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1 Introduction

In the present paper we shall consider linear programming problems

μ = max c′x
Ax = b, x ≥ 0,

(1.1)

where A is an m×n matrix, c and x are n-dimensional vectors, and b is an m-dimensional
vector. We shall suppose that A, b, c have random elements and components, respectively.
As μ is a function of the variables in A, b and c,

μ = μ(A, b, c), (1.2)

it is also a random variable and its probability distribution is what we are interested in.
This problem is of basic importance and is conceivable as a stochastic sensitivity analysis
of a linear programming model. The question how the transformation A, b, c → μ operates
under the presence of random influences in A, b, and c does not play just the role of a
sensitivity analysis, however. In fact, in A, b, c we may have not just small random
disturbances but random variables of significant variation.

The problem in its general form has been considered by Tintner [2], [3], and Babbar

[1]. In these papers it is supposed that the random variation does not change the optimal
basis in the sense that the subscripts of the optimal basis vectors remain the same for all
possible values of A, b, c. Thus finding the probability distribution of μ is equivalent to
finding the probability distribution of an (also random) linear functional defined over the
random solution of a set of linear equations. In this respect it is also possible to proceed
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in two different ways: either to develop μ into a finite Taylor series and use the leading,
linear terms as an approximation to μ and obtain its probability distribution, or to consider
the components of the solution as fractions of random determinants, approximate their
distributions by the normal law and again approximate by the normal law the fraction
of two normally distributed variables. This method has the handicap that it produces
sophisticated approximation formulas.

In § 2, 3, 4, we consider systems of linear equations, the probability distribution of a
random linear functional defined over the solutions and apply this theory for our original
problem concerning random linear programs. Our approximation formulas for the charac-
teristics of μ, especially for the dispersion, will be particularly simple, as simple as possible
in this general formulation of the problem from the point of view of practical application,
involving the primal and dual optimal solutions of the linear programming problem car-
ried out with the expectations and the covariances of the present random variables. We
express our statements in limit theorems and list carefully all mathematical assumptions.
Our results are formulated in general, containing the essential features of the problem and
allowing the possibility of specialization when facing a particular problem.

The results of the present paper, however, apply to the case when the random elements
in the technology matrix keep the optimal basis (basis subscripts), obtained by computing
with the expectations, with a high probability. To more general questions we return in
subsequent papers.

Since in the present approach the principal aim is to reduce μ to a sum of random
variables, the asymptotic normality of this sum will be supposed. In the particular cases
where the sum in question contains an increasing number of independent random variables,
e.g., A has independent elements or it is enough if its rows or columns are independent,
the limit distribution theory of sums of double sequences of independent random variables
can be applied. (See [19].) If independence does not occur then we may suppose the
joint normality of the random variables in A, b, c which is sufficient, or suppose simply
the sum in question to be normally distributed; but there is no detailed general theory of
the limit distributions of sums of double sequences of dependent random variables. On
the other hand, any particular problem reveals, in some specific way, how the random
elements intervene, from the knowledge of which we may assume the normality of the
approximating sum.

2 Systems of random linear equations

Consider the following system of linear equations:

m∑
k=1

aikxk = bi, i = 1, . . . ,m. (2.1)

Let us denote by B the matrix of the equations and by b the vector consisting of the bi’s
as components and let us introduce an m-dimensional vector c. If B is nonsingular then
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(2.1) has a unique solution B−1b. Suppose now that B, c, b are all random and that
all elements and components have finite variances. We are interested in the probability
distribution of the functional

μ = c′Rb, where R = B−1 (2.2)

and where the prime denotes transpose. In order to avoid complications in the notation we
shall suppose that B is independent of the couple c, b and that c, b are also independent
of each other. This assumption does not play any significant role here. We shall denote
by a1, . . . , am the columns of B and by Dik the cross covariance matrix of ai and ak, i.e.,

Dik = E[(ai − a
(0)
i )′(ak − a

(0)
k )], i, k = 1, . . . ,m, (2.3)

where a
(0)
i = E(ai), i = 1, . . . ,m, and E is the expectation operator. The expectations of

B, b, c, aik, bi, cj will be denoted by B0, b0, c0, a
(0)
ik , b

(0)
i , c

(0)
j , respectively. R0 will denote

B−1
0 . The covariance matrices of γ and β will be denoted by C and F , respectively.

