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Abstract

The models discussed in the present paper are generalizations of the models intro�
duced previously by A� Pr�ekopa ��� and M� Ziermann ��	�� In the mentioned papers
the initial stock level of one basic commodity is determined provided that the deliv�
ery and demand process allow certain homogeneity 
in time� assumptions if they are
random� Here we are dealing with more than one basic commodity and drop the time
homogeneity assumption� Only the delivery processes will be assumed to be random�
They will be supposed to be stochastically independent� The �rst model discussed
in this paper was already introduced in �
�� All these models are stochastic program�
ming models and algorithms are used to determine the initial stock levels rather than
simple formulas� We have to solve nonlinear programming problems where one of the
constraints is probabilistic� The function and gradient values of the corresponding
constraining function are determined by simulation� A numerical example is detailed�

Keywords� Stochastic Programming�ReliabilityModels� Inventory Models� Chance
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� Introduction

The models discussed in the present paper are generalizations of the models introduced
previously by A	 Pr
ekopa ��
 and M	 Ziermann ���
	 In those papers the initial stock level
of one basic commodity is determined� provided that the delivery and demand process
allow certain homogeneity �in time� assumptions if they are random	 Here we are dealing
with more than one basic commodity and drop the time homogeneity assumption	 Only
the delivery processes will assume to be random	 They will be supposed to be stochas�
tically independent	 Out of the models discussed in this paper the �rst one was already

�



introduced in ��
	 All these models are stochastic programming models and algorithms
serve in determining the initial stock levels instead of simple formulas	 We have to solve
nonlinear programming problems where one of the constraints is probabilistic	 The func�
tion and gradient values of the corresponding constraining function are determined by
simulation	

The numerical computation for these models �as introduced in the present paper� is
more sophisticated than that required for the earlier models of Pr
ekopa and Ziermann�
however� if the delivery process is inhomogeneous then with the present methodology we
can get closer to reality and can handle many delivery processes simultaneously	

The most general model introduced in ��
 is the following	 Let M denote the initial
stock level� ��� T � the investigated time interval� �t the amount of the basic commodity
delivered up to time t and �t the cumulative demand at time t� where � � t � T 	 The
initial stock level is the smallest M satisfying

P �

�
inf

��t�T
�M � �t � �t� � �

�
� �� �� ��	��

where � is a prescribed� small positive number� e	g	� � � ����	 Under the assumptions
introduced in ��
 in connection with the random processes �t� �t� ��	�� holds with equality
for the optimal initial stock	 Thus an equation can be used to determine M 	 This is called
the reliability equation�

For the easier understanding of the generalizations we introduce in this paper� we need
to review the modelling of the random processes �t� �t introduced in ��
	 Since the model
for �t is the same as that of �t� only its parameters are di�erent� it will be su�cient to
deal with �t	

Let � be a real number satisfying � � � � � and t�� � � � � tn further 	�� � � � � 	n�� be
independent samples taken from the population uniformly distributed in ��� ��	 Let 	�� �
	�� � � � � � 	�n�� be the ordered sample corresponding to 	i� i � �� � � � � n � � and put
	�� � �� 	�n � �	 Now we de�ne �t in the following manner�

�t � c�
�n� c��� ��	�� � � � t � T� ��	��

where 
 is the number of those ti which are smaller than t� c is a positive constant� cT
equals the total demand occurring in the time interval ��� T � and this is supposed to be
equal the total amount delivered in the same time interval	 If � � �� then �t is the empirical
probability distribution function belonging to the sample t�� � � � � tn	 In connection with
�t we use m instead of n and � instead of �	

In ���
 it is proved that the following limit relations hold�

lim
m��

n��

P

��
mn

m� n �m��� ��� � n��� ���

����

sup
��t��

��t � �t� 
 y

�

� lim
m��

n��

P

��
mn

m� n �m��� ��� � n��� ���

����

sup
��t��

��t � �t� 
 y

�

�

�
�� exp���y�� if y � ��
�� if y � ��

��	��

�



Here we have �xed T � � for the sake of simplicity	 This choice does not restrict the
generality	

