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Introduction

In the paper [3] we have given a rigorous mathematical model and a general method for
solving special problems in connection with secondary processes generated by a random
point distribution of Poisson type. A random point distribution is a random selection of
a finite or countably infinite number of points of an abstract set T where a σ-algebra ST

is given. It is supposed that if ξ(A) denotes the number of random points lying in the
set A ∈ ST then it is a random variable i.e. ξ(A) is measurable in the sample space (a
sample element is a selection of a finite or countably infinite number of points of T ). A
random point distribution is called of Poisson type if to disjoint sets A1, . . . , Ar of ST there
correspond independent random variables ξ(A1), . . . , ξ(Ar) and there is a σ-finite measure
λ(A), A ∈ ST such that

P(ξ(A) = k) =
λk(A)

k!
e−λ(A), k = 0, 1, 2, . . . (1)

for every finite λ(A), A ∈ ST .

If every random point is the starting point of a further “happening” then we have a
secondary “process”. Let Y be an abstract space with a σ-algebra SY and suppose that the
secondary happening consists of a random selection of an element y ∈ Y to each random
point t ∈ T . Then the whole phenomenon can be characterized as follows: we choose
a finite or countable infinite number of points t1, t2, . . ., from T , also the corresponding
y’s y1, y2, . . . from Y and thus a sample element of the secondary process is a random
selection of the points (t1, y1), (t2, y2), . . . from the product space T × Y . In [3] the case
was considered where for different t’s the corresponding y’s are chosen independently.

If T is the positive part of the time axis and Y is the one-dimensional Euclidean space,
then T × Y is the ensemble of points (t, y) where t ≥ 0.

In this case if (t1, y1), (t2, y2), . . . is a sample element of the whole phenomenon this
can be represented on the plane so that we measure yi on the line crossing at ti the time
axis and being vertical to it. This representation was applied by Lexis for the birth- and
death-process.
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In the present paper we generalize the results of [3] for the case when the parameter-
measure of the underlying random point distribution given in T depends also on chance,
and has the form λ(A) = γ(A,λ) where λ is a random variable and γ(A,λ) is a σ-finite
measure on ST for every fixed λ. In § 1 we formulate a theorem and in § 2 we illustrate
the obtained results.

§ 1. Abstract mixed Poisson random point distributions and
secondary processes

Definition. A random point distribution is called of mixed Poisson type if it is a
mixture of random point distributions of Poisson type i.e. there is a random variable λ, a
σ-finite non-atomic measure γ(A,λ) (A ∈ ST ) (which is a function of λ) such that

P(ξ(A1) = k1, . . . , ξ(An) = kn | λ) =
n∏

i=1

P(ξ(Ai) = ki | λ) =
n∏

i=1

γk(Ai, λ)
ki!

e−γ(Ai,λ) (2)

provided Ai ∈ ST , γ(Ai, λ) < ∞ (i = 1, . . . , n) and AiAk = 0 for i �= k.

Before formulating our theorem we mention that we maintain the supposition about T
introduced in [3] i.e. we suppose that

α) For every B ∈ ST there is a sequence of decompositions {B(n)
i , i = 1, . . . , rn}

B
(n)
i B

(n)
k = 0 for i �= k,

∑n
i=1 B

(n)
i = B, B

(n)
i ∈ ST (i = 1, . . . , rn) such that the sets B

(n)
i

can be decomposed by the sets B
(n+1)
k and if t1 ∈ B, t2 ∈ B, t1 �= t2 then for a sufficiently

large n we have t1 ∈ B
(n)
i , t2 ∈ B

(n)
k where i �= k.

