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1 Introduction

A convex polyhedron is defined as the intersection of a finite number of closed half spaces.
If the boundary hyperplanes contain random variables in the expression of their analytic
definition then we have a random convex polyhedron. Thus we fix the number of half
spaces but allow them to be random. The number of vertices ν of a random convex
polyhedron is a random variable which we define to be equal to zero if the intersection of
half spaces is empty. We are interested in the probabilistic behaviour of ν in particular to
find the expectation E(ν) under various assumptions.

The problem arose in connection with linear programming therefore we formulate the
problem so that the results should have immediate application or interpretation to this
field. Thus we consider the following equality, inequality systems

a11x1 + · · · + a1nxn ≤ b1,
. . . . . . . . . . . . . . . . . . . .
am1x1 + · · · + amnxn≤ bm,

xj ≥ 0, j ∈ J,

(1.1)

1The results of Sections 3–5 were presented by the author at the 5th International Symposium on
Mathematical Programming, London, 1964.
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where J is a set of subscripts J ⊂ {1, . . . , n},
a11x1 + · · · + a1nxn = b1,
. . . . . . . . . . . . . . . . . . . .
am1x1 + · · · + amnxn = bm,

xj ≥ 0, j ∈ J.

(1.2)

In both (1.1) and (1.2) the positive integers m,n are fixed while some or all of the
numbers aik, bi are random.

If we are only interested in the number of vertices then instead of (1.1) we may consider
the following equality-inequality system

a11x1 + · · · + a1nxn + y1 = b1,
. . . . . . . . . . . . . . . . . . . . . .

am1x1 + · · · + amnxn +ym = bm,

xj ≥ 0, k ∈ J, y1 ≥ 0, . . . , ym ≥ 0.

(1.3)

In fact keeping fixed for a moment the entries aik, bi, it can be shown that the set defined by
(1.1) is nonempty if and only if the same holds for the set (1.3) and the convex polyhedra
(1.1), (1.3) have the same number of vertices. We remark that (1.1) is a subset of Rn

while (1.3) is a subset of Rn+m.

2 Necessary and sufficient condition that a vector x is a
vertex of the convex polyhedron (1.2)

The equality system (1.2) can be written in the matrix form Ax = b and also in the form

a1x1 + · · · + anxn = b, (2.1)

where a1, . . . ,an are the columns of the matrix A. A system of linearly independent vectors
ai1, . . . ,air will be called a basis of the vectors a1, . . . ,an if every ak (k = 1, ..., n) can be
expressed as a linear combination of vectors belonging to the system. Now we prove the
following

Theorem 1 2 Suppose that the set K determined by the constraints (1.2) is not empty.
A vector x is a vertex of the convex polyhedron K if and only if there exists a basis
ai1, . . . ,air of the set of vectors a1, . . . ,an such that

xj = 0 for j /∈ {i1, . . . , ir} = I (2.2)

and
{1, . . . , n} − J ⊂ I. (2.3)

2This theorem was published first in [1].

2



Proof. Let x be an element of K having the mentioned property. We prove that x is
a vertex. Indirect proof is used. Thus we assume that there exist vectors y, z ∈ K, and a
λ such that y �= z, 0 < λ < 1 and

x = λy + (1 − λ)z. (2.4)

Since xj = 0 for j /∈ I and by (2.3) yj ≥ 0, zj ≥ 0 for j /∈ I, it follows from (2.4) that

yj = zj = 0 if j /∈ I. (2.5)

This is, however, impossible because (2.5) implies∑
j∈I

yjaj = b,

∑
j∈I

zjaj = b,
(2.6)

the vectors aj, j ∈ I are linearly independent and y = z. This proves the first part of the
theorem.

To prove the second part let x ∈ K be a vertex. First we show that there exists a
basis such that (2.2) holds. We may suppose that the non-zero components of x are those
which come first i.e.

x1 �= 0, . . . , xk �= 0, xk+1 = 0, . . . , xn = 0. (2.7)

It is not necessary that there exist any non-zero or any zero component. The proof allows
both cases. Now it is clear that if x = 0 then a basis exists with the required property. If
on the other hand x �= 0, then such a basis exists if and only if

a1, . . . ,ak (2.8)

are linearly independent. Using indirect proof we assume that the vectors (2.8) are linearly
dependent. This means that there exist numbers μ1, . . . , μk such that

μ1a1 + · · · + μkak = 0,

|μ1| + · · · + |μk| > 0.
(2.9)

Let ε > 0 be so small that in

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 + εμ1
...

xk + εμk

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 − εμ1
...

xk − εμk

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.10)
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we have in each case where xi > 0,

xi + εμi > 0, xi − εμi > 0. (2.11)

The vectors y, z are elements of K, y �= z, and

x =
1
2
y +

1
2
z.

This is a contradiction because x is a vertex of K. Thus there exists a basis satisfying
(2.2).

Let us add vectors to the set a1, . . . ,ak to obtain a basis. We may suppose that these
additional vectors are ak+1, . . . ,ar. Now we subdivide the set of subscripts 1, . . . , n into
three categories in the following manner

1. 2. 3.
1, . . . , k; k + 1, . . . , r; r + 1, . . . , n.

We shall consider the logically possible following cases:

α. {r + 1, . . . , n} ⊂ J,

β. there exists a j, r + 1 ≤ j ≤ n such that j /∈ J and i /∈ J for i = k + 1, . . . , r,

γ. there exists a j, r + 1 ≤ j ≤ n such that j /∈ J and there exists an i, k + 1 ≤ i ≤ r
such that i ∈ J .