If we assume the left�hand sides of ��	�� approximately equal the right�hand side value�
then for a given � it turns out that M � M��� is an approximate solution of the Reliability
Equation�

M��� � c

�
�

�

�
� � ��� ���

n
�

�� ��� ���

m

�
log

�

�

����
� ��	��

If �t is a deterministic process and �t � ct �� � t � ��� then the corresponding M value
can be obtained from ��	�� if we take the limit n � �	 We proceed similarly if �t is
deterministic	 We remark that the minimal amount � delivered at one delivery time and
� satisfy the following relation� � � n��c	 Similar relation holds for the parameters of the
process �t	

� Generalization of the delivery and demand processes

In this section we repeat the generalization of the delivery process as it is given in ��
	

In Section � we mentioned the following assumptions in connection with the delivery
process�

�a� the number of delivery times is �xed� this was denoted by n�

�b� the n delivery time points are so distributed in the interval ��� �� as the elements of a
sample of size n taken from a population uniformly distributed in the same interval�

�c� the total amount delivered is constant and is equal to c which is also the total
demand�

�d� The random vector the components of which are the random delivered amounts is
stochastically independent of the random vector of the delivery time points�

�e� denoting by � the smallest amount to be delivered if a delivery occurs� the model for
the distribution of the remaining amount among the n delivery time is the following�

Divide the interval ��� c�n�� into n parts by choosing n�� independent and uniformly
distributed random points and assign the quantities equal to the lengths of the subintervals
to the n delivery times	 In what follows we maintain the assumptions �a�� �c�� �d�� and
modify the assumptions �b�� �e�	

For the modeling of the delivery process we choose L uniformly distributed independent
random points in the interval ��� c � n��� where L � n � �	 Let y�� � � � � � y

�
L denote the

ordered sample formed from the L random points	 Out of this ordered sample we select
those which have subscripts k� 
 k� 
 � � � 
 kn�� and add to the �xed delivery amounts
the following

�� � y�k� � �� � y�k� � y�k� � � � � � �n � c� n� � y�kn�� � ��	��
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Thus the amounts delivered at the delivery times will be

� � ��� � � ��� � � � � � � �n� ��	��

A similar model is used for the delivery time points	 To the �xed amount to be delivered
at one occasion there correspond a �xed time � as the minimal distance between two
consecutive delivery time points �� � � � ��n�	 The delivery time points are selected
from an ordered sample x�� � x�� � � � � � x�N of a sample of size N taken from a population
uniformly distributed in ��� ��n��� so that we select those elements which have subscripts
j� 
 j� 
 � � � 
 jn form the random variables

�� � x�j� � �� � x�j� � x�j� � � � � � �n � x�jn � x�jn�� ��	��

and �nally take the partial sums of the random variable

� � ��� � � ��� � � � � � � �n� ��	��

This partial sum represents the n delivery time points	

Let s�z�� � � � � zn��� denote the joint probability density function of the random variables
��� � � � � �n��	 It is easy to see that this function has the following form

s�z�� � � � � zn���

�

�
�

c� n�

�n ��L � ��

��k����k� � k�� � � ���kn�� � kn�����L� �� kn���

�

�
z�

c� n�

�k��� � z�
c� n�

�k��k���

� � �

�
zn��
c� n�

�kn���kn����

�
��

z� � � � �� zn��
c� n�

�L�kn��

��	��

if zi � �� i � �� � � � � n � �� z� � � � �� zn�� 
 c � n� and s�z�� � � � � zn��� � � otherwise	
��y� �

R�
� xy��e�x dx	 ��� � � � � �n have a similar joint density function	

Thus the random vectors ���� � � � � �n��� and ���� � � � � �n� have Dirichlet distributions	
For properties of this multivariate distribution the reader is referred to ���
	