Disregarding for a while the random nature of our quantities, we shall give the finite
Taylor expansion of μ around the expectations, as far as the second order terms. It can
be done by using a formula well-known in matrix theory stating that if the inverse of a
nonsingular square matrix is R and we modify the original matrix by adding ξ to the
element in the ith row and kth column then the inverse of the modified matrix will be

R − ξ

1 + rkiξ

⎛
⎜⎝

r1i
...

rmi

⎞
⎟⎠ (rk1 · · · rkm). (2.4)

Hence if we change B in the manner described above and consider the change in the
functional then we obtain

μ(aik + ξ) − μ(aik) = − ξ

1 + rkiξ
yixk, (2.5)

where

yi =
m∑

j=1

cjrji.

From this it follows that

∂μ

∂aik
= yixk, i, k = 1, . . . ,m. (2.6)

By a double application of (2.4) we get

μ(aik + ξ) + μ(aik − ξ) − 2μ(aik) = ξ2yixk
rki

1 − ξ2r2
ki

, (2.7)
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hence

∂2μ

∂a2
ik

= lim
ξ→0

μ(aik + ξ) + μ(aik − ξ) − 2μ(aik)
ξ2

= yixkrki, i, k = 1, . . . ,m.

(2.8)

We can determine similarly the mixed partial derivatives. The result is the following

∂2μ

∂aik∂apq
= lim

ξ→0
η→0

μ(aik + ξ, apq + η) − μ(aik + ξ, apq) − μ(aik, apq + η) + μ(aik, apq)
ξη

= xkyprqi + xqyirkp, for |i − p| + |k − q| > 0.

(2.9)

Let us finally mention the derivatives where ci and bi are involved:

∂μ

∂cj
= xj ,

∂μ

∂bj
= yj,

∂2μ

∂ci∂bj
= rij,

∂2μ

∂aik∂cj
= xkrji,

∂2μ

∂aik∂bj
= yirkj, i, j, k = 1, . . . ,m.

(2.10)

Let us introduce the notations

y′ = c′R, y′0 = c′0R0,
(2.11)

x = Rb, x0 = R0b0,

and denote by x
(0)
i , y

(0)
j the components of x0, y0, respectively. Furthermore

aik − a
(0)
ik = ξik, B − B0 = Ξ,

ci − c
(0)
i = γi, c − c0 = γ, (2.12)

bi − b
(0)
i = βi, b − b0 = β, i, k = 1, . . . ,m.

With the aid of these notations the desired Taylor expansion is the following:

μ = μ0 −
m∑

i,k=1

y
(0)
i ξikx

(0)
k +

m∑
i=1

y
(0)
i γi +

m∑
k=1

x
(0)
k βk

+
1
2

m∑
i,k=1

yiξ
2
ikrkixk +

m∑
i,k,j=1

xkrjiξikγj (2.13)

+
m∑

i,k,j=1

yirkjξikβj +
∑

|i−p|+|k−q|>0

(xkyprqi + xqyirkp)ξikξpq,

or in a concise form,
μ − μ0 = −y′0Ξx0 + y′0γ + x′

0β + ρ, (2.14)
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where the error term ρ is given by

ρ = −3
2
x′Ξ2y + 2y′ΞRΞx + γ2RΞx + y′ΞRβ, (2.15)

and Ξ2 is the matrix consisting of the entries ξ2
ikrki. In the above development of the error

term, x, y, and R, which are functions of b, c, B, are taken at a point b
(0)
i +ϑβi, c

(0)
i +ϑγi,

a
(0)
ij + ϑξij, where 0 < ϑ < 1.