In case of α the proof is ready. In case of β we do the following. We choose an aj for
which r + 1 ≤ j ≤ n and j /∈ J . The vector aj is a linear combination of the basis vectors
i.e. aj can be written in the form

aj =
r∑

p=1

dpap. (2.12)

If ε > 0 is small enough then in the relations

b =
r∑

p=1

xpap − εaj + εaj =
r∑

p=1

(xp − εdp)ap + εaj ,

b =
r∑

p=1

xpap + εaj − εaj =
r∑

p=1

(xp + εdp)ap − εaj ,

(2.13)

xp − εdp > 0, xp + εdp > 0 whenever xp > 0. This means that the vectors

(x1 − εd1, . . . , xr − εdr, 0, . . . , 0, ε, 0, . . . , 0),
(x1 + εd1, . . . , xr + εdr, 0, . . . , 0 − ε, 0, . . . , 0)

(2.14)

4



are elements of K. Denoting these by y and z, respectively, we have

x =
1
2
y +

1
2
z, (2.15)

contradicting to the supposition that x is a vertex of K.

In case of γ we start to interchange the vectors aj for which r + 1 ≤ j ≤ n and j /∈ J
with the vectors ai for which k + 1 ≤ i ≤ r and i ∈ J , maintaining the condition that the
first r vectors are linearly independent. If such an interchange is not possible because the
first r vectors would be linearly dependent then every aj, r + 1 ≤ j ≤ n, j /∈ J would be
an element of the subspace spanned by the vectors a1, . . . ak, ai, k + 1 ≤ i ≤ r, i ∈ J .
Repeating the procedure applied in the case β, we are lead to a contradiction. Thus the
interchange is possible and we go ahead step by step performing the interchange of one-one
vector each time. The procedure ends with the situation that there are no more vectors
among ar+1, . . . ,an to be interchanged with which we are ready. In fact we cannot arrive
at a situation where there is at least one among the vectors aj , r + 1 ≤ j ≤ n to be
interchanged and none among the vectors ai, k + 1 ≤ i ≤ r with which the interchange
is possible because this is just the case β, which was shown to be impossible. Thus the
theorem is proved. �

Corollary If J = {1, . . . , n} then the set of vertices is identical to the set of x vectors
to which we can find basises ai1, . . . ,air such that

xj = 0 for j /∈ {i1, . . . , ir}.

An element of K will be called a solution while an element x of the sort just mentioned
in the Corollary will be called a basic solution.

We remark that the convex polyhedron (1.1) has the same number of vertices as the
convex polyhedron (1.3). In fact there is a one to one correspondence between the feasible
solutions of (1.1) and (1.3), namely if x is feasible in (1.1) then

x ⇔ (x,y), y = b− Ax. (2.16)

Now let x be a vertex in case of (1.1) and suppose that it is not a vertex in (1.3). Then there
exist vectors (x1,y1) �= (x2,y2), feasible in (1.3) such that with suitable λ, 0 < λ < 1, we
have

(x,y) = λ(x1,y1) + (1 − λ)(x2,y2). (2.17)

Since
y1 = b− Ax1, y2 = b− Ax2,

it follows that x1 �= x2 and according to (2.17)

x = λx1 + (1 − λ)x2. (2.18)

This contradicts to the supposition that x is a vertex in case of (1.1). Similar argument
shows that if x is not a vertex in case of (1.1) then the corresponding (x,y) is also not a
vertex in case of (1.3). Hence the assertion.
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3 The case of symmetrical distributions

Let us introduce the notations

b =

⎛
⎜⎝

b1
...

bm

⎞
⎟⎠ , ai =

⎛
⎜⎝

a1i
...

ami

⎞
⎟⎠ , i = 1, . . . , n. (3.1)

Now we can write (1.1) in the concise form

a1x1 + · · · + anxn ≤ b,
(3.2)

xj ≥ 0, j ∈ J.

Similarly the concise version of (1.3) is the following

a1x1 + · · · + anxn + e1y1 + · · · + enym = b,
(3.3)

xj ≥ 0, j ∈ J, y1 ≥ 0, . . . , ym ≥ 0,

where e1, . . . , em are the m-dimensional unit vectors. First we prove

Theorem 2 We consider the random convex polyhedron (3.2) where we suppose that
m, n are fixed, m ≤ n, the set J has r elements and r ≥ n − m. Let a1, . . . ,an, b be
stochastically independent random vectors where a1, . . . ,an are continuously and symmet-
rically distributed. Under these conditions

E(ν) =
(

r

r − (n − m)

)
1

2r−(n−m)
, (3.4)

where ν is the number of vertices of the random convex polyhedron (3.2).

