2 + n(1 − μ)2
v(ti)√

ti(1 − ti)
< xi, i = 1, . . . , r

}

= Φ(x1, . . . , xr;R), (3.2)

where λ = λn, μ = μn are (not necessarily convergent) sequences of numbers defined in Sec-
tion 1, Φ(x1, . . . , xr;R) denotes the multivariate normal probability distribution function
with standardized marginal distributions and correlation matrix R, which in this special
case has the following elements

rij =
ti(1 − tj)√

ti(1 − ti)
√

tj(1 − tj)
=

√
ti
tj

1 − tj
1 − ti

, 1 ≤ i ≤ j ≤ r. (3.3)

Proof. For the sake of simplicity the proof will be restricted to the case r = 2. This
covers the general case with a trivial modification. First we prove the relation (3.1). The
two time points in the interval [0, 1] will be denoted by s and t instead of t1, t2.

The random variables
√

n u(s),
√

n u(t) can be written in the following form
√

n u(s) =
√

n (Fn(s, λ) − s) =
√

n (δ1 + · · · + δσ + σα − s)

= (1 − λ)
√

n

(
δ1 + · · · + δσ

1 − λ
− σ

n

)
+

√
n
(σ

n
− s

)
,

√
nu(t) =

√
n (Fn(t, λ) − s) =

√
n (δ1 + · · · + δτ + τα − t)

= (1 − λ)
√

n

(
δ1 + · · · + δτ

1 − λ
− τ

n

)
+

√
n
(τ

n
− t

)
.

(3.4)

It is well-known that the random variables
√

n
(σ

n
− s

)
,

√
n
(τ

n
− t

)
(3.5)

have a joint normal limit distribution with covariance matrix(
s(1 − s) s(1 − t)
s(1 − t) t(1 − t)

)
. (3.6)

Let us consider the random variables

√
n

(
δ1 + · · · + δσ

1 − λ
− σ

n

)
,

√
n

(
δ1 + · · · + δτ

1 − λ
− τ

n

)
. (3.7)
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We show that if we substitute j, k in the place of σ and τ , where j = jn, k = kn are
non-random sequences with

lim
n→∞

j

n
= s, lim

n→∞
k

n
= t, (3.8)

then the random variables have a joint normal limit distribution with covariance matrix
(3.6). Since (1− λ)−1(δ1 + · · ·+ δj) and (1− λ)−1(δ1 + · · · + δk) can be considered as the
jth and kth elements of an ordered sample of size n−1 taken from a population uniformly
distributed in the interval [0, 1], it follows that their

√
n multiples have the same joint

distribution as the random variables

√
n

ζ1 + · · · + ζj

ζ1 + · · · + ζn
,

√
n

ζ1 + · · · + ζk

ζ1 + · · · + ζn
, (3.9)

where ζ1, ζ2, . . . is a sequence of independent, exponentially distributed random variables
with E {ζi} = 1, i = 1, 2, . . ..

The random variables (3.9) have expectations j/
√

n and k/
√

n, respectively. Taking
this into account, we write

√
n

(
ζ1 + · · · + ζj

ζ1 + · · · + ζn
− j

n

)

=
1

ζ1 + . . . + ζn

n

j

n

(√
n

j

ζ1 − 1 + . . . + ζj − 1√
j

− ζ1 − 1 + . . . + ζn − 1√
n

)
,

(3.10)√
n

(
ζ1 + · · · + ζk

ζ1 + · · · + ζn
− k

n

)

=
1

ζ1 + . . . + ζn

n

k

n

(√
n

k

ζ1 − 1 + . . . + ζk − 1√
k

− ζ1 − 1 + . . . + ζn − 1√
n

)
.

