ON SECONDARY PROCESSES GENERATED BY RANDOM POINT DISTRIBUTIONS

András Prékopa (Budapest) Mathematical Institute, Eötvös Loránd University, Budapest

Received: May 15, 1959

Introduction

In the paper [3] we have given a rigorous mathematical model and a general method for solving special problems in connection with secondary processes generated by a random point distribution of Poisson type. A random point distribution is a random selection of a finite or countably infinite number of points of an abstract set T where a σ -algebra S_T is given. It is supposed that if $\xi(A)$ denotes the number of random points lying in the set $A \in S_T$ then it is a random variable i.e. $\xi(A)$ is measurable in the sample space (a sample element is a selection of a finite or countably infinite number of points of T). A random point distribution is called of Poisson type if to disjoint sets A_1, \ldots, A_r of S_T there correspond independent random variables $\xi(A_1), \ldots, \xi(A_r)$ and there is a σ -finite measure $\lambda(A), A \in S_T$ such that

$$\mathbb{P}(\xi(A) = k) = \frac{\lambda^{k}(A)}{k!} e^{-\lambda(A)}, \qquad k = 0, 1, 2, \dots$$
(1)

for every finite $\lambda(A), A \in \mathcal{S}_T$.

If every random point is the starting point of a further "happening" then we have a secondary "process". Let Y be an abstract space with a σ -algebra S_Y and suppose that the secondary happening consists of a random selection of an element $y \in Y$ to each random point $t \in T$. Then the whole phenomenon can be characterized as follows: we choose a finite or countable infinite number of points t_1, t_2, \ldots , from T, also the corresponding y's y_1, y_2, \ldots from Y and thus a sample element of the secondary process is a random selection of the points $(t_1, y_1), (t_2, y_2), \ldots$ from the product space $T \times Y$. In [3] the case was considered where for different t's the corresponding y's are chosen independently.

If T is the positive part of the time axis and Y is the one-dimensional Euclidean space, then $T \times Y$ is the ensemble of points (t, y) where $t \ge 0$.

In this case if $(t_1, y_1), (t_2, y_2), \ldots$ is a sample element of the whole phenomenon this can be represented on the plane so that we measure y_i on the line crossing at t_i the time axis and being vertical to it. This representation was applied by Lexis for the birth- and death-process.

In the present paper we generalize the results of [3] for the case when the parametermeasure of the underlying random point distribution given in T depends also on chance, and has the form $\lambda(A) = \gamma(A, \lambda)$ where λ is a random variable and $\gamma(A, \lambda)$ is a σ -finite measure on S_T for every fixed λ . In § 1 we formulate a theorem and in § 2 we illustrate the obtained results.

§ 1. Abstract mixed Poisson random point distributions and secondary processes

DEFINITION. A random point distribution is called of mixed Poisson type if it is a mixture of random point distributions of Poisson type i.e. there is a random variable λ , a σ -finite non-atomic measure $\gamma(A, \lambda)$ $(A \in S_T)$ (which is a function of λ) such that

$$\mathbb{P}(\xi(A_1) = k_1, \dots, \xi(A_n) = k_n \mid \lambda) = \prod_{i=1}^n \mathbb{P}(\xi(A_i) = k_i \mid \lambda) = \prod_{i=1}^n \frac{\gamma^k(A_i, \lambda)}{k_i!} e^{-\gamma(A_i, \lambda)}$$
(2)

provided $A_i \in S_T$, $\gamma(A_i, \lambda) < \infty$ (i = 1, ..., n) and $A_i A_k = 0$ for $i \neq k$.

Before formulating our theorem we mention that we maintain the supposition about T introduced in [3] i.e. we suppose that

 α) For every $B \in S_T$ there is a sequence of decompositions $\{B_i^{(n)}, i = 1, \ldots, r_n\}$ $B_i^{(n)}B_k^{(n)} = 0$ for $i \neq k$, $\sum_{i=1}^n B_i^{(n)} = B$, $B_i^{(n)} \in S_T$ $(i = 1, \ldots, r_n)$ such that the sets $B_i^{(n)}$ can be decomposed by the sets $B_k^{(n+1)}$ and if $t_1 \in B$, $t_2 \in B$, $t_1 \neq t_2$ then for a sufficiently large n we have $t_1 \in B_i^{(n)}, t_2 \in B_k^{(n)}$ where $i \neq k$.