Proof. We may suppose that x1, . . . , xn−r are those variables which are not con-
strained by non-negativity condition. Consider the equation

a1x1 + · · · + an−rxn−r + an−r+1xn−r+1 + · · · + amxm = b, (3.5)

where b is fixed at some of its realizations. Since a1, . . . ,am, are independently and
continuously distributed, the joint distribution of the altogether m2 components is contin-
uous and from this it follows immediately that equation (3.5) has a unique solution with
probability 1 and

P(x1 �= 0, . . . , xm �= 0) = 1. (3.6)

Out of the r vectors, an−r+1, . . . ,an we may choose m − (n − r) = r − (n − m) in(
r

r − (n − m)

)
= s (3.7)
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different ways. Thus we have exactly s different vector systems containing always a1, . . .,
an−r with which we can write a (3.5) type equation. Let B1, . . . , Bs denote these vector
systems and let

ν(B1), . . . , ν(Bs) (3.8)

denote random variables taking on values 0 or 1, defined in the following manner

ν(Bi) =

⎧⎪⎪⎨
⎪⎪⎩

1, if equation (3.5) written with the vectors
belonging to Bi has a solution with xj ≥ 0,
j > n − r,

0 otherwise,

i = 1, . . . , s. (3.9)

Obviously
ν = ν(B1) + · · · + ν(Bs). (3.10)

It follows from this that

E(ν) =
s∑

i=1

E(ν(Bi)) =
s∑

i=1

P(ν(Bi) = 1). (3.11)

We shall see that each probability standing on the right hand side is equal to

1
2r−(n−m)

.

It is enough to consider equation (3.5) and prove that

P(xn−r+1 > 0, . . . , xm > 0) =
1

2r−(n−m)
. (3.12)

This follows from the fact that an−r+1, . . . ,am are independent, continuously and sym-
metrically distributed. Symmetrical distribution means that ai has the same distribution
as −ai. In fact the event

xn−r+1 > 0, . . . , xm−1 > 0, xm > 0 (3.13)
has the same probability as the event

xn−r+1 > 0, . . . , xm−1 > 0, xm < 0 (3.14)

because if we use −am instead of am in (3.5), then the probability that xj > 0, j > n − r
remains the same. This can be done with any of the random variables xn−r+1, . . . , xm.

As we may prescribe positivity and negativity of these in 2r−(n−m) different ways and
obtain always the same probability, moreover

P(xj = 0) = 0, j = n − r + 1, . . . ,m, (3.15)
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it follows that (3.12) holds true. We proved somewhat more then what was wanted namely
that the events

xn−r+1 > 0, . . . , xm > 0 (3.16)

are independent and each of them has the probability 1/2. We proved that the conditional
expectation E(ν | b) is equal to the right hand side of (3.4). Thus (3.4) itself holds too
and our theorem is proved. �

Theorem 3 We consider the random convex polyhedron (3.3) where m and n are ar-
bitrary but fixed positive integers. Let r denote the number of elements of J and suppose
that r ≥ n−m. We suppose furthermore that all the m(n + 1) components of the random
variables a1, . . . ,an, b are independent, continuously and (with respect to zero) symmet-
rically distributed. If ν denotes the number of vertices of the random convex polyhedron
(3.3) then we have

E(ν) =
(

r + m

r − (n − m)

)
1

2r−(n−m)
. (3.17)

Proof. Let x1, . . . , xn−r be those variables which are not restricted by non-negativity
constraints. We add to these some of the variables xn−r+1, . . . , xn, y1, . . . , ym in order to
complete their number to m. There are two cases: a) there are no y variables among the
additional ones, b) there is at least one y variable among the additional ones. Case a)
requires only such investigations which are contained in the proof of Theorem 1. We refer
to the equation (3.5) and call the attention for (3.12). In connection with Case b) we shall
prove that the probability that in the solution of the equation

a1x1 + · · · + an−rxn−r + an−r+1xn−r+1 + · · ·+
+an−r+txn−r+t + e1y1 + · · · + evyv = b, (3.18)
t + v = m − (n − r), t ≥ 0, v > 0,

we have
xn−r+1 > 0, . . . , xn−r+t > 0, y1 > 0, . . . , yv > 0, (3.19)

is again equal to
1

2r−(n−m)
.

We remark that zero is the probability that at least one of the unknowns in (3.18) is equal
to zero. By the rule of Cramer we have

xn−r+j =
(a1, . . . ,an−r,an−r+1, . . . ,b, . . . ,an−r+t, e1, . . . , ev)

(a1, . . . ,an−r,an−r+1, . . . ,an−r+j, . . . ,an−r+t, e1, . . . , ev)
, j = 1, . . . , t,

(3.20)

yj =
(a1, . . . ,an−r,an−r+1, . . . ,an−r+t, e1, . . . ,b, . . . , ev)
(a1, . . . ,an−r,an−r+1, . . . ,an−r+t, e1, . . . , ej, . . . ev)

, j = 1, . . . , v,
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where vectors in parentheses means determinant.

We see from (3.20) that if we replace an−r+j by −an−r+j then xn−r+j changes and only
this changes the sign. Therefore the probability of (3.19) is the same as the probability of
the event

xn−r+1 > 0, . . . , xn−r+j−1 > 0, xn−r+j < 0,
xn−r+j+1 > 0, . . . , xn−r+t > 0, y1 > 0, . . . , yv > 0.

(3.21)

This can be done successively hence we may impose positivity or negativity conditions
on xn−r+1, . . . , xn−r+t and the probability will be always the same as the probability of
(3.19). Consider now a y variable, y1, say. We have

y1 =
(a1, . . . ,an−r+t,b, e2, . . . , ev)
(a1, . . . ,an−r+t, e1, e2, . . . , ev)

. (3.22)

If we replace a11, . . . , a1,n−r+t, b1 by −a11, . . . ,−a1,n−r+t,−b1 then xn−r+j, j = 1, . . . , t
and yj , j = 2, . . . , t remain unchanged while y1 goes over to −y1. This can also be
done successively proving that the probability of (3.19) and any other inequality system
obtained from that by changing some signs is the same. The sum of these probabilities is
equal to 1 hence the probability of (3.19) is again equal to

1
2r−(n−m)

.