Consider the random variables

ζ1 − 1 + · · · + ζj − 1√
j

,
ζ1 − 1 + · · · + ζk − 1√

k
,

ζ1 − 1 + · · · + ζn − 1√
n

. (3.11)

An elementary argument shows that they have a joint normal limit distribution. Thus the
random variables (3.10) also have a joint normal limit distribution. By (2.4) the covariance
matrix of the random variables (3.9) equals

n

n + 1

⎛
⎜⎜⎝

j

n

(
1 − j

n

)
j

n

(
1 − k

n

)
j

n

(
1 − k

n

)
k

n

(
1 − k

n

)
⎞
⎟⎟⎠ , (3.12)

hence the assertion concerning the random variables (3.7) is proved.
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The next step in the proof of Theorem 3 will be the proof of the fact that the following
two random vectors are independent in the limit:(√

n

(
δ1 + · · · + δσ

1 − λ
− σ

n

)
,
√

n

(
δ1 + · · · + δτ

1 − λ
− τ

n

))
,(√

n
(σ

n
− s

)
,
√

n
(τ

n
− t

))
. (3.13)

Let [a, b], [c, d] be two fixed intervals with a < b, c < d and x, y two fixed real numbers.
Then we have

P

{√
n

(
δ1 + · · · + δσ

1 − λ
− σ

n

)
< x,

√
n

(
δ1 + · · · + δτ

1 − λ
− τ

n

)
< y,

a ≤ √
n
(σ

n
− s

)
≤ b, c ≤ √

n
( τ

n
− t

)
≤ d

}

=
∑

ns+a
√

n≤j≤ns+b
√

n
nt+c

√
n≤k≤nt+d

√
n

P

{√
n

(
δ1 + · · · + δj

1 − λ
− j

n

)
< x,

√
n

(
δ1 + · · · + δk

1 − λ
− k

n

)
< y

}
P {σ = j, τ = k}

=
∑

ns+a
√

n≤j≤ns+b
√

n
nt+c

√
n≤k≤nt+d

√
n

[
P

{√
n

(
δ1 + · · · + δj

1 − λ
− j

n

)
< x, (3.14)

√
n

(
δ1 + · · · + δk

1 − λ
− k

n

)
< y

}

−Φ

(
x√

s(1 − s)
,

y√
t(1 − t)

;

√
s(1 − t)
t(1 − s)

)]
P {σ = j, τ = k}

+Φ

(
x√

s(1 − s)
,

y√
t(1 − t)

;

√
s(1 − t)
t(1 − s)

)

× P
{

a ≤ √
n
(σ

n
− s

)
≤ b, c ≤ √

n
( τ

n
− t

)
≤ d

}
.

If n → ∞, then for any j = jn and k = kn satisfying

ns + a
√

n ≤ j ≤ ns + b
√

n, nt + c
√

n ≤ k ≤ nt + d
√

n,

respectively, the limit relations (3.8) hold. Consequently

lim
n→∞

∑
ns+a

√
n≤j≤ns+b

√
n

nt+c
√

n≤k≤nt+d
√

n

[
P

{√
n

(
δ1 + · · · + δj

1 − λ
− j

n

)
< x,
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√
n

(
δ1 + · · · + δk

1 − λ
− k

n

)
< y

}
(3.15)

−Φ

(
x

s(1 − s)
,

y

t(1 − t)
;

√
s(1 − t)
t(1 − s)

)]
P {σ = j, τ = k} = 0.

This proves that the random vectors (3.13) are independent in the limit.

Since the random vectors (3.13) have normal limit distributions and are independent
in the limit, it follows that the limit joint distribution of the random variables

√
n

(
δ1 + · · · + δσ

1 − λ
− σ

n

)
+

√
n
(σ

n
− s

)
,

√
n

(
δ1 + · · · + δτ

1 − λ
− τ

n

)
+

√
n
( τ

n
− t

) (3.16)

is a normal distribution.

