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Abstract

The stochastic programming model named STABIL is given by ������ where we minimize
a linear or nonlinear objective function under probabilistic and some further constraints�
In this paper we are concerned with a special case of this model�type� where the problem
functions g�� � � � � gm�M � f are linear� The model is applied to the fourth Five�Year Plan of
the electrical energy sector of the Hungarian economy where the underlying deterministic
model is the corresponding deterministic sector model of the fourth Five�Year Plan� This
application is experimental� as the construction of the model and the computations were
performed at a time when the fourth Five�Year Plan was already running� In this paper
we describe the model� its solution algorithm� the computer program� the parameters of the
model and the computational results�

A very interesting phenomenon is that although there is no signi�cant di	erence be�

tween the optimum value of the deterministic underlying problem and that of the related

STABIL model� the optimal solutions turned out to be di	erent� Further� the reliability

level of the optimal solution of the deterministic underlying problem turned out to be very

low� while that of the optimal solution of the STABIL model is high� The appearance of

this phenomenon makes the numerical example interesting in itself� not just as a special

application�
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� Introduction

In this paper we describe in detail the probabilistically constrained stochastic pro�
gramming model named STABIL� The model� its theory and solution algorithm are
described brie�y in ��� 	� 
�� Here we apply the model to the electrical energy sector
of the Hungarian economy in the setting of the fourth Five�Year Plan� The descrip�
tion of the linear programming model of the fourth Five�Year Plan can be found in
��� and ����

The name STABIL for the model is introduced in this paper� This name is not an
abbreviation we have chosen it because the model contains a probabilistic constraint
which prescribes a high probability level with which the system must operate�

In this paper the computer program system for the solution algorithm of model
����� is also described in a short form� For further details the reader is referred
to ����

The application of our model is experimental for two reasons� Firstly� because
the underlying problem for the stochastic programming model was the deterministic
electrical energy sector model of the fourth Five�Year Plan � which was already in
operation at the time of this work� Thus we could not consider a practical application
of the numerical results� Secondly� there was a lack of information connected with
the relevant probability distribution for the random variables in the model and
subjective considerations were applied in order to specify this distribution�

The STABIL stochastic programming model is the following

G�x� � P �gi�x� � �i� i � �� � � � � m� � p�

gi�x� � bi� i � m� �� � � � � m�M������

minf�x��

We are interested in the special case of the model when the functions g�� � � � � gm�M �
f are linear� The joint distribution of the random variables ��� � � � � �m is supposed
to be continuous with logarithmic concave joint density� The case we are dealing
with here is the non�degenerate� multivariate� normal distribution �which has this
property�� In model ����� p is a prescribed probability� � � p � �� chosen near unity
in practice� In the electrical energy problem the values of p were chosen to be ���
and ���	� In this problem� m � �� M � ���� when the individual upper and lower
bounds and the nonnegativity constraints are incorporated� and the vector x has ��
components�

The deterministic model� which is the starting point for the stochastic program�
ming model construction� i�e� the underlying deterministic model for ������ is the
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following

gi�x� � bi� i � �� � � � � m�

gi�x� � bi� i � m� �� � � � � m�M������

minf�x��

Supposing the values on the right hand side of the �rst row in ����� are random
leads to Model ������ In model construction in practice the random variables are
frequently replaced by their expectations� In such cases� in formulating the stochas�
tic programming decision model and specifying the probability distribution of the
random variables appearing in the model� the expectations can be removed from the
underlying deterministic model� Following this methodology� the random variables
of ����� will be written in the form

bi � �i�i� i � �� � � � � m�

where

E��i� � �� i � �� � � � � m������

We may also suppose that

V ��i� � �� i � �� � � � � m������

The symbols E� V are used to denote expectation and variance� respectively� As
mentioned above� we are interested in the special case of ����� when the functions
g�� � � � � gm�M � f are linear� Let us introduce the notation

gi�x� � a�ix� i � �� � � � � m�M�
���	�

f�x� � c�x�

The mathematical model and the solution algorithms presented in this paper were
constructed by A� Pr�ekopa� The procedure for evaluating the distribution function
of the multivariate normal distribution� the computer program for the solution of
the problem �except for the linear programming package� which was worked out by
G� K�eri�� and the numerical computations were done by I� De�ak� The formulation of
the deterministic underlying problem and all data collection were done by S� Ganczer
and K� Patyi� The application of the stochastic programming model to the electrical
energy sector� i�e� the adaptation of the model was done jointly by the authors of
this paper�
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� Detailed Description of the Stochastic Programming