Enumerating the possible cases we obtain the required result.

Much more difficult is to obtain higher order moments of ν. This is explained by the
fact that the all order moments determine the distribution of ν and determine in particular
the largest possible value of ν. Consider e.g. the problem to find the maximum number
of vertices of convex polyhedra of the type

a1x1 + · · · + anxn = b
(3.23)

x1 ≥ 0, . . . , xn ≥ 0,

where m and n are fixed but a1, . . . ,an, b vary. Let N be this maximum number of
vertices. Now let us randomize a1, . . . ,an, b so that all possible nunbers of vertices
occur with a positive probability. Essentially we are interested in having N vertices with
a positive probability but we do not know N in advance. We know, however, that if
all components in a1, . . . ,an, b are independently and normally distributed, then every
possible number of vertices occurs with a positive probability (there are other distributions
too, of course, having this property). Let pk be the probability that (3.23) has exactly k
vertices, k = 0, 1, . . . , N . The M -th moment of ν is given by

E(νM ) =
N∑

k=0

kMpk. (3.24)
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It follows from this that
N = lim

M→∞
[E(νM )]

1
M . (3.25)

Thus if we know E(νM ) for every M = 1, 2, ..., then we also know N and this would
solve a hard problem unsolved until now: what is the maximum number of vertices of
the convex polyhedron (3.23) if m, n are fixed and a1, . . . ,an, b vary arbitrarily in the
m-dimensional space. We only prove the following

Theorem 4 If m = 2, b �= 0 is any fixed vector and all the 2n components of the
random variables a1, . . . ,an are independent, normally distributed with expectations 0 and
variances 1, further ν is the number of vertices of the random convex polyhedron (3.23),
then

E(ν2) =
1
4

[(
n

2

)
+ 2
(

n

3

)
+

3
2

(
n

4

)]
. (3.26)

Proof. We may suppose that the length of b is equal to 1. Consider the equations

a1x1+ a2x2 + = b,
a2y2 + a3y3 = b.

(3.27)

We find the probability that x1 > 0, x2 > 0, y2 > 0, y3 > 0 simultaneously holds. This
will be shown to be equal to 1

12 . First we remark that a1, a2, a3, a4 can be supposed to
be unit vectors, independently and uniformly distributed on the unit circle with center in
the origin. In fact the random vectors

1√
a2

11 + a2
21

a1,
1√

a2
12 + a2

22

a2,
1√

a2
13 + a2

23

a3 (3.28)

are independent of each other and of the random variables√
a2

11 + a2
21,

√
a2

12 + a2
22,

√
a2

13 + a2
23, (3.29)

which are also independent of each other. Defining the random variables

x1

√
a2

11 + a2
21 = v1, x2

√
a2

12 + a2
22 = v2,

y2

√
a2

12 + a2
22 = z2, y3

√
a2

13 + a2
23 = z3,

we see that with probability 1, x1 > 0, x2 > 0, y2 > 0, y3 > 0 if and only if v1 > 0, v2 > 0,
z2 > 0, z3 > 0. The unit vectors (3.28) are uniformly distributed on the circumference of
the unit circle.

From (3.27) we obtain the formulae for the solutions

x1 =
(b,a2)
(a1,a2)

, x2 =
(a1,b)
(a1,a2)

,

(3.30)

y2 =
(b,a3)
(a2,a3)

, y3 =
(a2,b)
(a2,a3)

.
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Considering the probability that they are all positive we immediately see that

P(x1 > 0, x2 > 0, y2 > 0, y3 > 0) = P(x1 < 0, x2 > 0, y2 > 0, y3 > 0) (3.31)

because if we replace a1 by −a1, then the probability that x1 > 0, x2 > 0. y2 > 0, y3 > 0
remains the same. Similarly we can write

P(x2 > 0, y2 > 0, y3 > 0) = P(x2 > 0, y2 > 0, y3 < 0). (3.32)

(3.31) and (3.32) together imply

P(x1 > 0, x2 > 0, y2 > 0, y3 > 0)
= P(x2 > 0, y2 > 0)P(x1 > 0)P(y3 > 0)

=
1
4
P(x2 > 0, y2 > 0). (3.33)

The probability in the last row is equal to the following

P(x2 > 0, y2 > 0)
= 4P((b,a3) > 0, (a2,a3) > 0, (a1,b) > 0, (a1,a2) > 0). (3.34)

This probability is the same for every b �= 0. Thus we may suppose

b = e1 =
(

1
0

)
.

Our problem can be formulated in the following manner: what is the probability that a3

is on the upper, a1 is on the lower hemicircle and the angle between a1 and a2 as well as
between a2 and a3 is positive but less than π.

a

a

a

b

1

2

3

Fig. 1:
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The point a2 can be supposed to be on the upper hemicircle. If its position is x
(0 < x < π), then the probability of the event just mentioned is

1
4

(π − x)2

π2

hence

P(x2 > 0, y2 > 0) = 4
∫ π

0

1
4

(π − x)2

π2

dx

π
=

1
3
. (3.35)

Let us consider the random variable

ν = ν1 + · · · + νs, s =
(

n

2

)
. (3.36)

If νi, νj belong to disjoint pairs of vectors then νi, νj are independent. If these two pairs
have one vector in common then by (3.33) and (3.35) we have

P(νi = 1, νj = 1) =
1
3
· 1
4
. (3.37)

For every i we have P(νi = 1) = 1
4 . Thus

E(ν2) = sE

⎛
⎝ s∑

j=2

ν1νj

⎞
⎠+

s

4
=

1
4

[(
n

2

)
+ 2
(

n

3

)
+

3
2

(
n

4

)]
. (3.38)

This proves the theorem. �

4 The case of non-negative random variables

We consider the system of constraints

a1x1 + · · · + anxn = b
(4.1)

x1 ≥ 0, . . . , xn ≥ 0,

where the dimension of the vectors ai,b will be denoted by m and we suppose m and n
to be fixed, n ≥ m.