The leading term in (2.14) has expectation 0 and variance

σ2 =
m∑

i,k=1

x
(0)
i y′0Diky0x

(0)
k + y′0Cy0 + x′

0Fx0. (2.16)

If the columns of B are independent random vectors, as it can be supposed in some
practical cases, then σ2 reduces to

σ2 =
m∑

k=1

(x(0)
k )2y′0Dkky0 + y′0Cy0 + x′

0Fx0, (2.17)

which further reduces if all elements of B are independent. If also c and b have independent
components then we have

σ2 =
m∑

i,k=1

(y(0)
i )2σ2

ik(x
(0)
k )2 +

m∑
i=1

(y(0)
i )2s2

i +
m∑

k=1

(x(0)
k )2t2k, (2.18)

where
σ2

ik = E(ξ2
ik), s2

i = E(γ2
i ), t2k = E(β2

k), i, k = 1, . . . ,m.

In the next sections we shall give sufficient conditions under which (μ − μ0)/σ has an
asymptotic normal distribution. This will mean from the practical point of view that μ
has an asymptotic normal distribution with expectation μ0, i.e., the value of the functional
belonging to the expectations of all values involved, and variance given by (2.16) which
may specialize.

3 Limit distribution theorems for random linear equations

First we prove a lemma.

Lemma Let H1, H2, . . . be a sequence of events with the property that

lim
N→∞

P(HN ) = 1.

Let further ηN and ζN be two sequences of random variables, where ηN has a limit distri-
bution, i.e.,

lim
N→∞

P(ηN < x) = G(x)
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at every point of continuity of G(x) and ζN tends stochastically to 0 (in symbols, ζN ⇒ 0),
i.e.,

lim
N→∞

P(|ζN | > ε) = 0, for every ε > 0

(ζN has a degenerate limit distribution). Under these conditions

lim
N→∞

P(ηN + ζN | HN ) = G(x)

at every point of continuity of G(x).

Since this lemma is essentially Cramér’s lemma (see [18, p. 254]) expressed in a slightly
modified form, we omit the proof.

In order to obtain limit theorems we can proceed in two directions. We may keep m,
the size of the system of equations, fixed, while the random disturbances have a slowing
down tendency. This is the case when, for example, the random disturbances are due
to some inaccuracy in the measurements of the data which shows a decreasing tendency
upon using more data or, in other terms, a larger sample. The other possibility is to
increase m. In this case we shall also suppose implicitly that the random elements are
small as compared to the expectations, but for convergence to the normal distribution
the increasing size of the matrix B contributes also. First we formulate two theorems in
general forms.

Theorem 1 If a function f(z1, z2, . . . , zk) has continuous second order derivatives in
some convex neighborhood of the point (z(0)

1 , z
(0)
2 , . . . , z

(0)
k ), where k is fixed, and if for a

sequence of random vectors (ξ(N)
1 , ξ

(N)
2 , . . . , ξ

(N)
k ) with E(ξ(N)

i ) = 0, i = 1, . . . , k, N =
1, 2, . . ., the following conditions are satisfied:

(1) ξ
(N)
i ⇒ 0 if N → ∞, i = 1, . . . , k,

(2) lim
N→∞

P

(
1

σN

k∑
i=1

∂f (0)

∂zi
ξ
(N)
i < x

)
= G(x),

at every point of continuity of G(x), where ∂f (0)/∂zi means the derivative ∂f/∂zi, taken
at (z(0)

1 , z
(0)
2 , . . . , z

(0)
k ) and σN is the dispersion of

k∑
i=1

(∂f (0)/∂zi)ξ
(N)
i ,

(3)
1

σN

k∑
i,j=1

∂2f (1)