Let us consider the sample elements (t_1, y_1) , (t_2, y_2) ,... of the secondary process the ensemble of which form a random point distribution in $T \times Y$. We denote by $S_{T \times Y}$ the σ -algebra $S_T \times S_Y$ and by $\eta(B)$ $(B \in S_{T \times Y})$ the number of random points lying in the set B which is now a measurable subset of $T \times Y$. The condition that the secondary happenings corresponding to different random points are independent is now replaced by the following one

 β) If t_1, t_2, \ldots is a sample element of the random point distribution given in the set T then for every n we have

$$\mathbb{P}(\eta(D_1) = 1, \dots, \eta(D_n) = 1 \mid \lambda, t_1, t_2, \dots) = \mu(C_1, \lambda, t_1), \dots, \mu(C_n, \lambda, t_n),$$
(3)

where $D_i = A_i \times C_i$, $A_i \in \mathcal{S}_T$, $C_i \in \mathcal{S}_Y$, $t_i \in A_i$ (i = 1, 2, ...) and $A_i A_k = 0$ for $i \neq k$.

Thus the independence is required for every fixed value of λ . $\mu(C, \lambda, t)$ denotes the probability distribution of the secondary happening y provided its starting point is $t \in T$ and λ is given. Now we are in the position to formulate our

THEOREM. If the random point distribution $\{(t_1, y_1), (t_2, y_2), \ldots\}$ is generated by the random point distribution of a mixed Poisson type $\{t_1, t_2, \ldots\}$ with the random parameter measure $\gamma(A, \lambda)$ ($A \in S_T$) moreover Conditions α) and β) hold, then the former one is also of mixed Poisson type and

$$\mathbb{P}(\eta(D) = n) = \int_0^\infty \frac{(\nu^*(D,\lambda))^n}{n!} e^{-\nu^*(D,\lambda)} \,\mathrm{d}U(\lambda), \qquad n = 0, 1, 2, \dots,$$
(4)

where ν^* is the extended measure of ν which is given for the rectangular sets $D = A \times C$ $(A \in S_T, C \in S_Y)$ by

$$\nu(D,\lambda) = \int_{A} \mu(C,\lambda,t)\gamma(\mathrm{d}t,\lambda)$$
(5)

when λ is fixed and $U(\lambda)$ is the probability distribution of the random variable λ .

Our theorem is a simple consequence of the results of [3] therefore we omit the proof.

§ 2. Illustration

A process of random events is called a mixed Poisson process¹ if

$$\mathbb{P}(\xi_t = n) = \int_0^\infty \frac{(t\lambda)^n}{n!} e^{-t\lambda} \,\mathrm{d}U(\lambda), \qquad n = 0, 1, 2, \dots,$$
(6)

where ξ_t is the number of events occurring during the time interval (0,t) and U(x) is a distribution function $(U(\lambda) = 0 \text{ for } \lambda \leq 0)$ and if λ is fixed, then ξ_t has independent increments. More precisely, if $t_1 \leq t_2 \leq \cdots \leq t_{2n-1} \leq t_{2n}$ then

$$\mathbb{P}(\xi_{t_2} - \xi_{t_1} = k_1, \dots, \xi_{t_{2n}} - \xi_{t_{2n-1}} = k_n \mid \lambda)
= \prod_{i=1}^n \mathbb{P}(\xi_{t_{2i}} - \xi_{t_{2i-1}} = k_i \mid \lambda)
= \prod_{i=1}^n \frac{((t_{2i} - t_{2i-1})\lambda)^{k_i}}{k_i!} e^{-(t_{2i} - t_{2i-1})\lambda}.$$
(7)

If $\xi(A)$ denotes the number of events or what is the same the number of random points lying in the linear Borel-set A then it follows from (6) and (7) that if $|A| < \infty$ where |A|is the Lebesgue-measure of A, then

$$\mathbb{P}(\xi(A) = n \mid \lambda) = \frac{(|A|\lambda)^n}{n!} e^{-|A|\lambda}, \qquad n = 0, 1, 2, \dots$$
(8)

$$\mathbb{P}(\xi(A)=n) = \int_0^\infty \frac{(|A|\lambda)^n}{n!} e^{-|A|\lambda} \,\mathrm{d}U(\lambda), \qquad n=0,1,2,\dots$$
(9)

moreover

$$\mathbb{P}(\xi(A_1) = k_1, \dots, \xi(A_n) = k_n \mid \lambda) = \prod_{i=1}^n \mathbb{P}(\xi(A_i) = k_i \mid \lambda),$$
(10)

where A_1, \ldots, A_n are disjoint linear Borel-sets with finite Lebesgue measures. These are simple consequences of the extension theory of stochastic set functions (see [2]). Thus the mixed Poisson process can be considered as a special random point distribution of mixed Poisson type.