� The inventory models

Model I ���

The model for the delivery process is that one discussed in Section �	 The demand is
assumed to have constant intensity i	e	� the demand occurring in the interval ��� t� is equal
to ct where c is a constant	 M denotes the initial stock level	 The demand will be met
continuously in the whole interval ��� �� if and only if the following relations hold

M � � � ���
M � � � �� � �� � �� � ���

			
M � �n� ��� � �� � � � �� �n�� � n� � �� � � � �� �n�

��	��

�



Let us introduce the notations�

�� � ���
�� � �� � �� � ���

			
�� � �� � � � �� �n � �� � � � � � �n���

��	��

The random vectors � � ���� � � � � �n��� and � � ���� � � � � �n� are independent and their
probability density functions are logconcave functions in Rn�� resp	 Rn	 It follows that
the altogether �n � � components have a logconcave joint density in R�n��	

The notation of a logconcave probability measure was introduced in ��
	 A probability
measure P de�ned on the measurable subsets of Rm is said to be logconcave if for every
pair A� B of convex subsets� of Rm and every � 
 � 
 � the following inequality holds�

P��A� ��� ��B� � �P�A�
��P�B�
���� ��	��

The main theorem of ��
 says that if a probability measure is generated by a logconcave
probability density� then it is a logconcave measure	 On the other hand any linear trans�
form of a random vector having logconcave distribution has again logconcave distribution
��� Theorem �
	 Thus the random vector � � ���� � � � � �n� has logconcave probability
distribution	

We can write the Reliability Equation in our case� by taking into account only one
basic commodity� as follows�

h�M� � P��i �M � �i� ��� � i�� i � �� � � � � n� � p� ��	��

where � 
 p 
 � and p � � in practice �see Fig	 ��	

cT
M

t
T

Cumulative demand function

Cumulative delivery function

M

Fig	 �� The cumulative delivery function should be above the cumulative demand function
with a prescribed high probability �for each material�	

�



The function h�M� is logconcave on the hal�ine ����� because the joint probability
distribution function of a random vector having logconcave probability distribution is a
logconcave point function ��
	 Model I for more than one basic material consists of the
following stochastic programming problem�

minimize d���M ��� � � � �� d�l�M �l��

subject to h�M� � h��M
���� � � �hl�M

�l�� � p� ��	��

M � �� M 	 D�

whereM � �M ���� � � � �M �l�� and D is a subset of Rl determined by some constraints such
as� the components of M be smaller than or equal to certain upper bounds or that the
initial stock amounts do not take more room than a certain upper limit and do not require
more �nancial investment than a further upper limit� etc	 The numbers d���� � � � � d�l� are
nonnegative and they are some valuations of units of goods to be determined on the basis
of local knowledge	 Sometimes the objective function turns out to be nonlinear	

In the above discussion we assumed that the demand function is linear	 Of course we
can drop this assumption and use that model for demand processes introduced in Section �	

Stochastic programming models with independent joint constraints were considered
�rst by Miller and Wagner ��
	

Model II�

This model di�ers from the previous one in that further constraints containing conditional
expectation appear	 With this we prescribe not only the rarity of the occurrence of
unsatis�ed demand but also prescribe upper bound for the average magnitude of the
unsatis�ed demand	 Thus upper bound may depend on the basic material	 We assume
that unsatis�ed demand will not be lost	 Thus the model works with backorders	