∂zi∂zj
ξ
(N)
i ξ

(N)
j ⇒ 0 if N → ∞,

where the superscript (1) means that the derivative is taken at an arbitrary point of the
convex domain and this point may also vary uith N, then we have

lim
N→∞

P
{

1
σN

[f(z(0)
1 + ξ

(N)
1 , . . . , z

(0)
k + ξ

(N)
k ) − f(z(0)

1 , . . . , z
(N)
k )] < x

}
= G(x).
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Proof. Let HN denote the event that (z(0)
1 +ξ

(N)
1 , . . . , z

(0)
k +ξ

(N)
k ) is in that neighborhood

of (z(0)
1 , . . . , z

(0)
k ) where f has continuous second order derivatives. In this case,

f(z(0)
1 + ξ

(N)
1 , . . . , z

(0)
k + ξ

(N)
k ) − f(z(0)

1 , . . . , z
(0)
k )

(3.1)

=
k∑

i=1

∂f (0)

∂zi
ξ
(N)
i +

1
2

k∑
i,j=1

∂2f (1)

∂zi∂zj
ξ
(N)
i ξ

(N)
j ,

where ∂2f (1)/∂zi∂zj is the second order derivative taken at (z(0)
1 +ϑξ

(N)
1 , . . . , z

(0)
k +ϑξ

(N)
k ),

0 < ϑ < 1. According to (1), limN→∞ P(HN ) = 1. Let us divide by σN on both sides in
(3.1). Then the second term on the right-hand side tends stochastically to 0 according to
(3). Let us denote this term by ζN and the first term by ηN . Then a direct application of
the lemma completes the proof. �

Condition (3) is clearly fulfilled if

1
σN

ξ
(N)
i ξ

(N)
j ⇒ 0, i, j = 1, . . . , k.

Before stating Theorem 2, we mention the notion of a star domain. An open domain
K around and containing a point (z1, . . . , zk) in the k-dimensional space is called a star
domain if the intersection of K with any ray (z1 + tξ1, . . . , zk + tξk), t > 0, is an open
interval. This may contain, in particular, every point of the ray. The point (z1, . . . , zk) is
called the seed of the domain. This notion will be important to extend the possibility of
the Taylor-series expansion around the given point as large as possible.

For later purposes we introduce a notion, that of a maximal star domain around a
nonsingular matrix B0, which by definition consists of all matrices of the form

B0 + tΞ,

where for any given Ξ, t runs continuously from 0 until the sum becomes singular. That
singular matrix is excluded, however.

Theorem 2 Suppose that we have a sequence of functions of an increasing number of
variables fN (z1, z2, . . . , zkN

) where kN → ∞ as N → ∞, and each fN has a neighborhood,
a star domain around a point (z(0)

N1, . . . , z
(0)
NkN

) where its second order derivatives exist and
are continuous. Suppose furthermore that we have a double sequence of random vari-
ables ξ

(N)
1 , ξ

(N)
2 , . . . , ξ

(N)
kN

, with expectations 0 and finite variances, satisfying the following
conditions

(1) lim
N→∞

P{z(0)
N1 + ξ

(N)
1 , . . . , z

(0)
NkN

+ ξ
(N)
kN

) ∈ KN} = 1,

where KN is the above mentioned neighborhood,

(2) lim
N→∞

P

(
1

σN

kN∑
i=1

∂f
(0)
N

∂zi
ξ
(N)
i < x

)
= G(x)
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at every point of continuity of G(x) (∂f
(0)
N /∂zi, and ∂2f

(1)
N /∂zi∂zj have the same meaning

as in Theorem 1),

(3)
1

σN

kN∑
i,j=1

∂2f
(1)
N

∂zi∂zj
ξ
(N)
i ξ

(N)
j ⇒ 0 if N → ∞.

Then

lim
N→∞

P
{

1
σN

[fN (z(0)
N1 + ξ

(N)
1 , . . . , z

(0)
NkN

+ ξ
(N)
kN

) − f(z(0)
N1, . . . , z

(0)
NkN

)] < x

}
= G(x)

at every point of continuity of G(x).