Let us consider the sample elements (t1, y1), (t2, y2), . . . of the secondary process the
ensemble of which form a random point distribution in T × Y . We denote by ST×Y the
σ-algebra ST × SY and by η(B) (B ∈ ST×Y ) the number of random points lying in the
set B which is now a measurable subset of T × Y . The condition that the secondary
happenings corresponding to different random points are independent is now replaced by
the following one

β) If t1, t2, . . . is a sample element of the random point distribution given in the set T
then for every n we have

P(η(D1) = 1, . . . , η(Dn) = 1 | λ, t1, t2, . . .) = μ(C1, λ, t1), . . . , μ(Cn, λ, tn), (3)

where Di = Ai × Ci, Ai ∈ ST , Ci ∈ SY , ti ∈ Ai (i = 1, 2, . . .) and AiAk = 0 for i �= k.

Thus the independence is required for every fixed value of λ. μ(C, λ, t) denotes the
probability distribution of the secondary happening y provided its starting point is t ∈ T
and λ is given. Now we are in the position to formulate our

Theorem. If the random point distribution {(t1, y1), (t2, y2), . . .} is generated by the
random point distribution of a mixed Poisson type {t1, t2, . . .} with the random parameter
measure γ(A,λ) (A ∈ ST ) moreover Conditions α) and β) hold, then the former one is
also of mixed Poisson type and

P(η(D) = n) =
∫ ∞

0

(ν∗(D,λ))n

n!
e−ν∗(D,λ) dU(λ), n = 0, 1, 2, . . . , (4)
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where ν∗ is the extended measure of ν which is given for the rectangular sets D = A × C
(A ∈ ST , C ∈ SY ) by

ν(D,λ) =
∫

A
μ(C, λ, t)γ(dt, λ) (5)

when λ is fixed and U(λ) is the probability distribution of the random variable λ.

Our theorem is a simple consequence of the results of [3] therefore we omit the proof.

§ 2. Illustration

A process of random events is called a mixed Poisson process1 if

P(ξt = n) =
∫ ∞

0

(tλ)n

n!
e−tλ dU(λ), n = 0, 1, 2, . . . , (6)

where ξt is the number of events occurring during the time interval (0, t) and U(x) is a
distribution function (U(λ) = 0 for λ ≤ 0) and if λ is fixed, then ξt has independent
increments. More precisely, if t1 ≤ t2 ≤ · · · ≤ t2n−1 ≤ t2n then

P(ξt2 − ξt1 = k1, . . . , ξt2n − ξt2n−1 = kn | λ)

=
n∏

i=1

P(ξt2i − ξt2i−1 = ki | λ)

=
n∏

i=1

((t2i − t2i−1)λ)ki

ki!
e−(t2i−t2i−1)λ. (7)

If ξ(A) denotes the number of events or what is the same the number of random points
lying in the linear Borel-set A then it follows from (6) and (7) that if |A| < ∞ where |A|
is the Lebesgue-measure of A, then

P(ξ(A) = n | λ) =
(|A|λ)n

n!
e−|A|λ, n = 0, 1, 2, . . . (8)

P(ξ(A) = n) =
∫ ∞

0

(|A|λ)n

n!
e−|A|λ dU(λ), n = 0, 1, 2, . . . (9)

moreover

P(ξ(A1) = k1, . . . , ξ(An) = kn | λ) =
n∏

i=1

P(ξ(Ai) = ki | λ), (10)

where A1, . . . , An are disjoint linear Borel-sets with finite Lebesgue measures. These are
simple consequences of the extension theory of stochastic set functions (see [2]). Thus the
mixed Poisson process can be considered as a special random point distribution of mixed
Poisson type.

1This process was considered first by O. Lundberg [1] who called it a compound Poisson process.
Since the terminology “compound Poisson process” is often used for a process ξt with the characteristic
function exp t

∑∞
k=1 Ck(eiku−1) (called also a Composed Poisson process) we call the process with absolute

probabilities (6) mixed Poisson process.
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In the special case when u(λ) = U ′(λ) exists and

u(λ) =
1
b

λ
1
b
−1

Γ
(

1
b

)e−
λ
b , b > 0, (11)

we obtain from (6)

Pn(t) = P(ξt = n) =
(

t

1 + bt

)n (1 + b) · · · (1 + (n − 1)b)
n!