If one of the inequalities ��	�� is violated� it means there was a shortage just prior to
the considered delivery time	 The shortage is proportional to the unsatis�ed demand	 To
assume a deterministic demand process with constant intensity means that the length of
the time interval in which unsatis�ed demand exist is proportional to the magnitude of
the violation	 Here we did take into account that no demand is lost	 Our model consists
of the problem formulated below	 The superscripts refer to the various basic commodities�

minimize d���M ��� � � � �� d�l�M �l��

subject to h�M� � p�

E��
�j�
i �M �j� � �i� ����j� � i��j� j �

�j�
i �M �j� � �i� ����j� � i��j� � �� � g

�j�
i �

i � �� � � � � n� j � �� � � � � l�

M � �� M 	 D� ��	��

where the g
�j�
i are constant and E stands for expectation	 The conditional expectation

type constraints may even replace the probabilistic constraint	 For every i� j the ran�

dom variable �
�j�
i has a logconcave probability density	 It follows from this �see ��
� that
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the constraining functions in the conditional expectation constraints are monotonically
decreasing functions of the variables M �j� and every such constraint is simply equivalent
to a lower bound for the variable M �j� appearing in the constraint	 We return to this
question at the end of the section	

Model III�

Again we assume that no demand will be lost	 The di�erence between this model and
��	�� consists in a penalty term what we introduce now	 Let us introduce the random
variables

�
�j�
i �

�
q
�j�
i ��

�j�
i �M �j� � �i� ����j� � i��j�� if �

�j�
i �M �j� � �i� ����j� � i��j� � ��

� otherwise

��	��

i � �� � � � � n� j � �� � � � � l where q
�j�
i � � for every i and j	 It is easy to show that E��

�j�
i �

is a convex function of the variable M �j�	 To this it is enough to know that �
�j�
i has a

continuous probability distribution	 Since Model III has only a new objective function as
compared to the model given by ��	��� it will be enough to formulate the new objective
function� given by�

lX
j��

d�j�M �j� �
lX

j��

nX
i��

E��
�j�
i �� ��	��

The construction of the above three models are in correspondence with the three general
model constructions given in ��
	

Model III contains model I and Model II as special cases	 We obtain Model II by

setting q
�j�
i � �� and Model I by setting g

�j�
i ��� i � �� � � � � n� j � �� � � � � l	

Now we return to the conditional expectation contained in Problem ��	�� and the ex�

pectations E��i�	 Let f
�j�
i resp	 F

�j�
i denote the probability density and the probability

distribution functions of the random variable �
�j�
i 	 For the sake of simplicity the super�

scripts will be omitted in the sequel	 It is easy to see that if � is a continuously distributed
random variable and a is a constant� then the following equality holds�

E�� � a j � � a � �� �

Z �

a
��� F �x�
 dx���� F �a�


�

Z �

a

xf�x� dx���� F �a�
� a� ��	��

where F is the probability distribution function of �	 In view of this we have that

E��i �M � �i� ��� � i� j �i �M � �i� ��� � i� � ��

�
�

�� Fi�M � �i� ��� � i��

Z ��n�

M��i�����i�
xfi�x� dx�M � �i� ��� � i�� ��	���
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Similarly we obtain that

E��i� � qi

Z ��n�

M��i�����i�
��� Fi�x�
 dx� ��	���

A simple argument shows that

fi�x� �
��N � ����L� ��

��ji���N � ji � ����ki�����L� ki�� � ���c� n����� n��

�

Z b

�

�
x� u

�� n�

�ji��
�
��

x� u

�� n�

�N�ji
�

u

c� n�

�ki����

�
��

u

c� n�

�L�ki��

du� ��	���

�where b � minf� � n� � x� c � n�g� if � 
 x 
 � � n� and fi�x� � � otherwise�
i � �� �� � � � � n� further

f��x� �
��N � ��

��j����N � j� � ����� n��

�
x

�� n�

�j��� �
��

x

�� n�

�N�j�

��	���

if � 
 x 
 �� n� and f��x� � � otherwise	

As we already remarked� the ith conditional expectation�type constraint in Prob�

lem ��	�� can be converted into the simple inequality M �j� � M
�j�
i where M

�j�
i is that

value of M �j� for which the constraint holds with equality	 This value can be determined
by numerical integration of the function fj 	