The proof is similar to that of Theorem 1.

It is worth mentioning that the fulfillment of condition (1) in Theorem 2 may be the
cause of the slowing down tendency of random elements or the increase of KN or both.

In both theorems we used the same idea Cramér used when proving the asymptotic
normality of functions of moments (see [19, pp. 366–367], noting that in that case the
number of variables is fixed). We can apply these theorems for random linear equations.
In the following theorem we shall omit the subscript N which would refer to the fact
that we have a sequence of random elements. Thus all our previous notations concerning
random equations are applicable.

Theorem 3 Suppose that m, B0, c0, b0 are fixed and that B0 is nonsingular and
introduce the following conditions:

(1), σik → 0, i, k = 1, . . . ,m,

(3) P
{

1
σ

[−y′0Ξx0 + y′0γ + x′
0β] < x

}
→ Φ(x) =

1√
2π

∫ x

−∞
e−u2/2 du,

for every x, −∞ < x < ∞,

(3)
ρ

σ
⇒ 0.

Then for every x,

P
(

μ − c′0R0b0

σ
< x

)
→ Φ(x). (3.2)

Proof. Theorem 3 is an immediate consequence of Theorem 1 applied to the function
μ = μ(A, b, c) of m2+2m variables, (A0, b0, c0) as the point around which the Taylor-series
development is taken, and Ξ, γ, β as the sequence of (m2 + 2m)-dimensional random
vectors. We just have to mention that condition (1) in Theorem 1 is ensured by condition
(1) of Theorem 3. Various consequences of this theorem can be derived. Among them we
mention the simplest. �
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Corollary Suppose that the m2 +2m random variables in Ξ, γ and β have a normal
joint distribution and

σmax → 0,
σ2

max

σ
→ 0, where σmax = max(σik, si, tk)

Then (3.2) holds.

Proof. All that we have to verify is the fulfillment of (3) in Theorem 3. If we look
at the detailed expression of ρ given by the last terms in (2.13), we see that, separately,
each term of that sum divided by σ converges stochastically to 0. In fact, considering the
quadratic terms ξ2

ik/σ we see by the Markov inequality that

P
(

ξ2
ik

σ
> ε

)
≤ E(ξ2

ik)
σ

≤ σ2
max

σ
→ 0.

For all other terms the Chebyshev inequality can be applied.

Theorem 4 Consider a sequence of matrices and vectors B0, c0, b0, and a correspond-
ing random sequence Ξ, γ, β (the subscripts are omitted), where m, the size of the matrices
(equal to the dimension of the vectors), tends to infinity. Suppose that all B0 matrices are
nonsingular. To every B0 in the sequence there corresponds a maximal star domain K
where B0 + Ξ is nonsingular and the Taylor expansion around B0 applies. Suppose that

(1) P(B0 + Ξ ∈ K) → 1,

(2) P
{

1
σ

(−y′0Ξx0 + x′
0γ + y′0β) < x

}
→ Φ(x), −∞ < x < ∞,

(3)
ρ

σ
⇒ 0.

Under these conditions1

P
{

1
σ

(μ − c′0R0b0) < x

}
→ Φ(x), −∞ < x < ∞.

The proof of this theorem is similar to that of Theorem 3. Analyzing the conditions
here, (1) and (2) are realistic as the size of the matrix increases. The crucial point is
condition (3) which may very easily fail to hold. In fact, first of all, the fourth term
containing the squares ξ2

ik may not be negligible as compared to σ. It does not have, in
general, expectation 0 even in the case where all random variables are independent. It
seems, therefore, advisable to attach the sum

1
2

m∑
i,k=1

y
(0)
i ξ2

ikr
(0)
ki x

(0)
k

1Instead of Φ(x) we may suppose some other distribution function too.

