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Introduction

In the paper [3] we have given a rigorous mathematical model and a general method for
solving special problems in connection with secondary processes generated by a random
point distribution of Poisson type. A random point distribution is a random selection of
a finite or countably infinite number of points of an abstract set T" where a o-algebra St
is given. It is supposed that if {(A) denotes the number of random points lying in the
set A € Sr then it is a random variable i.e. £(A) is measurable in the sample space (a
sample element is a selection of a finite or countably infinite number of points of 7). A
random point distribution is called of Poisson type if to disjoint sets A1, ..., A, of St there
correspond independent random variables £(A1),...,&(A,) and there is a o-finite measure
A(A), A € St such that

P(E(A) = k) = X (A) e k=0,1,2,... (1)

for every finite A\(A), A € Sr.

If every random point is the starting point of a further “happening” then we have a
secondary “process”. Let Y be an abstract space with a g-algebra Sy and suppose that the
secondary happening consists of a random selection of an element y € Y to each random
point ¢ € T. Then the whole phenomenon can be characterized as follows: we choose
a finite or countable infinite number of points t1,ts,..., from T, also the corresponding
Y’s Y1,Y2,... from Y and thus a sample element of the secondary process is a random
selection of the points (t1,y1), (t2,y2), ... from the product space T' x Y. In [3] the case
was considered where for different ¢’s the corresponding y’s are chosen independently.

If T is the positive part of the time axis and Y is the one-dimensional Euclidean space,
then T' x Y is the ensemble of points (¢,y) where ¢ > 0.

In this case if (¢1,91), (t2,¥2),... is a sample element of the whole phenomenon this
can be represented on the plane so that we measure y; on the line crossing at ¢; the time
axis and being vertical to it. This representation was applied by Lexis for the birth- and
death-process.



In the present paper we generalize the results of [3] for the case when the parameter-
measure of the underlying random point distribution given in 7" depends also on chance,
and has the form A\(A) = (A, \) where X is a random variable and (A4, \) is a o-finite
measure on St for every fixed A. In § 1 we formulate a theorem and in § 2 we illustrate
the obtained results.

§ 1. Abstract mixed Poisson random point distributions and
secondary processes

DEFINITION. A random point distribution is called of mixed Poisson type if it is a
mixture of random point distributions of Poisson type i.e. there is a random variable A, a
o-finite non-atomic measure y(A, ) (A € Sr) (which is a function of \) such that

P(E(Ar) = k Ay) =k A—nIPA—kA n'VA“A*WAM) 2

(E(A1) = k1, E(A) = ka | A) = [ ] PEC N =11 (2)
=1 =1
provided A; € Sp, v(4;,A) < oo (i =1,...,n) and A; Ay =0 for i # k.

Before formulating our theorem we mention that we maintain the supposition about T’
introduced in [3] i.e. we suppose that

a) For every B € Sr there is a sequence of decompositions {Bi("), i=1,...,m}
Bi(n)Blin) =0fori#k, >, Bi(n) =B, Bi(n) €Sy (i=1,...,m,) such that the sets Bi(n)
can be decomposed by the sets B,inﬂ) and if t; € B, t5 € B, t1 # to then for a sufficiently
large n we have t; € Bi("), ty € B,(C") where i # k.

Let us consider the sample elements (t1,41), (t2,¥2),... of the secondary process the
ensemble of which form a random point distribution in 7" x Y. We denote by Srxy the
o-algebra Sy x Sy and by n(B) (B € Srxy) the number of random points lying in the
set B which is now a measurable subset of T" x Y. The condition that the secondary
happenings corresponding to different random points are independent is now replaced by
the following one

B) If t1,to,... is a sample element of the random point distribution given in the set T
then for every n we have
P(T](Dl) = 1, . ,U(Dn) =1 ’ )\,tl,tg, .. ) = ,u(Cl, )\,tl), N ,M(Cn, )\,tn), (3)

where D; = A; x Ci, A; € Sp, C; € Sy, t; € A; (1 =1,2,...) and A; A =0 for i # k.