¹This process was considered first by O. LUNDBERG [1] who called it a compound Poisson process. Since the terminology "compound Poisson process" is often used for a process ξ_t with the characteristic function $\exp t \sum_{k=1}^{\infty} C_k(e^{iku} - 1)$ (called also a *Composed* Poisson process) we call the process with absolute probabilities (6) mixed Poisson process.

In the special case when $u(\lambda) = U'(\lambda)$ exists and

$$u(\lambda) = \frac{1}{b} \frac{\lambda^{\frac{1}{b}-1}}{\Gamma\left(\frac{1}{b}\right)} e^{-\frac{\lambda}{b}}, \qquad b > 0,$$
(11)

we obtain from (6)

$$P_n(t) = \mathbb{P}(\xi_t = n) = \left(\frac{t}{1+bt}\right)^n \frac{(1+b)\cdots(1+(n-1)b)}{n!} P_0(t)$$

$$P_0(t) = (1+bt)^{-\frac{1}{b}}.$$
(12)

Such a process was called by LUNDBERG a Pólya process. Letting $b \to 0$, the probability distribution (12) tends to

$$\frac{t^n}{n!}e^{-t}, \qquad n = 0, 1, 2, \dots$$
 (13)

Let $p_n(t)$ denote the intensity function of the Pólya-process, i.e. $p_n(t)\Delta t + \sigma(\Delta t)$ is the probability of an event occurring during the interval $(t, t + \Delta t)$ under the condition that $\xi_t = n$, then a simple calculation shows that

$$p_n(t) = \frac{1+nb}{1+tb}, \qquad n = 0, 1, 2, \dots$$
 (14)

(see [1]). It is not difficult to prove that

$$p_n(t) = \mathbb{M}(\lambda \mid \xi_t = n). \tag{15}$$

In fact, using the theorem of BAYES we obtain

$$\mathbb{M}(\lambda \mid \xi_t = n) = \frac{\int_0^\infty \lambda \frac{(\lambda t)^n}{n!} e^{-\lambda t} u(\lambda) \, \mathrm{d}\lambda}{\int_0^\infty \frac{(\lambda t)^n}{n!} e^{-\lambda t} u(\lambda) \, \mathrm{d}\lambda}$$

$$= \frac{\frac{n+1}{t} \int_0^\infty \frac{(\lambda t)^{n+1}}{(n+1)!} e^{-\lambda t} u(\lambda) \, \mathrm{d}\lambda}{\int_0^\infty \frac{(\lambda t)^n}{n!} e^{-\lambda t} u(\lambda) \, \mathrm{d}\lambda} = \frac{\frac{n+1}{t} P_{n+1}(t)}{P_n(t)} = \frac{1+nb}{1+tb},$$
(16)

where $u(\lambda)$ is the function given by (11) and $P_n(t)$ the probability given by (12).

If λ has the probability density

$$u(\lambda) = C^r \frac{\lambda^{r-1}}{\Gamma(r)} e^{-C\lambda}, \qquad r > 0, \quad C > 0$$
(17)

which is a Pearson type III curve then instead of (11) we get

$$P_n(t) = \left(\frac{C}{C+t}\right)^r \left(\frac{t}{C+t}\right)^n \frac{r(r+1)\cdots(r+n-1)}{n!}, \qquad n = 0, 1, 2, \dots.$$
(18)

A simple argument shows that in this case

$$p_n(t) = \mathbb{M}(\lambda \mid \xi_t = n) = \frac{r+n}{C+t},$$
(19)

$$\mathbb{M}(\xi_t) = \sum_{n=1}^{\infty} n P_n(t) = \int_0^{\infty} \sum_{n=1}^{\infty} n \frac{(\lambda t)}{n!} e^{-\lambda t} u(\lambda) \,\mathrm{d}\lambda$$

$$f^{\infty} \qquad r \qquad (20)$$

$$= t \int_0^\infty \lambda u(\lambda) \, \mathrm{d}\lambda = t \mathbb{M}(\lambda) = t \frac{r}{C}.$$

$$\mathbb{D}^{2}(\xi_{t}) = \sum_{n=1}^{\infty} n^{2} P_{n}(t) - t^{2} \frac{r^{2}}{C^{2}} = t \frac{r}{C} \left(1 + \frac{t}{C} \right).$$
(21)