9



to the leading term, changing it into

−
m∑

i,k=1

y
(0)
i ξik

(
1 − 1

2
ξikrki

)
x

(0)
k + y′0γ + x′

0β. (3.3)

We may then approximate the distribution of μ by a normal distribution with the expec-
tation

c′0R0b0 +
1
2

m∑
i,k=1

y
(0)
i σ2

ikr
(0)
ki x

(0)
k (3.4)

and variance (2.16), where Dik has to be replaced by

Dik − TiDikTk − TiDik − DikTk (3.5)

and Ti is a diagonal matrix consisting of elements r
(0)
1i , . . . , r

(0)
mi in the diagonal. The same

sum that we added to the leading term has to be subtracted from the remainder and it is
more realistic to say that the new remainder divided by the dispersion of the new leading
term tends stochastically to 0.

4 Application to random linear programs

Consider the linear programming problem

μ0 = max c′0x, (4.1)

subject to the conditions
A0x = b0, x ≥ 0, (4.2)

and suppose that it has a unique optimal basis B0 which, for the sake of simplicity, we
suppose to be the set of vectors a

(0)
1 , . . . , a

(0)
m . We also suppose that A0 has rank m.

Consider also the problem
μ = max c′x, (4.3)

subject to the conditions
Ax = b, x ≥ 0, (4.4)

where A, b, c have random elements, components, respectively. In these problems we
apply the same notations as those used concerning random equations in § 2, 3, but we
observe that A has mn elements and c has n components.

We suppose also that B0 is nondegenerate. There is then a neighborhood of A0, b0, c0

in which the problem (4.3)–(4.4) will preserve the subscripts of the optimal basis. Keeping
m and n fixed, consider a sequence of random matrices, vectors A, b, c, respectively. If we
suppose that

σmax → 0 (4.5)
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where σmax = max(σik, ti, sk, i = 1, . . . ,m; k = 1, . . . , n), the probability that B =
(a1, . . . , am) will be the optimal basis to problem (4.3)–(4.4) tends to 1. Hence, according
to our lemma, (μ−μ0)/σ will have the same asymptotic probability distribution uncondi-
tionally or conditionally, given that B is optimal. If, furthermore, conditions (2) and (3)
are also satisfied in Theorem 3, where all quantities, vectors, matrices are taken from the
random equation Bx = b, and c means the vector consisting of the first m components of
that used in (4.3), then we may state the following.

Theorem 5 The optimum value μ of the random programming problem (4.3)–(4.4)
has an asymptotic normal distribution with expectation μ0, the optimum of the program
taken with the expectations in each place, and variance (2.16), where x0, y0 are the primal
and dual optimal solutions of the first problem; more exactly, x0 is a part of the primal
optimal solution consisting of the basic components. The meaning of Dik, C, F remains
unchanged. Asymptotic normality means that the probability that (μ−μ0)/σ < x tends to
Φ(x).

It is seen from these that the present approach gives a particularly simple result which
is very advantageous from the practical point of view because in the characteristics of
the random variable μ such vectors and matrices appear as the primal and dual optimal
solutions x0, y0 and Dik, C and F , the covariance matrices of the random variables
involved.

We may also apply Theorem 4 by considering a sequence of programming problems,
where m → ∞, n → ∞. Here we suppose that at each problem with A0, b0, c0 there is
a unique finite, nondegenerated optimum and the probability that the optimal basis has
the same column subscripts in problem (4.1)–(4.2) and in (4.3)–(4.4) tends to 1. Then if
we take into account our lemma, the results of Theorem 4 are applicable, where x0 and
y0 have the same meaning as before.

One practical conclusion of these results is the following: if for some reason we solve
the linear programming problem with the expectations, e.g., with predicted prices and
predicted technology coefficients, but we have information about their random variation,
then we may set up confidence limits for the optimum value which would have been the
result if we had programmed with the particular realization of the random data in A, b,
and c.
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