� Solution of the problems

In this section we present a solution method to the problems discussed in the previous
section	 We restrict ourselves to the problem of Model I since the solution of the two
further problems requires only slight modi�cation	

For the sake of simplicity let us agree that the constraint M 	 D be specialized so that
it consist in the system of inequalities M �j� � �� j � �� � � � � l	 These are� on the other
hand� no real restrictions� because the equalities

hj��� � �� j � �� � � � � l ��	��

hold trivially and these imply that the optimal M ���� � � � �M �l� values are automatically
smaller than or equal to �	 The upper bounding of the M ���� � � � �M �l� values has the only
consequence to allow us to refer to well�known convergence theorem concerning the SUMT
method which we plan to use here	 ��
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We apply the interior point version of the SUMT	 Consider the following penalty func�
tion

G�r�M� �
lX

j��

d�j�M �j� � r

	

�log

�

 lY
j��

hj�M
�j��� p

�
�

�
lX

j��

logM �j����M �j��

��
� � ��	��

where r is a �xed positive number	 It is easy to see that for every �xed p � � the function
h��M

���� � � �hl�M
�l�� � p is also logconcave which implies that for every �xed r � � the

function G�r�M� is convex on the set fM jM � �g	 From this we only need the fact that
G�r�M� is convex on the l�dimensional unit cube fM j � � M �j� � �� j � �� � � � � lg	 The
SUMT interior point method works so that we take a sequence r� � r� � � � � consisting of
positive numbers� tending to � and minimize G�rk�M� with respect to M �in principle�
for every rk	 If Mk is the minimizing vector then G�rk�Mk� tends to the minimum value
of the objective function in Model I	 Thus Mk is an approximate optimal solution to the
problem if k is large enough	

The referred to convergence is ensured if the set of feasible solutions is bounded� the
constraining functions as well as the objective function are continuous on the set of feasible
solutions� further there exists interior point of this set and all inequalities hold as strict
inequalities at every interior point	 As regards Model I here we have the constraints
� �M �j� � �� j � �� � � � � t and the probabilistic constraint which restricts further the unit
cube	 The former ones hold strictly at every interior point of the unit cube thus it will
be enough to consider the probabilistic constraint	 Let M� be an interior point in the set
of feasible solutions	 We shall show that h�M�� � p where p is �xed and � 
 p 
 � the
line section connecting the points � and M� is entirely feasible because the set of feasible
solutions is convex	 Let M� be a feasible point on the line connecting � and M � lying
outside the section so that M � be between � and M �	 Then there exists a � 
 � 
 � so
that

M� � ��� ��� ��M�

from which� using the logconcavity of the function h�M�� it follows that

h�M�� � �h���
��h�M��

��� � p��� � p� ��	��

Thus we have shown that the SUMT interior point method is convergent in case of Model I	

Many general unconstrained minimization technique can be applied for the function
��	��	 Some of them use only function values� some use gradient values too	 In order to
facilitate the application of methods belonging to the latter category� we present a method�
ology to compute the gradient values	 Since h�M� is the product of the functions hj�M �j���
j � �� � � � � l it will be enough to consider the derivatives of the functions hj�M

�j��	 Let us
omit the j� for the sake of simplicity� The function ��	�� is the joint probability distribution
function of the random variables ��� � � � � �n at the point with coordinates M��i����� i��
i � �� � � � � n	

�



We remark that if F �z� is the probability distribution function corresponding to a
continuous probability distribution� then the following relation holds�

�F �z�

�zi
� F �zj � j 
� i j zi�fi�zi�� i � �� � � � � n� ��	��

where f�� � � � � fn are the probability density functions of the one�dimensional marginal
distributions and F �� j zi� is the �n � ���dimensional conditional probability distribution
function given that the ith random variable equals zi	