Model

We are concerned with the numerical solution of the following special case of the
STABIL model

G�x� � P

�
�

�i
�a�ix� bi� � �i� i � �� � � � � m

�
� p�

a�ix � bi� i � m� �� � � � � m�M������

minc�x�

where x � Rn�

A� Pr�ekopa proved �	� �� that if the joint distribution of the random variables
��� � � � � �m is continuous and the joint density is of the form

e�Q�z�� z � Rm������

where Q�z� is a convex function on the entire space� which can take values equal
to ��� then the function given by G�x� is logarithmic concave on the entire space
R
n� In our model we suppose that the joint distribution of the random variables

��� � � � � �m is a nondegenerate normal distribution� In this case their joint density
is of the form

�

����m��
p
jCj

e����z
�C��z ������

where the matrix C is the covariance �correlation� matrix of the random variables
��� � � � � �m� i�e�

cik � E��i�k�� i� k � �� � � � � m������

Since the distribution is non�degenerate the matrix C is positive de�nite� so C��

exists and is also positive de�nite� Hence� by a well known theorem� the function
given by

z�C��z����	�

is convex in the entire space Rm� If the joint density of the random variables
��� � � � � �m is ������ then the function G�x� is logarithmic concave on the entire
space Rn� i�e� for every pair of vectors x�� x� � Rn and � � 	 � � we have the
inequality

G�	x� � ��� 	�x�� � �G�x���
��G�x���

���������

Since G�x� 
 � for every x � Rn� this implies that logG�x� is a �nite valued
concave function on the entire space Rn�
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Algorithm for the Solution of Problem �����

The function in the �rst constraint of ����� is quasiconcave� If a nonlinear pro�
gramming method converges whenever the constraints are quasi�concave and the
objective function is linear� it can be applied for the solution of our problem� Such
a method is Zoutendijk�s method of feasible directions� in particular Procedure P�
���� p� ���� For the proof of the convergence in case of quasi�concave constraining
functions and a convex objective function �to be minimized� see ��� 	� ��� Before
presenting the method for the solution of Problem ����� we describe Zoutendijk�s
method for the problem

G�x� � p� a�ix � bi� i � I� min f�x�������

where the functions G and f are not specialized according to ����� and ���	� and
I denotes the appropriate constraint index set� We suppose that the functions
f�x�� G�x� are di�erentiable on the entire space Rn� Suppose further� that the
set determined by the linear constraints is nonempty and bounded� Let x� be an
arbitrary vector satisfying the constraints of Problem ������ We de�ne by induction
the successive iterations suppose we have already determined the vectors x�� � � � � xk
and want to determine the vector xk�� at the �k � ��th iteration� One iteration
consists of two parts� In the �rst part we solve the following direction �nding problem

G�xk� �rG�xk��x� xk� � �y � p� a�i � bi�
���
�

i � I� rf�xk��x� xk� � y� min y�

where � is an arbitrary positive number �xed throughout the whole procedure� The
number of the variables in the linear programming problem ���
� is n � �� since
the vector x has n components and y is also variable� There is always at least
one vector satisfying the constraints of ���
� � the n � � component vector x � xk�
y � �� Since x varies in a bounded set� the objective function is bounded from below�
hence Problem ���
� has a �nite optimum� Let yopt denote the optimal value of the
objective function of Problem ���
�� If yopt � �� then the procedure terminates� If
yopt �� �� which means in this case yopt � �� then we proceed to the second part of
the �k � ��th iteration� which is the determination of the step length� Let x�k be an
optimal solution of Problem ���
�� Then we minimize the function of the variable 	
given by

f�xk � 	�x�k � xk�������

on that part of the hal�ine xk � 	�x�k � xk�� 	 � �� which belongs to the set of
feasible solutions of Problem ������ Under very general assumptions this minimum
is obtained for some 	� If 	k is a minimizing 	� then we de�ne xk�� as

xk�� � xk � 	k�x
�
k � xk�������

	



Solution of Problem ����� in Two Phases

In the second phase we solve Problem ����� under the assumption that we have a
vector x� satisfying the constraints� In the �rst phase our aim is to �nd a vector x�
satisfying the constraints�

In the second phase we take into account the meaning of the function G and the
fact that f is a linear function of the form ���	�� The gradient of the function G will
be given in the next section� The gradient of the function f is the constant vector
c�� Function ����� has the form

c��xk � 	�x�k � xk���������

This is to be minimized on a bounded interval since the set of vectors x de�ned by
the constraints of Problem ����� is convex and bounded� Since we have yopt � ��
it follows that c�x�k � c�xk� Thus x�k �� xk which implies that the set of vectors
x � xk � 	�x�k � xk� for � � 	 � � is a nondegenerate interval� which implies that
the closed interval mentioned above �which contains it� is also nondegenerate� The
minimum is attained at the endpoint of this larger interval which corresponds to a
positive 	 value� It is easy to see that the vector xk�� is a boundary point of the set
de�ned by the constraints of the problem� Thus all the points x�� x�� � � � generated
by the algorithm are boundary points�

In the �rst phase we want to �nd a vector x� satisfying the constraints of Problem
������ We use the method described for the solution of Problem ������ but now we
maximize the �rst constraining function G of Problem ����� under the linear con�
straints of Problem ������ This can be considered as a special case of Problem ������
Thus we apply the algorithm to the problem

a�ix � bi� i � I� maxG�x��������

i�e� to the equivalent problem

a�ix � bi� i � I� min��G�x���������

until we reach a vector x� which satis�es the inequality

G�x�� � p�������

This vector x� can be used as the starting vector for the second phase� The method
applied to Problem ������ can be summarized as follows� We start from a vector
z� which satis�es the constraints of the Problem ������ such a vector can easily be
found by linear programming� If we have already determined the vectors z�� � � � � zk
then in order to de�ne zk�� we consider the following direction �nding problem

a�iz � bi� i � I� �G�zk� �r��G�zk���z � zk� � y� min y����	�
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which can be reformulated as

a�iz � bi� i � I� min�rG�zk��z � zk���������

The stopping rule and the step length determination was discussed above in connec�
tion with Problem ������ Zoutendijk�s method applied in the �rst phase is just the
well known gradient method�

� Convergence of the Procedure

As mentioned above� the convergence of the procedure applied to Problem ����� was
considered in ��� 	� ��� We recall the main theorem in a weaker� but for the present
purpose more useful� form�

Theorem �� Suppose that the following conditions hold

�i� The functions G and f are de�ned on the whole spaceRn and have a continuous

gradient there�

�ii� The function G is quasiconcave and the function f is convex on the entire

space�

�iii� The set K � fx j a�ix � bi� i � Ig is non�empty and bounded�

�iv� For every x satisfying the equality G�x� � p there corresponds a vector y in

the set of feasible solutions with the property that

rG�x��y � x� 
 �������

If the procedure terminates in a �nite number of steps and the last vector is xN �

then we have

f�xN� � min
x�L

f�x�������

If the sequence x�� x�� � � � is in�nite then we have

lim
k��

f�xk� � min
x�L

f�x�������

where L is the set of the feasible solutions of the problem�

The convergence of the procedure applied to Problem ����� can be proved using
Theorem �� We formulate two di�erent theorems for the two phases� It is obvious
that the �rst phase must terminate in a �nite number of steps� while in the second
phase it is enough if the procedure converges� First we consider the convergence
problem of the second phase�
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Theorem �� Besides the assumptions formulated in connection with Problem �����
suppose that there exists a vector y � L for which

G�y� 
 p������

Then the second phase procedure is either �nite� when the last vector xN satis�es

Relation ������ or it is in�nite and Relation ����� holds� As before� L denotes the

set of feasible solutions of the problem�

Proof� We have to prove that assumptions �i���iv� of Theorem � hold� Assump�
tions �i� and �ii� are satis�ed trivially� Assumptions �iii� was introduced earlier in
connection with Problem ������ So we only have to check the validity of Assumption
�iv�� The proof will be indirect� Suppose there exists an x � L for which G�x� � p

such that for every feasible y � L we have

rG�x��y � x� � �����	�

The function logG is �nite�valued and concave in the entire space� This implies that
the following inequality holds for every y � Rn

logG�y�� logG�x� � r logG�x��y � x� �
�

G�x�
rG�x��y � x�������

If y � L� then ���	� and the inequality G�x� 
 � together imply that

G�y� � G�x� � p������

This contradicts to ����� thus the theorem is proved� �

The following theorem summarizes our statement in connection with the �nite�
ness of the �rst phase�

Theorem �� Besides the assumptions already introduced in connection with Prob�

lem ������ assume that there exists a vector y � K� for which inequality ����� holds�
Then� starting from any vector z� � K� we reach a vector lying in the set L after a

�nite number of steps�

Proof� The method applied in the �rst phase is the classical gradient method� so
we might refer to any already existing convergence theorem for the gradient method�
For the sake of presenting a uni�ed approach� however� we refer to Theorem ��
By Theorem � it follows that if we apply the method of the �rst phase not to
Problem ������ but to the problem

a�iz � bi� i � I� min�� logG�z������
�






then the sequence z�� z�� � � � obtained is either �nite� and the last vector z minimizes
the objective function of Problem ���
�� or the following relation holds

lim
k��

�� logG�zk�� � min
z�K

�� logG�z��������

Now the problem of type ������ corresponding to ���
� is

a�iz � bi� i � I� min

�
�

�

G�zk�
rG�zk��z � zk�

�
�������

The objective functions of Problem ������ and ������ di�er only by a positive con�
stant factor hence the sets of optimal solutions are the same� This is also the
situation in the second part of the kth iteration in which the step length is deter�
mined� as it makes no di�erence whether the function �G or the function � logG
is minimized� Thus if we obtain a sequence z�� z�� � � � by the procedure applied to
Problem ���
�� this sequence is also appropriate for Problem ������� Hence in case
of a �nite sequence the last vector simultaneously minimizes the functions � logG
and �G� and in case of an in�nite sequence

lim
k��

��G�zk�� � min
z�K

��G�z���������

But� in either case� since there exists a y � K for which G�y� 
 p holds� after a
�nite number of steps we must reach a vector lying in the set L� Thus the theorem
is proved� �

� Evaluation of the Gradient of the Non�linear Con�

straining Function

In both the �rst and second phases of the procedure applied to the solution of Prob�
lem ����� we need values of the gradient of the function G�x�� In addition we need
the function values G�x�� We return to the problem of determination of these latter
values in Section �� We show here that the method we use to determine values of
G�x� is essentially suitable for the determination of values of rG�x�� We shall see
that while the evaluation of G�x� requires the evaluation of the distribution function
of the m�dimensional normal distribution� the evaluation of rG�x� requires the eval�
uation of the distribution function of the �m� ���dimensional normal distribution�

Denote by ��zC� the probability density function ����� and ��zC� the corre�
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sponding probability distribution function� We introduce the following notation�

Li�x� �
�

�i
�a�ix� bi�� i � �� � � � � m

�����

L�x� �

�
B�

L��x�
���

Lm�x�

�
CA �

The function G can be written now as

G�x� � ��L�x�C�������

It is well known in probability theory that if F �z� � F �z�� � � � � zm� is the abso�
lutely continuous joint distribution function of the random variables ��� � � � � �m� then
the following relation holds between the conditional distribution function F �z�� � � � �
zm j z�� of the random variables ��� � � � � �m given that �� � z� and the partial
derivative of the function F with respect to z�

F �z�� � � � � zm�

z�
� F �z�� � � � � zm j z��f��z��������

where f��z� is the density function of the random variable ��� Similar equalities hold
for the derivatives with respect to the other variables� Applying formula ����� for
the distribution function ��zC� we obtain

��zC�

z�
� ��z�� � � � � zm j z����z��������

where ��z� is the density function of the standard normal distribution� It is also
well�known that

��z�� � � � � zm j z�� � �

�
z� � r��z�

��� r����
���

� � � � �
zm � r�mz�

��� r��m�
���

S���

�
����	�

where the covariance matrix S��� has elements

S
���
ik �

rik � ri�rk�

��� r�i��
������ r�k��

���
i� k � �� � � � � m������

Similar formulae hold if one of the variables z�� � � � � zm plays the role of z�� The
corresponding covariance matrices will be denoted by S���� � � � � S�m��

Now we give a formula for rG�x� in terms of the components of the vectors
a�� � � � � am given by aj�� � � � � ajn� j � �� � � � � m� We describe the components of this

��



vector� but to avoid cumbersome notation do not display them in vector form� as
follows