Thus the independence is required for every fixed value of A\. u(C,\,t) denotes the
probability distribution of the secondary happening y provided its starting point is t € T’
and A is given. Now we are in the position to formulate our

THEOREM. If the random point distribution {(t1,y1), (t2,y2),...} is generated by the
random point distribution of a mized Poisson type {ti,ta,...} with the random parameter
measure y(A,\) (A € Sr) moreover Conditions «) and (3) hold, then the former one is
also of mized Poisson type and
< (v (D)™ _

— e

n! V(D) dU()\)a n=0,1,2,..., (4)



where v* is the extended measure of v which is given for the rectangular sets D = A x C

(A c ST, Ce Sy) by
y(D. ) = /A H(C () (5)

when X is fized and U(N) is the probability distribution of the random variable \.

Our theorem is a simple consequence of the results of [3] therefore we omit the proof.

§ 2. Illustration
A process of random events is called a mixed Poisson process® if

P(ﬁt—n)—/ooo we*”‘dU(}\), n=01,2,..., (6)

n!

where & is the number of events occurring during the time interval (0,¢) and U(z) is a
distribution function (U(A) = 0 for A < 0) and if X is fixed, then & has independent
increments. More precisely, if t; <to < --- <t9,_1 < to, then

]P}(é-tg - étl - klu cee 7§t2n - é-tgn_l - kn | )\)

P(ftm‘ - 57&21'71 =k; | )‘)
1

1=

3

toi — tai1) A" i—t2i
((t ;! DLVTENY (7)

=1

~

If £(A) denotes the number of events or what is the same the number of random points
lying in the linear Borel-set A then it follows from (6) and (7) that if |A| < co where |A]
is the Lebesgue-measure of A, then

P(E(A) =n | \) = ("ﬂ%)"e—lﬂ, n=0,1,2,... (8)
P(¢(A) =n) = /OOO (Vﬂbif\)ne_AMdU()\), n=0,1,2,... (9)
moreover
P(E(AL) = ki, .., E(An) =k | V) H]P’ ) =ki | \), (10)
where Ay, ..., A, are disjoint linear Borel-sets with finite Lebesgue measures. These are

simple consequences of the extension theory of stochastic set functions (see [2]). Thus the
mixed Poisson process can be considered as a special random point distribution of mixed
Poisson type.

!This process was considered first by O. LUNDBERG [1] who called it a compound Poisson process.
Since the terminology “compound Poisson process” is often used for a process & with the characteristic
function exp ¢t 3_7> , Ci (e —1) (called also a Composed Poisson process) we call the process with absolute
probabilities (6) mixed Poisson process.



In the special case when u(\) = U’()\) exists and

we obtain from (6)

Po(t)

n! (12)

t >"(1+b)---(1+(n—1)b)
14 bt

Po(t) = B(& = n) = (
Po(t) = (1+bt) 5.

Such a process was called by LUNDBERG a Poélya process. Letting b — 0, the probability
distribution (12) tends to

—e n=20,1,2,.... (13)
Let p,(t) denote the intensity function of the Pdlya-process, i.e. p,(t)At + o(At) is the

probability of an event occurring during the interval (¢,¢ + At) under the condition that
& = n, then a simple calculation shows that

14+nb
L) = — 2 —0,1,2,... 14
palt) = T =0 (14)
(see [1]). It is not difficult to prove that
Pa(t) = M(A [ & = n). (15)

In fact, using the theorem of BAYES we obtain

/ h AM(%(A) dX
M(A| & =n)= 20"

/ b Me—Mu(A) dA
0

n!
(16)
n+1 [y n+1
T /0 (n+1)° u(A) dA P g
B % (A" Pt 14’
/ Me—Mu(A) d\ Q
0 n!
where u(A) is the function given by (11) and P, (¢) the probability given by (12).
If A\ has the probability density
r—1 o
A)=C" - 0, C>0 17
u(A) ¢ o 770 C> (17)

which is a Pearson type III curve then instead of (11) we get




A simple argument shows that in this case

r+n

pa(t) =M & =n) = 57, (19)
)= nPy(t) = / Zn%e“u@) dA
n=1 (U—— :
(20)

= t/oo Au(A) d = tM()) = t%.