We assume that n� 
 c� n� 
 � �if one of the equalities n� � c� n� � � holds� our
procedure can essentially be simpli�ed�	 To compute the derivative of the function ��	���
�rst we take the partial derivatives with respect to all z�� � � �zn of the function

P��i � zi � �i� ��� � i�� i � �� � � � � n� ��	��

and put z� � � � �� zn � M 	 The sum of these equals the derivative of h�M�	 The partial
derivative of the function ��	�� with respect to zi can be obtained by using the formula
��	��	 Putting z� � � � � � zn � M we obtain

P��i �M � �j � ��� � j�� j 
� i j �i � M � �i� ��� � i��fi�M � �i� ��� � i��

� fi�M � �i� ��� � i��

Z v

�
P��j �M � �j � ��� � j�� j 
� i j �� � � � �� �i

� M � �i� ��� � i� � x��� � � � �� �i�� � x�

�
��N � ��

��ji���N � �� ji���� n��

�
M � �i� ��� � i� � x

�� n�

�ji��

�

�
��

M � �i� ��� � i� � x

�� n�

�N�ji ��L� ��

��ki�����L� �� ki���

�

c� n�

�

�
x

c� n�

�ki����
�
��

x

c� n�

�L�ki��

dx� ��	��

v � minf��M � �i� ��� � �n� i��� c� n�g�

where fi�z� is the probability density function of the random variable �i	 The probability
in the second row of ��	�� can be expressed as an absolute probability and thus we obtain
an expression similar to ��	��	

We recall that the random variables ��� � � � � �n arise from a sample of size N � taken from
a population uniformly distributed in the interval ��� ��� in a way described in Section �	
The joint distribution of ��� � � � � �n given that �� � � � �� �i � u � M � �i� ��� � i� � x

coincide with the joint distribution of two independent random vectors	 These vectors
consists of ji � � resp	 N � ji components and in both cases the joint densities are given
by expressions of the type ����	 In case of the �rst vector N � n� ��n� should be replaced
by ji��� i��� u and in case of the second vector� by N� ji� n� i� ��n��u� respectively	
Similar is the situation concerning the random variables ��� � � � � �n��	

We apply simulation for the computation of the probability h�M�	 The computation of
the gradient values is more sophisticated because beyond simulation numerical integration
is also needed	 Hence it seems to be more economic to apply gradient free minimization
technique when carrying out the unconstrained minimization of the penalty function	
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� Simulation technique for the computation of the values of

the function h�M �

Two methods are proposed	 The �rst one follows the modelling of the delivery processes	
We take many samples of size N resp	 L� order them and select the required elements	
This method has the great disadvantage that the ordering of the sample elements requires
much computer time	 It is known that the ordering time of N elements increases in the
order of magnitude of N log�N 	

The second method is more e�ective than the just mentioned former one	 It is based
on the fact that any Dirichlet distribution can be represented as the joint distribution of
random variables y�� � � � � yn by

yi �
xi

x� � � � �� xn��
� i � �� � � � � n� ��	��

where x�� � � � � xn�� are independent� standard gamma distributed random variables with
parameters �� � �� � � � � �n�� � �� i	e	 xi has the following probability density�

z	i��e�z

���i�
� ��	��

In fact� the joint density of the random variables ��	�� is given by

���� � � � �� �n���

����� � � ����n���
z	���� � � � z	n��n ��� z� � � � � � zn�

	n���� ��	��

if zi � �� i � �� � � � � n� z� � � � �� zn 
 � and is � otherwise	 Thus by a suitable choice of
��� � � � � �n��� we get the required Dirichlet density	

Ahrens and Dieter ��
 gave e�ective simulation technique for the simulation of the
gamma distribution	 Their method is particularly e�ective when the � parameter is large
or is not an integer	

The probability density functions� ��	�� and ���� slightly di�er from the density func�
tion ��	��	 The simulation technique described above requires only very simple modi�ca�
tion in both cases	 Let us consider the gamma probability density function