Theorem 5 Suppose that the m(n + 1) components of the vectors a1, . . . ,an, b are
independent and exponentially distributed with the same parameter λ > 0. Let ν denote
the number of vertices of the random convex polyhedron (4.1). Then

E(ν) <

(
n

m

)√
(m + 1)!
mm

. (4.2)
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Proof. We may suppose that λ = 1. Consider the first m vectors and the equation

a1x1 + · · · + amxm

=
1

m∑
i=1

ai1

a1

(
m∑

i=1

ai1x1

)
+ · · · + 1

m∑
i=1

aim

am

(
m∑

i=1

aimxm

)

=
1

m∑
i=1

bi

b

(
m∑

i=1

bi

)
. (4.3)

The vectors
d1 =

1
m∑

i=1

ai1

a1, . . . ,dm =
1

m∑
i=1

aim

am, d =
1

m∑
i=1

bi

b (4.4)

are independent and uniformly distributed over the simplex in the m-dimensional space

z1 + · · · + zm = 1
(4.5)

z1 ≥ 0, . . . , zm ≥ 0.

We have to find the probability that the convex polyhedral cone generated by d1, . . . ,dm

contains the vector d. This probability p is equal to the espectation of the m − 1-
dimensional volume t of the intersection of this convex polyhedral cone and the simplex
(4.5) divided by the (m− 1)-dimensional volume of the simplex (4.5). The distance of the

simplex (4.5) from the origin is
1√
m

, the (m− 1)-dimensional volume of the simplex (4.5)

is
√

m

(m − 1)!
hence

1
m!

|(d1, . . . ,dm)| = t · 1√
m

· 1
m

(4.6)

furthermore

p = E

⎧⎪⎪⎨
⎪⎪⎩

t√
m

(m − 1)!

⎫⎪⎪⎬
⎪⎪⎭ = E{|(d1, . . . ,dm)|}. (4.7)

The random variables
∑m

i=1 aik, k = 1, . . . , n are independent of each other and of the
random vectors d1, . . . ,dm. Thus

E{|(a1, . . . ,am)|} = E

{
m∏

k=1

m∑
k=1

aik

}
E{|(d1, . . . ,dm)|} = mmE{|(d1, . . . ,dm)|}. (4.8)

13



We anticipate that
E{(a1, . . . ,am)2} = (m + 1)!. (4.9)

Taking this into account we obtain

E{|(a1, . . . ,am)|} <
√

(m + 1)!. (4.10)

Combining (4.7), (4.8) and (4.10) we obtain the inequality (4.2). It remains to prove (4.9).

Lemma 1 Suppose that the elements of the random determinant

Δm =

∣∣∣∣∣∣
a11 a12 . . . a1m

. . . . . .
am1 am2 . . . amm

∣∣∣∣∣∣ (4.11)

are independent, exponentially distributed random variables with the same parameter λ =
1. Then

E(Δ2
m) = (m + 1)!. (4.12)

Proof. Let us develope Δ according to the first row. We obtain

Δm = a11A11 + a12A12 + . . . + a1mA1m, (4.13)

furthermore

E(Δ2
m) = E

⎛
⎝ m∑

i,j=1

a1ia1jA1iA1j

⎞
⎠ = 2

m∑
i=1

E(A2
1i) +

∑
i�=j

E(A1iA1j). (4.14)

Here we took into account that

E(aij) = 1, E(a2
ij) = 2, i, j = 1, . . . ,m. (4.15)

Introduce the notations

E(Δ2
m) = Dn,

−E(A11A12) = Bm−1.
(4.16)

It follows from (4.14) that

Dm = 2mDm−1 + 2
(

m

2

)
Bm−1. (4.17)

The determinants A11, −A12 differ only in the first column. If we develope both according
to the first columns then we obtain

Bm−1 = −E(A11A12) = (m − 1)Dm−2 − 2
(

m − 1
2

)
Bm−2. (4.18)
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We can express Bm−1 and Bm−2 from (4.17) and substitute them into (4.18). We conclude

Dm = −m(m − 3)Dm−1 + m(m − 1)2Dm−2, m = 3, 4, . . . . (4.19)

It is easy to see that D1 = 2, D2 = 6, further Dm = (m + 1)! satisfies (4.19). Thus the
lemma is proved and with this the proof of our theorem is also complete. �

Theorem 6 Let a1, . . . ,an, b be m-dimensional random vectors where all the (n+1)m
components are independent, exponentially distributed with the same parameter λ > 0. Let
ν denote the number of vertices of the random convex polyhedron

a1x1 + · · · + anxn ≤ b,
(4.20)

x1 ≥ 0, . . . , xn ≥ 0,

where m and n are fixed. Then we have

E(ν) <

(
n

m

)√
(m + 1)!
mm

+
(

n

m − 1

)(
m

1

) √
m!

mm−1

(4.21)

+
(

n

m − 2

)(
m

2

)√
(m − 1)!
mm−2

+ · · · +
(

n

2

)(
m

m − 2

)√
3!

m2
+ n + 1.