Let us now consider the secondary process generated by a mixed Poisson process. We suppose that every event is a starting point of a further happening the duration of which is also a random variable. If we measure this duration on lines going out from the points where the events occurred and drawn vertically to the time axis then we obtain a random point distribution on the plane. If λ is a constant then according to the results of the paper [3], this is a random point distribution of Poisson type. More precisely, if $\eta(A)$ denotes the number of points lying in the plane Borel-set A then to disjoint sets A_1, \ldots, A_r there correspond independent random variables $\eta(A_1), \ldots, \eta(A_r)$ and $\eta(A)$ has a Poisson distribution with

$$\mathbb{M}(\eta(A)) = \lambda \iint_{A} d_{x} F(x, t) \,\mathrm{d}t, \qquad (22)$$

provided (22) is finite, where F(x,t) is the distribution function of the secondary happening starting at the time point t. If F(x,t) has a density

$$f(x,t) = F'_x(x,t) \tag{23}$$

then

$$\mathbb{M}(\eta(A)) = \lambda \iint_{A} f(x,t) \,\mathrm{d}x \,\mathrm{d}t.$$
(24)

For the application of formulas (22), (24) see [3].

Now we can generalize this result to the case of a random λ . In this case clearly

$$\mathbb{P}(\eta(A_1) = k_1, \dots, \eta(A_r) = k_r \mid \lambda) = \prod_{i=1}^r \mathbb{P}(\eta(A_i) = k_i \mid \lambda)$$
(25)

provided A_1, \ldots, A_r are disjoint plane Borel-sets. Also we have

$$\mathbb{M}(\eta(A) \mid \lambda) = \lambda \iint_{A} d_{x} F(x, t) \,\mathrm{d}t, \tag{26}$$

(here we have supposed that the duration of the secondary happening do not depend on λ) hence $\eta(A)$ has a mixed Poisson distribution, i.e.

$$\mathbb{P}(\eta(A) = n) = \int_0^\infty \frac{(\lambda \nu^*(A))^n}{n!} e^{-\lambda \nu^*(A)} \, \mathrm{d}U(\lambda), \qquad n = 0, 1, 2, \dots,$$
(27)

where

$$\nu^*(A) = \iint_A d_x F(x,t) \,\mathrm{d}t. \tag{28}$$

If $U(\lambda)$ is the distribution function with

$$u(\lambda) = U'(\lambda) = C^r \frac{\lambda^{r-1}}{\Gamma(r)} e^{-C\lambda}, \qquad C > 0, \quad r > 0$$
⁽²⁹⁾

then

$$\mathbb{P}(\eta(A) = n) = \left(\frac{C}{C + \nu^*(A)}\right)^r \left(\frac{\nu^*(A)}{C + \nu^*(A)}\right)^n \frac{r(r+1)\cdots(r+n-1)}{n!} \qquad n = 0, 1, 2, \dots$$
(30)

and

$$\mathbb{M}(\eta(A)) = \nu^*(A)\frac{r}{C},\tag{31}$$

$$\mathbb{D}^{2}(\eta(A)) = \nu^{*}(A)\frac{r}{C}\left(1 + \frac{\nu^{*}(A)}{C}\right).$$
(32)

The underlying random process (the events of which are the starting points of the secondary happenings) is a Pólya-process if $C = r = \frac{1}{b}$, b > 0. In this case

$$\mathbb{P}(\eta(A) = n) = \left(\frac{\nu^*(A)}{1 + b\nu^*(A)}\right)^n \frac{(1+b)\cdots(1+(n-1)b)}{n!} \frac{1}{(1+b\nu^*(A))^{\frac{1}{b}}},$$

$$n = 0, 1, 2, \dots$$
 (33)