If λn is convergent, then similarly as the random variables (3.16), the random variables
(3.4) also have a normal limit joint distribution. In the general case we divide both random
variables in (3.4) by

√
1 + (1 − λ)2. The limit joint distribution of√

n

1 + (1 − λ)2
u(s)√
s(1 − s)

,

√
n

1 + (1 − λ)2
u(t)√
t(1 − t)

(3.17)

is a normal distribution with standardized marginal distributions and with correlation
coefficient√

s(1 − t)
t(1 − s)

(3.18)

for any convergent λn. Now if λn is an arbitrary sequence then consider the random
variables (3.17) and suppose that for some subsequence λni we have

P

{√
ni

1 + (1 − λni)2
u(s)√
s(1 − s)

< x,

√
ni

1 + (1 − λni)2
u(t)√
t(1 − t)

< y

}
→ A, (3.19)

where

A �= Φ

(
x, y;

√
s(1 − t)
t(1 − s)

)
. (3.20)

This is, however, a contradiction because λni is a bounded sequence hence it always
contains a convergent subsequence. Thus Theorem 3 is proved. �

4 Generalizations of the theorems of Smirnov

This section is based on the theory of weak convergence of probability measures in the
space D [0, 1] of functions defined in the interval [0, 1], having right and left hand limits at
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every point and satisfying the condition that each function is either right or left continuous
at every point. This theory is developed in [3], [5], [8] and is reproduced in [6]. First we
prove the following

Theorem 4. The probability distribution of the stochastic process√
n

1 + (1 − λ)2
u(t) (4.1)

converges weakly to the probability distribution of the Gaussian process U(t) defined in
[0, 1] having continuous sample functions with probability 1 and satisfying the property

E {U(t)} = 0, 0 ≤ t ≤ 1,
E {U(s)U(t)} = s(1 − t), 0 ≤ s ≤ t ≤ 1.

(4.2)

Proof. In view of Theorem 3, we only have to prove the conditional compactness of the
distributions of the stochastic processes (4.1). In connection with a sequence of stochastic
processes ζ

(n)
t a sufficient condition for the conditional compactness is expressed by the

following relation

lim
γ→0

lim
n→∞P

{
sup

|s−t|≤γ

∣∣∣ζ(n)
s − ζ

(n)
t

∣∣∣ > ε

}
= 0, (4.3)

where γ > 0, ε > 0. It is easy to see that if (4.3) holds for two stochastic processes then
it also holds for their sum. Thus in order to check (4.3) in connection with the stochastic
process (4.1), we can use the representations (3.4) and since 0 ≤ λ ≤ 1, we only have to
prove the fulfilment of (4.3) in connection with the following stochastic processes

√
n

(
δ1 + · · · + δτ

1 − λ
− τ

n

)
, (4.4)

√
n
(τ

n
− t

)
. (4.5)

The fulfilment of (4.3) in case of the stochastic process (4.5) is a well-known classical
result. In connection with (5.4) the proof presented in [5], [6] can be applied. In fact it
is obvious from this proof that (4.3) is fulfilled if for every small but fixed h values the
following inequality holds

E

{(
ζ
(n)
t+h − ζ

(n)
t

)4
}

≤ K

(
h

n
+ h2

)
(4.6)

provided n is large enough. Now if we consider the increment of the stochastic process
(4.5) relative to an interval of length h, then its distribution equals the distribution of

√
n
(
βν − ν

n

)
, (4.7)

where β0 = 0, βi (1 ≤ i ≤ n) is a random variable with the density (2.1), ν is independent
of the random variables β1, . . . , βn and has the following binomial distribution:

P {ν = i} =
(

n

i

)
hi(1 − h)n−i, i = 0, 1, . . . , n. (4.8)
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It is easy to see that for any positive integer p

E {βp
i } =

i

n

i + 1
n + 1

. . .
i + p − 1
n + p − 1

, (4.9)

hence the fourth moment of (4.7) equals

n2 E

{(
βν − ν

n

)4
}

= n2 E

{
β4

ν − 4β3
ν

ν

n
+ 6β2

ν

(ν

n

)2 − 4βν

(ν

n

)3
+
(ν

n

)4
}

(4.10)

= n2
n∑

k=0

[
k

n

k + 1
n + 1

k + 2
n + 2

k + 3
n + 3

− 4
(

k

n

)2 k + 1
n + 1

k + 2
n + 2

+6
(

k

n

)3 k + 1
n + 1

− 3
(

k

n

)4
](

n

k

)
hk(1 − h)n−k.