P0(t)

P0(t) = (1 + bt)−
1
b .

(12)

Such a process was called by Lundberg a Pólya process. Letting b → 0, the probability
distribution (12) tends to

tn

n!
e−t, n = 0, 1, 2, . . . . (13)

Let pn(t) denote the intensity function of the Pólya-process, i.e. pn(t)Δt + σ(Δt) is the
probability of an event occurring during the interval (t, t + Δt) under the condition that
ξt = n, then a simple calculation shows that

pn(t) =
1 + nb

1 + tb
, n = 0, 1, 2, . . . (14)

(see [1]). It is not difficult to prove that

pn(t) = M(λ | ξt = n). (15)

In fact, using the theorem of Bayes we obtain

M(λ | ξt = n) =

∫ ∞

0
λ

(λt)n

n!
e−λtu(λ) dλ

∫ ∞

0

(λt)n

n!
e−λtu(λ) dλ

=

n + 1
t

∫ ∞

0

(λt)n+1

(n + 1)!
e−λtu(λ) dλ

∫ ∞

0

(λt)n

n!
e−λtu(λ) dλ

=

n + 1
t

Pn+1(t)

Pn(t)
=

1 + nb

1 + tb
,

(16)

where u(λ) is the function given by (11) and Pn(t) the probability given by (12).

If λ has the probability density

u(λ) = Cr λr−1

Γ(r)
e−Cλ, r > 0, C > 0 (17)

which is a Pearson type III curve then instead of (11) we get

Pn(t) =
(

C

C + t

)r (
t

C + t

)n r(r + 1) · · · (r + n − 1)
n!

, n = 0, 1, 2, . . . . (18)
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A simple argument shows that in this case

pn(t) = M(λ | ξt = n) =
r + n

C + t
, (19)

M(ξt) =
∞∑

n=1

nPn(t) =
∫ ∞

0

∞∑
n=1

n
(λt)n

n!
e−λtu(λ) dλ

(20)

= t

∫ ∞

0
λu(λ) dλ = tM(λ) = t

r

C
.

D
2(ξt) =

∞∑
n=1

n2Pn(t) − t2
r2

C2
= t

r

C

(
1 +

t

C

)
. (21)

Let us now consider the secondary process generated by a mixed Poisson process. We
suppose that every event is a starting point of a further happening the duration of which
is also a random variable. If we measure this duration on lines going out from the points
where the events occurred and drawn vertically to the time axis then we obtain a random
point distribution on the plane. If λ is a constant then according to the results of the
paper [3], this is a random point distribution of Poisson type. More precisely, if η(A)
denotes the number of points lying in the plane Borel-set A then to disjoint sets A1, . . . , Ar

there correspond independent random variables η(A1), . . . , η(Ar) and η(A) has a Poisson
distribution with

M(η(A)) = λ

∫∫
A

dxF (x, t) dt, (22)

provided (22) is finite, where F (x, t) is the distribution function of the secondary happening
starting at the time point t. If F (x, t) has a density

f(x, t) = F ′
x(x, t) (23)

then
M(η(A)) = λ

∫∫
A

f(x, t) dxdt. (24)

For the application of formulas (22), (24) see [3].

Now we can generalize this result to the case of a random λ. In this case clearly

P(η(A1) = k1, . . . , η(Ar) = kr | λ) =
r∏

i=1

P(η(Ai) = ki | λ) (25)

provided A1, . . . , Ar are disjoint plane Borel-sets. Also we have

M(η(A) | λ) = λ

∫∫
A

dxF (x, t) dt, (26)

(here we have supposed that the duration of the secondary happening do not depend on
λ) hence η(A) has a mixed Poisson distribution, i.e.

P(η(A) = n) =
∫ ∞

0

(λν∗(A))n

n!
e−λν∗(A) dU(λ), n = 0, 1, 2, . . . , (27)

where
ν∗(A) =

∫∫
A

dxF (x, t) dt. (28)
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If U(λ) is the distribution function with

u(λ) = U ′(λ) = Cr λr−1

Γ(r)
e−Cλ, C > 0, r > 0 (29)

then

P(η(A) = n) =
(

C

C + ν∗(A)

)r (
ν∗(A)

C + ν∗(A)

)n r(r + 1) · · · (r + n − 1)
n!

n = 0, 1, 2, . . .