Zn2P -t - ta (1 + %) . (21)

Let us now consider the secondary process generated by a mixed Poisson process. We
suppose that every event is a starting point of a further happening the duration of which
is also a random variable. If we measure this duration on lines going out from the points
where the events occurred and drawn vertically to the time axis then we obtain a random
point distribution on the plane. If A is a constant then according to the results of the
paper [3], this is a random point distribution of Poisson type. More precisely, if n(A)
denotes the number of points lying in the plane Borel-set A then to disjoint sets A1, ..., A,
there correspond independent random variables n(A;1),...,n(A;) and n(A) has a Poisson

distribution with
) = )\// d.F(x,t)dt, (22)
A

provided (22) is finite, where F'(x, t) is the distribution function of the secondary happening
starting at the time point ¢. If F'(z,t) has a density

fa,t) = Fy(,1) (23)

then
A)) = )\/ Af(x,t) dx dt. (24)

For the application of formulas (22), (24) see [3].

Now we can generalize this result to the case of a random A. In this case clearly
P(n(A1) = ki, n(Ar) =k | A) = HP )= ki | ) (25)

provided Ay, ..., A, are disjoint plane Borel-sets. Also we have

M(n(A) | A) = A / /A d,F(x,4) dt, (26)

(here we have supposed that the duration of the secondary happening do not depend on
A) hence 7(A) has a mixed Poisson distribution, i.e.

Py =) = [ D

W), m=012.., (27)
0 n!

- //A dy F(z,t) dt. (28)

5

where



If U(A) is the distribution function with

u(N) =U'(\) = Cr%e—”, C>0, r>0 (29)

then

o C " v'(A) \"r(r+1)--(r+n-1) B

P04) =) = (g ) (et . no012,
(30)

and
M(n(A)) = v (A), (31)
D2(5(A)) = u*(A)% (1 + ”*(CA)> . (32)

The underlying random process (the events of which are the starting points of the sec-

1
ondary happenings) is a Pélya-process if C' = r = b b > 0. In this case

)

P(H(A):n):< z/*(A)A)>”(1+b)---(1+(n—1)b) 1

1+ bv¥( n! (1 + bu*(A))s
n=0,1,2,,.... (33)

With the aid of this model of secondary processes we can solve a number of special
problems. Suppose e.g. that the underlying event process is the process of the calls arriv-
ing at a telephone centre and the secondary happenings are the conversations. Suppose
moreover that the number of lines in the centre is infinite and the calls arrive according to
a mixed Poisson process. Let furthermore F(x,t) =1 — e %% 5 >0, 2 > 0. We want to
determine the distribution of the random variable 1, denoting the number of conversations
going on at time t. Clearly

m = n(A)
if A={(r,z):0<7 <t x>t—7}and thus
Pl =) = Plot) =) = [ S ), (34)

where )
V(A) = / /A g dadt = 51— ), (35)

It is not difficult to complete this results with the case when the process of calls is consid-
ered on the whole time axis —oco < t < co. Then we interpret the probability (6) as the
probability of arriving n calls in a time interval with the length t. If n; denotes the same
as before then 1, = n(A) where A = {(7,z) : 7 < t, x >t —7}. Formula (26) remains true

1 1
but v*(A) in this case equals 3 If U(A) is given by (29) and C' = 5= %, a>0,b>0,

then in view of (30) the probability that at time ¢ there are n conversations, is

1 (a4b)---(a+(m—=1b) [ B \*
" =G nl (ﬂ+b)

Py, = , n=0,1,2,.... (36)



a
When b — 0, this reduces to the Poisson distribution with the parameter B

If T = (—00,00), Ais a constant and F'(x,t) is independent of ¢t then we know that 7,
is a stationary process in the strict sense. This property remains true if A\ is a random

variable. In fact

Pty 4r = k1y ooy Ntppr = k) = /0 Pty = k1, oMt tr = ki | A)dU(N)

_/ P(ntlzklvvntn:kn‘)\)d(]()\)
0
=P, = ki, 01, = kn).

Let m denote the expectation of A,

[e.e]
m— / AU ().
0
Then the covariance of 15y, and n; is given by

R(t) = M[(n(Asts) — mr*(Ass1)) (1(As) —mr™(As))],

where A, = {(7,z), 7 <t, © >t—7}. Since for a fixed A and disjoint sets Bj,
random variables n(By),...,n(B,) are independent, it follows that

R(t) = mv(AsAsyt).
Suppose that F(z,t) =1 —e#* 3> 0, z > 0, then we get

R(t) = %e*ﬁlt\.

(37)

(38)

(39)

..., B, the

(40)

(41)

Thus if & = g, — M(n) = m — mr*(A), then the best linear least squares prediction of

&s+t, based on the variables &, 7 < s, is given by

fert = fse_ﬂm .
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