After a long but elementary calculation we obtain the following result

n2 E

{(
βν − ν

n

)4
}

=
3h(1 − h)

n(n + 1)(n + 2)(n + 3)
{h(1 − h)[n4 − 12n3 + 47n2 − 72n + 36] (4.11)

+3n3 − 10n2 + 13n − 6}.

We see from here that the inequality (4.6) is satisfied also in our case i.e. the right hand
side of (4.11) can be majorated by the right hand side of (4.6) with a universal constant
K. Thus Theorem 4 is proved. �

Theorem 5. The probability distribution of the stochastic process√
mn

m[1 + (1 − λ)2] + n[1 + (1 − μ)2]
v(t) (4.12)

converges weakly to the probability distribution of the Gaussian process mentioned in The-
orem 4.

Proof. We already know by Theorem 4 that
√

m (Gm(t, μ) − t) and
√

n (Fn(t, λ) − t)

satisfy separately (4.3). Since (4.12) can be rewritten as

√
n

m[1 + (1 − λ)2] + n[1 + (1 − μ)2]
√

m (Gm(t, μ) − t)

(4.13)

−
√

m

m[1 + (1 − λ)2] + n[1 + (1 − μ)2]
√

n (Fn(t, λ) − t)
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and the factors of
√

m(Gm(t, μ) − t),
√

n(Fn(t, λ) − t) are smaller than 1, it follows that
the process (4.12) also satisfies the relation (4.3). Thus Theorem 5 is proved. �

Now we formulate the generalizations of the theorems of Smirnov in the following
theorems.

Theorem 6. The following relation holds

lim
n→∞P

{√
n

1 + (1 − λ)2
sup

0≤t≤1
(Fn(t, λ) − t) < y

}
=
{

1 − e−2y2
, if y > 0,

0, if y ≤ 0.
(4.14)

Theorem 7. The following relation holds

lim
m→∞
n→∞

P

{√
mn

m[1 + (1 − λ)2] + n[1 + (1 − μ)2]
sup

0≤t≤1
(Gm(t, μ) − Fn(t, λ)) < y

}
(4.15)

=
{

1 − e−2y2
, if y > 0,

0, if y ≤ 0.

Proof. Let U(t) be the Gaussian process mentioned in Theorem 4. Since the supremum
functional is continuous in D [0, 1], it follows that

lim
n→∞P

{√
n

1 + (1 − λ)2
sup

0≤t≤1
(Fn(t, λ) − t) < y

}
(4.16)

= P

{
max
0≤t≤1

U(t) < y

}
,

lim
m→∞
n→∞

P

{√
mn

m[1 + (1 − λ)2] + n[1 + (1 − μ)2]
sup

0≤t≤1
(Gm(t, μ) − Fn(t, λ)) < y

}
(4.17)

= P

{
max
0≤t≤1

U(t) < y

}
.

On the other hand we know that ([4])

P

{
max
0≤t≤1

U(t) < y

}
=
{

1 − e−2y2
, if y > 0,

0, if y ≤ 0.
(4.18)

Thus Theorems 6 and 7 are proved. �

5 Application to the solution of the reliability equation

The application of Theorems 6 and 7 was already given in [7]. For the sake of the com-
pleteness of the present paper we repeat it briefly. We are interested in the solutions
relative to M of the reliability equations (1.4) and (1.5). Equation (1.4) can be rewritten
as

P

{√
n

1 + (1 − λ)2
sup

0≤t≤1
(t − Fn(t, λ)) < M

√
n

1 + (1 − λ)2

}
= 1 − ε. (5.1)
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Substituting y = M(n/[1 + (1 − λ)2])
1
2 on the right hand side in the parantheses in (5.1)

and taking into acoount the limit relation (4.14), we obtain

1 − e−2y2 ≈ 1 − ε (5.2)

from where we derive y ≈ (
1
2 log 1

ε

) 1
2 , hence

M(λ) ≈
√

1 + (1 − λ)2
√

1
2n

log
1
ε
. (5.3)

Similarly, if M = M(λ, μ) is the solution of the reliability equation (1.5), we obtain

M(λ, μ) ≈
√

1 + (1 − λ)2

n
+

1 + (1 − μ)2

m

√
1
2

log
1
ε
. (5.4)
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