Proof. We have seen that the convex polyhedron (4.20) has the same number of
vertices as the convex polyhedron

a1x1 + · · · + anxn + e1y1 + · · · + emym = b,
(4.22)

x1 ≥ 0, . . . , xn ≥ 0, y1 ≥ 0, . . . , ym ≥ 0.

To form a basis we may choose a certain number of vectors among a1, . . . ,an and a certain
number among e1, . . . , em. This selected system consists of altogether m vectors. If we
choose

a1, . . . ,ak, e1, . . . , em−k, (4.23)

then we have to find the probability that the solutions of the equation

a1x1 + · · · + akxk + e1y1 + · · · + em−kym−k = b (4.24)

are positive. The same reasoning can be applied as what was applied in the proof of
Theorem 5. We only have to recognize that

E{(a1, . . . ,ak, e1, . . . , em−k)2} = (k + 1)! (4.25)

i.e. the same as E(Δ2
k). But it is obvious since e1, . . . , em−k are unit vectors and Lemma 1

applies. We may select a system of type (4.23) in
(n
k

)( m
m−k

)
different ways, k = m,m −

1, . . . , 1, 0. If k = 1 then instead of the estimation

E{|(a1, e1, . . . , em−1)|} <
√

2

the exact value of the left hand side is used which is equal to 1. If k = 0 then (4.24) has
positive solution with probability 1. Thus Theorem 6 is proved. �

15



5 Some exact results for non-negative random variables

In this section we consider random convex polyhedra of the type

a11x1 + · · ·+ a1nxn = 1,
a21x1 + · · ·+ a2nxn = 1,
a31x1 + · · ·+ a3nxn = 1,

x1 ≥ 0, . . . , xn ≥ 0,

(5.1)

where the aik’s are independent non-negative random variables depending on the same
probability distribution, which is supposed to be continuous. Let ν denote the number of
vertices of this random convex polyhedron. We want to find the exact formulae of E(ν) in
some particular cases. What we have to do is to find the probability that

P(x1 > 0, x2 > 0, x3 > 0), (5.2)

where the random variables x1, x2, x3 are defined as the unique (with probability 1) solu-
tions of the system of random equations

a11x1 + a12x2 + a13x3 = 1,
a21x1 + a22x2 + a23x3 = 1,
a31x1 + a32x2 + a33x3 = 1.

(5.3)

Let us define the vectors

di =
1

a1i + a2i + a3i

⎛
⎝ a1i

a2i

a3i

⎞
⎠ . (5.4)

Considering the random equation

d1x1 + d2x2 + d3x3 = 1, (5.5)

where 1 is the vector all components of which are equal to 1, it is true that the probability
of x1 > 0, x2 > 0, x3 > 0 here is the same as the probability (5.2). The vectors di are
elements of the simplex in the three-dimensional space:

z1 + z2 + z3 = 1,
(5.6)

z1 ≥ 0, z2 ≥ 0, z3 ≥ 0,

which is a regular triangle. Thus our problem can be formulated so that we choose three
independently and identically distributed random points in a regular triangle, what is the
probability that the random triangle the vertices of which are these random points, covers
the center of gravity C of the regular triangle (see Fig. 2)? The probability distribution

16



1

2

3P P

P

C

Fig. 2:

of these random points can be determined by the probability distribution of the random
variables aik. If e.g. this is exponential then the random points are uniformly distributed in
the regular triangle. Two special cases will be investigated, the case of the exponential and
the case of the uniform distribution. First a general formula is derived for the probability
in question and this will be specialized. We remark that the random triangle with vertices
P1, P2, P3 covers the center of gravity if and only if their projections Q1, Q2, Q3 from the
center of gravity onto the boundary of the regular triangle have the property that the new
triangle belonging to Q1, Q2, Q3 covers the center of gravity (see Fig. 3).

Q

Q

Q

P

PP

22

33

1

1

Fig. 3:

P P

P 10 P

C

1

12

2

''

Fig. 4:

The probability distribution of a random point P in this triangle uniquely determines the
probability distribution of the projected point Q on the boundary. In the course of the
calculation the length of the boundary will be supposed to be equal to 6. One point, P1

say, can be supposed to be placed on one half of a side (see Fig. 4) where the cumulative
probability between 0 and x will be denoted by F (x) with F (0) = 0, F (1) = 1/6. Thus
the conditional probability distribution function of the point P1 on this section is equal to
6F (x), 0 ≤ x ≤ 1. The point P2 will run around the circumference of the triangle. To each
fixed positions of P1 and P2 there corresponds a probability that P3 has a position such
that the triangle with vertices P1, P2, P3 covers the center of gravity C. This favourable
part of the boundary for P3 is indicated by the parentheses in Fig. 4. P2 starts at 0 and
goes to the right. Six half sides are on the way and we denote by p1, p2, p3, p4, p5, p6, the
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probabilities belonging to the half sides, that the small triangle covers C. Before giving
the formulae for pi, i = 1, 2, 3, 4, 5, 6, we remark that if P1 is at the point x, 0 ≤ x ≤ 1
then its transformed P ′

1 via C onto the other side of the regular triangle is at

x′ =
4(1 − x)
4 − 3x

, (5.7)