With the aid of this model of secondary processes we can solve a number of special problems. Suppose e.g. that the underlying event process is the process of the calls arriving at a telephone centre and the secondary happenings are the conversations. Suppose moreover that the number of lines in the centre is infinite and the calls arrive according to a mixed Poisson process. Let furthermore $F(x,t) = 1 - e^{-\beta x}$, $\beta > 0$, x > 0. We want to determine the distribution of the random variable η_t denoting the number of conversations going on at time t. Clearly

$$\eta_t = \eta(A)$$

if $A = \{(\tau, x) : 0 \le \tau < t, x > t - \tau\}$ and thus

$$\mathbb{P}(\eta_t = n) = \mathbb{P}(\eta(A) = n) = \int_0^\infty \frac{(\lambda \nu^*(A))^n}{n!} e^{-\lambda \nu^*(A)} \,\mathrm{d}U(\lambda),\tag{34}$$

where

$$\nu^{*}(A) = \iint_{A} \beta e^{-\beta x} \, \mathrm{d}x \, \mathrm{d}t = \frac{1}{\beta} (1 - e^{-\beta t}).$$
(35)

It is not difficult to complete this results with the case when the process of calls is considered on the whole time axis $-\infty < t < \infty$. Then we interpret the probability (6) as the probability of arriving *n* calls in a time interval with the length *t*. If η_t denotes the same as before then $\eta_t = \eta(A)$ where $A = \{(\tau, x) : \tau < t, x > t - \tau\}$. Formula (26) remains true but $\nu^*(A)$ in this case equals $\frac{1}{\beta}$. If $U(\lambda)$ is given by (29) and $C = \frac{1}{b}, r = \frac{a}{b}, a > 0, b > 0$, then in view of (30) the probability that at time *t* there are *n* conversations, is

$$\mathbb{P}(\eta_t = n) = \frac{1}{(\beta+b)^n} \frac{(a+b)\cdots(a+(n-1)b)}{n!} \left(\frac{\beta}{\beta+b}\right)^{\frac{a}{b}}, \qquad n = 0, 1, 2, \dots$$
(36)

When $b \to 0$, this reduces to the Poisson distribution with the parameter $\frac{a}{\beta}$.

If $T = (-\infty, \infty)$, λ is a constant and F(x, t) is independent of t then we know that η_t is a stationary process in the strict sense. This property remains true if λ is a random variable. In fact

$$\mathbb{P}(\eta_{t_1+\tau} = k_1, \dots, \eta_{t_n+\tau} = k_n) = \int_0^\infty \mathbb{P}(\eta_{t_1+\tau} = k_1, \dots, \eta_{t_n+\tau} = k_n \mid \lambda) \, \mathrm{d}U(\lambda)$$
$$= \int_0^\infty \mathbb{P}(\eta_{t_1} = k_1, \dots, \eta_{t_n} = k_n \mid \lambda) \, \mathrm{d}U(\lambda)$$
$$= \mathbb{P}(\eta_{t_1} = k_1, \dots, \eta_{t_n} = k_n).$$
(37)

Let *m* denote the expectation of λ ,

$$m = \int_0^\infty \lambda \,\mathrm{d}U(\lambda). \tag{38}$$

Then the covariance of η_{s+t} and η_t is given by

$$R(t) = \mathbb{M}[(\eta(A_{s+t}) - m\nu^*(A_{s+t}))(\eta(A_s) - m\nu^*(A_s))],$$
(39)

where $A_t = \{(\tau, x), \tau < t, x > t - \tau\}$. Since for a fixed λ and disjoint sets B_1, \ldots, B_r the random variables $\eta(B_1), \ldots, \eta(B_r)$ are independent, it follows that

$$R(t) = m\nu(A_s A_{s+t}). \tag{40}$$

Suppose that $F(x,t) = 1 - e^{-\beta x}, \ \beta > 0, \ x > 0$, then we get

$$R(t) = \frac{m}{\beta} e^{-\beta|t|}.$$
(41)

Thus if $\xi_t = \eta_t - \mathbb{M}(\eta_t) = \eta_t - m\nu^*(A_t)$, then the best linear least squares prediction of ξ_{s+t} , based on the variables ξ_t , $\tau \leq s$, is given by

$$\xi_{s+t} = \xi_s e^{-\beta|t|}.\tag{42}$$

References

- [1] LUNDBERG, O. (1940). On random processes and their application to stickness and accident statistics, Uppsala.
- [2] PRÉKOPA, A. (1956). On stochastic set functions I., Acta Math. Acad. Sci. Hung., 7, 215–263.
- [3] PRÉKOPA, A. (1958). On secondary processes generated by a random point distribution of Poisson type, Annales Univ. Sci. Budapest, Sectio Math., 1, 153–170.