(30)
and

M(η(A)) = ν∗(A)
r

C
, (31)

D
2(η(A)) = ν∗(A)

r

C

(
1 +

ν∗(A)
C

)
. (32)

The underlying random process (the events of which are the starting points of the sec-

ondary happenings) is a Pólya-process if C = r =
1
b
, b > 0. In this case

P(η(A) = n) =
(

ν∗(A)
1 + bν∗(A)

)n (1 + b) · · · (1 + (n − 1)b)
n!

1

(1 + bν∗(A))
1
b

,

n = 0, 1, 2, , . . . . (33)

With the aid of this model of secondary processes we can solve a number of special
problems. Suppose e.g. that the underlying event process is the process of the calls arriv-
ing at a telephone centre and the secondary happenings are the conversations. Suppose
moreover that the number of lines in the centre is infinite and the calls arrive according to
a mixed Poisson process. Let furthermore F (x, t) = 1 − e−βx, β > 0, x > 0. We want to
determine the distribution of the random variable ηt denoting the number of conversations
going on at time t. Clearly

ηt = η(A)

if A = {(τ, x) : 0 ≤ τ < t, x > t − τ} and thus

P(ηt = n) = P(η(A) = n) =
∫ ∞

0

(λν∗(A))n

n!
e−λν∗(A) dU(λ), (34)

where
ν∗(A) =

∫∫
A

βe−βx dxdt =
1
β

(1 − e−βt). (35)

It is not difficult to complete this results with the case when the process of calls is consid-
ered on the whole time axis −∞ < t < ∞. Then we interpret the probability (6) as the
probability of arriving n calls in a time interval with the length t. If ηt denotes the same
as before then ηt = η(A) where A = {(τ, x) : τ < t, x > t− τ}. Formula (26) remains true

but ν∗(A) in this case equals
1
β

. If U(λ) is given by (29) and C =
1
b
, r =

a

b
, a > 0, b > 0,

then in view of (30) the probability that at time t there are n conversations, is

P(ηt = n) =
1

(β + b)n
(a + b) · · · (a + (n − 1)b)

n!

(
β

β + b

) a
b

, n = 0, 1, 2, . . . . (36)
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When b → 0, this reduces to the Poisson distribution with the parameter
a

β
.

If T = (−∞,∞), λ is a constant and F (x, t) is independent of t then we know that ηt

is a stationary process in the strict sense. This property remains true if λ is a random
variable. In fact

P(ηt1+τ = k1, . . . , ηtn+τ = kn) =
∫ ∞

0
P(ηt1+τ = k1, . . . , ηtn+τ = kn | λ) dU(λ)

=
∫ ∞

0
P(ηt1 = k1, . . . , ηtn = kn | λ) dU(λ)

= P(ηt1 = k1, . . . , ηtn = kn).

(37)

Let m denote the expectation of λ,

m =
∫ ∞

0
λdU(λ). (38)

Then the covariance of ηs+t and ηt is given by

R(t) = M[(η(As+t) − mν∗(As+t))(η(As) − mν∗(As))], (39)

where At = {(τ, x), τ < t, x > t− τ}. Since for a fixed λ and disjoint sets B1, . . . , Br the
random variables η(B1), . . . , η(Br) are independent, it follows that

R(t) = mν(AsAs+t). (40)

Suppose that F (x, t) = 1 − e−βx, β > 0, x > 0, then we get

R(t) =
m

β
e−β|t|. (41)

Thus if ξt = ηt − M(ηt) = ηt − mν∗(At), then the best linear least squares prediction of
ξs+t, based on the variables ξt, τ ≤ s, is given by

ξs+t = ξse
−β|t|. (42)
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