0

0 0 1P 1

P P 1 0 P 1 P 0 P 1

P
C

C

C C

1

1 P1 0 1P1

2

P2 P2

P2

1 2 1

2

Fig. 5:

where x′ = 0 at the top vertex of the triangle on Fig. 4 and x′ = 1 at the half of the side
coming to the right from the top vertex. Figure 5 shows the six cases for P2 and illustrates
the calculation of the probabilities pi, i = 1, 2, 3.4, 5, 6. From Fig. 5 we see that

p1 = 6
∫ 1

0

{∫ x

0

[
F

(
4(1 − y)
4 − 3y

)
− F

(
4(1 − x)
4 − 3x

)]
dF (y)

+
∫ 1

x

[
F

(
4(1 − x)
4 − 3x

)
− F

(
4(1 − y)
4 − 3y

)]
dF (y)

}
dF (x),

p2 = 6
∫ 1

0

∫ 1

0

[
F

(
4(1 − x)
4 − 3x

)
+ F

(
4(1 − y)
4 − 3y

)]
dF (y) dF (x),

p3 = 6
∫ 1

0

∫ 1

0

[
F

(
4(1 − x)
4 − 3x

)
+

1
3
− F

(
4(1 − y)
4 − 3y

)]
dF (y) dF (x),

(5.8)

p4 = 6
∫ 1

0

[∫ (4(1−x)
4−3x

0

(
1
3

+
1
6
− F

(
4(1 − y)
4 − 3y

)
+

1
6
− F

(
4(1 − x)
4 − 3x

))
dF (y)
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+
∫ 1

4(1−x)
4−3x

(
1
3

+ F

(
4(1 − y)
4 − 3y

)
+ F

(
4(1 − x)
4 − 3x

))
dF (y)

]
dF (x),

p5 = p3,

p6 = 6
∫ 1

0

∫ 1

0

[
1
6
− F

(
4(1 − y)
4 − 3y

)
+

1
6
− F

(
4(1 − x)
4 − 3x

)]
dF (y) dF (x).

Using the notations

x′ =
4(1 − x)
3 − 4x

, y′ =
4(1 − y)
3 − 4x

, (5.9)

we obtain further

p1 = 12
∫ 1

0

∫ x

0
[F (y′) − F (x′)] dF (y) dF (x) − 6

∫ 1

0

∫ 1

0
[F (y′) − F (x′)] dF (y) dF (x)

= 12
∫ 1

0

∫ x

0
F (y′) dF (y) dF (x) − 12

∫ 1

0
F (x)F (x′) dF (x)

= 12
∫ 1

0

∫ 1

y
F (y′) dF (x) dF (y) − 12

∫ 1

0
F (x)F (x′) dF (x) (5.10)

= 12
∫ 1

0
F (y′)

[
1
6
− F (y)

]
dF (y) − 12

∫ 1

0
F (x)F (x′) dF (x)

= 2
∫ 1

0
F (y′) dF (y) − 24

∫ 1

0
F (x)F (x′) dF (x).

Let us introduce the notation

α =
∫ 1

0
F (x′) dF (x). (5.11)

We see easily that

p2 = 2α, (5.12)

p3 = p5 =
1
18

, (5.13)

p4 =
1
18

+ 2
∫ 1

0
F (x′) dF (x) + 6

∫ 1

0

∫ 1

0
[F (x′) + F (y′)] dF (x) dF (y)

− 12
∫ 1

0

∫ x′

0
[F (y′) + F (x′)] dF (y) dF (x) (5.14)

=
1
18

+ 4α − 12
∫ 1

0
F 2(x′) dF (x) − 12

∫ 1

0

∫ x′

0
F (y′) dF (y) dF (x).
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For the last term we derive∫ 1

0

∫ x′

0
F (y′) dF (y) dF (x) =

∫ 1

0

∫ y′

0
F (y′) dF (x) dF (y) =

∫ 1

0
F 2(y′) dF (y). (5.15)

Thus

p4 =
1
18

+ 4α − 24
∫ 1

0
F 2(x′) dF (x). (5.16)

Finally it is easy to see that

p6 =
1
18

− 2α. (5.17)

Some further simplifications are possible. In fact∫ 1

0
F 2(x′) dF (x) = [F 2(x′)F (x)]10 − 2

∫ 1

0
F (x)F (x′) dF (x′)

= 2
∫ 1

0
F (x)F (x′) dF (x) = 2β.

(5.18)

Summing up the probabilities we conclude

p = p1 + p2 + p3 + p4 + p5 + p6 =
2
9

+ 6α − 72β. (5.19)

Before specializing this to particular distributions we mention the following

Lemma 2 Consider a regular n-dimensional simplex and let P be a random point uni-
formly distributed in the simplex. Let C be the center of gravity and consider the random
point Q on the boundary of the simplex which is defined so that P is projected from C onto
the boundary. Then Q is uniformly distributed on the boundary.