�	z	��e��z

����
� z � �� ��	��

If x�� � � � � xn�� are independent and gamma distributed random variables with parameter
pairs ����� � � � ��� �n��� where � � ��n�� �� � j�� �� � j��j�� � � � � �n � jn�jn��� �n�� �
N � jn�� � � then the random variables de�ned by ��	�� have the same joint probability
distribution as ��� � � � � �n do	 On the other hand xi can be represented as the sum of �i
independent and exponentially distributed random variables with the same parameter ��
for every i � �� � � � � n � �	 Finally� the exponentially distributed random variables can
be represented as negative logarithms of random variables uniformly distributed in the
interval ��� ��	 The simulation of the joint distribution of the random variables can be
carried out in a similar way	
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Table ��

p ���
 ����� ����� ����

��� ��� ��
 ���� �����
��� �
� ��� ���	 ����

��
 ��� ��� ���� ����
��
� � 	�� ��� 	���

In case of this second simulation technique we only take logarithms of the N�� sample
elements but we do not order them	 The required computer time is much smaller than in
the �rst case	

The probabilities are approximated by relative frequencies	 The sample size ensuring
prescribed precision can be determined by the inequality of Bernstein� that is� if 
m denotes
the frequency of an event of probability p� in the course of m independent experiments
and � is a given positive number� then

P�j�
m�m�� pj � �� � � exp

�
�

�

�p��� p��� � ����p��� p��
�

�
��	��

for � 
 � � p��� p�	

If the probability on the left�hand side equals �� then for m we obtain the inequality

m � �������p��� p��� � ����p��� p��
� log����� ��	��

if � 
 � � p�� � p�	 For �xed � and � the largest value of the right�hand side of ��	��
corresponds to p � �

� � and it is a monotonically decreasing function of p for �
� 
 p 
 �

�and monotonically increasing for � 
 p 
 �
� � provided � � p��� p�	 In such a way we can

get a lower bound for m which is good for every p	 This is important because our aim is to
approximate the probability p	 Sometimes we have certain bounds for p	 This is the case
in connection with such stochastic programming problems where we have probabilistic
constraint� i	e	� lower bound for the probability	

In our models we use at least ��� as lower bound for the function h�M�	 In practice
this means that the factors are greater than or equal to ���	 Using this information�
the required sample size is much smaller than would be the case without any previous
information	 Table � will illustrate the variation of the lower bound for m as a function
of � and p when � is �xed at ���	

� Numerical example

As an example we consider a product whose production involves two basic commodities
needed and we want to determine the initial stock levels of the two basic commodities
ensuring continuous production	 The shortage in each of them stops the production and
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the cost of such an event is relatively high so that one of our main objectives is to avoid
shortage with prescribed probability near one	

We assume that the demands for both basis commodities are uniform in time and the
unsatis�ed demand us carried over i	e	 the production plan has to be ful�lled	 We assume
that the basic commodities are delivered by two di�erent sources so that the two delivery
processes can be supposed stochastically independent	 The ��� �� time interval is now a
quarter of a year� �� days in other terms	 According to long term statistics deliveries
occur � resp	 � times concerning the �rst resp	 second basic material during one period
��� day�	 Table � shows actual delivery days for six past periods concerning the �rst basic
material	

Table ��

Deliveries
Periods

� � 	 �

� �	 �� �� ��
� �� �� �	 ��
	 	� 	
 �� 
�
� �
 �� �� �

� �� �� �� ��
� �� �� �� ��

Column
averages ����� ����� ���		 ����	

The minimum distance between two consecutive deliveries is � days	 Since �� days form a
time interval of length �� this means that the mentioned minimum distance is ���� � ���	
For the average delivery times we get in the same way

z� � ����� z� � ����� z	 � ����� z� � �����

Using our modeling of the delivery time process� we can write

zi � i�����E�x�ji�� i � �� � � � � n�

where x�ji denotes the jith element of the ordered sample of size N taken from the pop�

ulation uniformly distributed in the interval ��� �� n�����	 We have to �nd integers N �
j�� � � � � jn for which the following equalities hold at least approximately�

E�x�ji� �
ji��� n�����

N
� zi � i����� ji �

zi � i����

� � n����
N� i � �� � � � � n�

Since the zi� i � �� � � � � n and ���� are rationals in practice� such integers N � j�� � � � � jn
always exist	 It is not worth always to require that the above equalities hold exactly	 In
fact� if we work with large numbers� then the computer time will considerably be increased	
In the above example the values of

�zi � i��������� n������ i � �� �� �� �
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are ������ ������ ������ ����� and choosing N � ��� j� � �� j� � �� j	 � �� j� � � we get
a good approximation for the above equalities	

Table � shows the delivered amounts of the �rst basic material in the same past six
periods

Table ��

Deliveries
Periods

��� ��� 	�� ��� Totals

� �	� ��� ��� ��� ����
� ��� ��� ��� 
�� ����
	 �	� ��� ��� ��� ����
� ��� ��� ��� ���� 	���
� ��� ��� ��� ���� 	���
� ��� ��� ��� 
�� 	���

Dividing the rows by the sums of the rows we get Table �	 From this table we see that
the minimal delivered amount is ���� � ����	

Table ��

����� ���� ����� ��	�
����
 ����� ����� ��			
���� ����	 ����� �����
���� ����� ����� ��		�
���	� ����� ���	� ��	��
����� ���� ����� ���
�

Column
averages ����� ���
� ���	� ��	�


If the column averages are denoted by u�� � � � � un and we introduce the further notation
vi � u� � � � �� ui� i � �� � � � � n� then similarly to the case of the delivery times we write
the equalities

vi � i���� �E�y�ki�� i � �� � � � � n� ��

where y�ki denotes the kith element of a sample of size L taken from a population uniformly

distributed in the interval ��� �� n�����	 We want to determine integers L� k�� � � � � kn��
so that the following equalities hold at least approximately	 In our case the values of

�vi � i��������� n������ i � �� �� �

are ������ ����� �����	 Thus the choices L � ��� k� � �� k� � �� k	 � �� provide good
approximations	

We can proceed in a similar way concerning the second basic commodity	 Assume that
we obtained the following values� n � �� N � ��� j� � �� j� � �� j	 � �� j� � �� j
 � ��
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Fig	 �� The steps of the optimization procedure� where Mk is the optimal value of the kth
unconstrained optimization	

���� � ����	 L � ��� k� � �� k� � �� k	 � �� k� � �� ���� � ����	 As regards the objective
function� we have chosen d��� � �d���	

The SUMT interior point method started with values between ��� and ���	 The
r�� r�� � � � sequence was chosen to be �� �
 �

�
�
 � � � � and the initial values of the k � �st un�

constrained minimization were the optimal values of the kth unconstrained minimization	
The method was stopped when the change in the optimal values of the penalty function
was less than �	��	 The method of Hooke and Jeeves ��
 was applied for the minimization
of the penalty function	 In our numerical example the minimizing M ��� and M ��� belong�
ing to r � �

�
 were accepted as optimal solutions of the problem	 These are M ��� � ����

and M ��� � ����	 This means that ��� of the total demand of the �rst material and ���
of the total demand of the second material will serve the production without shortage
with probability p � ��� and the cost will be minimum among all feasible alternatives	

The test programs written in FORTRAN run between �	� and �	� minutes on a CDC
��� computer	 Further unconstrained optimization methods were also tested such as the
method of Rosenbrock ���
 and Powell ��
 �see Fig	 ��	 The best computer time was pro�
duced by the method of Hooke and Jeeves� however	 This method was successfully applied
also in other stochastic programming problems where function values were determined by
simulation	
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