Proof. Let H be a measurable set on the boundary. The (n−1)-dimensional measure
of this set and the n-dimensional measure of the set

{Z | Z = λC + (1 − λ)Q, Q ∈ H, 0 ≤ λ ≤ 1} (5.20)

differ from each other only by a constant. Thus the probability of Q ∈ H is proportional
to the (n − 1)-dimensional measure of H which proves the lemma. �

The probability p in (5.19) equals the probability (5.2). It remains for us to obtain the
function F (x) for special probability distributions concerning the random variables aik.
First we consider the exponential distribution. In this case the vectors d1,d2,d3 defined
by (5.4) are uniformly distributed on the regular triangle (5.6) the side-length of which is
equal to

√
2. By the previous lemma we can find the probability (5.2) so that we substitute

in (5.19) the function
F (x) =

x

6
, 0 ≤ x ≤ 1. (5.21)
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For α and β we obtain

α =
∫ 1

0
F

(
4(1 − x)
4 − 3x

)
dF (x) =

1
36

∫ 1

0

4(1 − x)
4 − 3x

dx =
1
27

(
1 − 2

3
log 2

)
, (5.22)

β =
∫ 1

0
F

(
4(1 − x)
4 − 3x

)
F (x) dF (x) =

1
216

∫ 1

0

4(1 − x)
4 − 3x

xdx

(5.23)

=
1

108
− 15 − 16 log 2

27
.

Thus we have for the required probability

p =
2
9

+ 6α − 72β =
2
27

(
1 +

10
3

log 2
)

≈ 0.2452. (5.24)

We have proved the following

Theorem 7 The expectation of the number of vertices of the random convex polyhedron
(5.1) in case of independently and exponentially distributed coefficients aik having the same
parameter λ > 0, is given by the formula

E(ν) =
(

n

3

)
2
27

(
1 +

10
3

log 2
)

. (5.25)

If instead of (5.1) we consider the random convex polyhedron

a11x1 + · · ·+ a1nxn ≤ 1,
a21x1 + · · ·+ a2nxn ≤ 1,
a31x1 + · · ·+ a3nxn ≤ 1,

x1 ≥ 0, . . . , xn ≥ 0,

(5.26)

then beyond the probability (5.24) we have to find the probability

P(x1 > 0, x2 > 0, y1 > 0), (5.27)

where
a1x1 + a2x2 + e1y1 = 1, (5.28)

and also the probability
P(x1 > 0, y1 > 0, y2 > 0) (5.29)

where
a1x1 + e1y1 + e2y2 = 1. (5.30)

We suppose again that the coefficients are independently and exponentially distributed
with the same parameter. The probability (5.29) will be equal to 1/3 while for the prob-
ability (5.27) we get

p =
5
18

− 2α =
1

162
[33 + 8 log 2]. (5.31)
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These can be obtained similarly as we obtained (5.24), the difference is that one, resp.
two points on the boundary of the triangle are fixed at vertices. From these immediately
follows

Theorem 8 If the aik’s are independently and exponentially distributed random vari-
ables having the same parameter then the expected number of vertices of the random convex
polyhedron (5.26) is given by

E(ν) =
(

n

3

)
2
81

(3 + 10 log 2) + 3
(

n

2

)
1

162
(33 + 8 log 2) + n + 1. (5.32)

Now we turn to the case where the aik’s are uniformly distributed in the interval (0, a),
where a > 0. As E(ν) is independent of how large a is choosen, let us choose a =

√
2. It

can be shown that on the boundary of the triangle with side length 2 we now have

F (x) =
1
6

√
x

2 −√
x

, 0 ≤ x ≤ 1. (5.33)

In fact Figure 6 shows a part of the cube with side length 2 which has a probability equal
to the probability that Q ∈ (0, x) where 0 ≤ x ≤ 1, Q is the projection onto the boundary
of the point P which is the intersection of the random ray varying in the cube and the
triangle having vertices (

√
2, 0, 0), (0,

√
2, 0), (0, 0,

√
2). The part of the cube in question

is between the origin and the triangle on the upper face. The value of z depends on x so
that

z

x

C

Fig. 6:

z =
√

x

√
2 −

√
x

2

, (5.34)
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thus the probability of that part of the cube is

z

3

/
(
√

2)3 =
1
6

√
x

2 −√
x

(5.35)

and this equals F (x), 0 ≤ x ≤ 1. Using this, we have

α =
∫ 1

0
F

(
4(1 − x)
4 − 3x

)
dF (x) =

1
36

∫ 1

0

√
4(1 − x)
4 − 3x

2 −
√

4(1 − x)
4 − 3x

( √
x

2 −√
x

)′
dx ≈ 0.021, (5.36)

β =
∫ 1

0
F

(
4(1 − x)
4 − 3x

)
F (x) dF (x)

=
1

216

∫ 1

0

√
4(1 − x)
4 − 3x

2 −
√

4(1 − x)
4 − 3x

·
√

x

2 −√
x

( √
x

2 −√
x

)′
dx ≈ 0.00146. (5.37)

Theorem 9 If the aik’s are independently and uniformly distributed in (0, a) where
a > 0, then the expectation of the number of vertices of the random convex polyhedron
(5.1) is given by

E(ν) =
(

n

3

)(
2
9

+ 6α − 72β
)

, (5.38)

where α and β are defined by (5.36) and (5.37), respectively.

The proof is already given. We call the attention to the fact that the probability (5.29)
is equal to 1/3 i.e. it does not depend on F while the probability (5.27) is equal to (as it

stands in (5.31))
5
18

− 2α. Thus we have proved also

Theorem 10 If the aik’s are independently and uniformly distributed in (0, a) where
a > 0, then the expectation of the number of vertices of the random convex polyhedron
(5.26) is equal to

E(ν) =
(

n

3

)(
2
9

+ 6α − 72β
)

+ 3
(

n

2

)(
5
18

− 2α
)

+ n + 1, (5.39)

where α and β are given by (5.36) and (5.37), respectively.
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