�

�
L��x�� r��L��x�

��� r����
���

� � � � �
Lm�x�� r�mL��x�

��� r��m�
���

S���

�
��L��x��

a�i

��
� � � �

��

�
L��x�� rm�Lm�x�

��� r�m��
���

� � � � �
Lm���x�� rmm��Lm�x�

��� r�mm���
���

S�m�

�
��Lm�x��

ami

�m
������

i � �� � � � � n�

The numerical determination of the values of the function � is easy� and an inspection
of ����� shows that the same method may be used for the determination of rG�x�
and G�x��

� Formulation of the Economic Problem

At the Institute of Economic Planning of the Hungarian National Planning O�ce
a linear programming model was developed as a part of the planning method for
the fourth Five�Year Plan� It is a large�scale model comprising the interrelations of
physical values and �nancial processes and has a decomposition structure� i�e� the
model contains sectors related to the branches of the national economy� Our un�
derlying deterministic model is the electrical energy sector model of this large�scale
model� When formulating our model the remaining sectors were assumed to work at
�xed levels� Special features of the electrical energy sector were taken into account
such as the long time�lag to production of investments in energy� the substitution
possibility of di�erent kinds of fuels� etc� The variables of the model can be classi�
�ed in the following manner� production of electrical energy by exogenous capacity
�completed before the planning period�� production of electrical energy by endoge�
nous capacity �to be completed during the planning period�� use of various kinds of
fuels� import and export of electrical energy in relation to both Rouble and Dollar
trade� investment in individual projects �new power stations� and investment vari�
ables which take into account the di�erent �nancial resources� purposes and manners
of use� The constraints of the model contain manpower balances� constraints on in�
vestment� foreign trade balances� balance of the state budget� constraints containing
the demand for electrical energy and other �nancial constraints�

Numerical data for the model were obtained from the large scale model mentioned
above� from coordination with works in planning and from o�cial statistics� Since
the plan indices are obtained by forecasting� we face uncertainty� so the formulation
of a stochastic model is reasonable� We assumed that uncertainty in the statistical
data is negligible relative to that of the plan indices� Having analysed their economic
interpretation� four constraints of the deterministic model were regarded stochastic�
i�e� m � � in Model ������
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We now outline the interpretation of these four constraints and their right hand
side values in the deterministic model� The value b� is the planned de�cit of foreign
trade in Roubles and the �rst constraint prescribes that this de�cit should not
exceed a certain planned level� The value b� and the corresponding constraint have
the same interpretation for dollar trade� The underlying deterministic version of the
third and fourth stochastic constraints express the relations between the electrical
energy sector and the other sectors� The third constraint is essentially the row of
the input�output table corresponding to the electrical energy sector� This constraint
includes the requirement for the electrical energy sector which assures equilibrium of
input and output of the national gross product in value terms� The value b� is equal
to the sum of inputs of all productive sectors except electrical energy sector� Finally�
the right hand side value b� is equal to the cumulative minimum demand for electrical
energy in the productive sectors �except electrical energy� and the nonproductive
sectors� The corresponding constraint is the product balance of electrical energy
in natural units� The right hand side values of the stochastic constraints in the
stochastic programming model are b������� b������� b������� b������� The joint
distribution of these random variables was supposed to be normal� Its parameters
are given in Section ��

� Brief Description of the Computer Program

The detailed description of the computer program of Model ����� can be found in
���� Here we outline only the most important features�

The main problem was the numerical determination of the values of the joint
distribution function � of the random variables ��� � � � � �m� We recall that the
determination of these values and of the gradient values is essentially the same
problem �see ����� and ������� The determination of the values of the function �
is carried out by a subroutine using a modi�ed Monte Carlo integration technique�
We approximate the integral of the function ��zC� over the set fz j z � ug in
the following way� First we choose a vector u� so that the integral over the set
fz j u� � z � ug should be very near the integral over the former set� Then we
choose uniformly distributed random points from the set fz j u� � z � ug and take
the arithmetic mean of the function values belonging to these points� It is possible to
determine the number of random points resulting in a required precision� i�e� so that
the relative error does not exceed a prescribed level� In the special model concerning
us we deal with the four�dimensional normal distribution� The computation of one
value of the distribution function takes ��	 s when the prescribed upper bound for
the relative error is 	��

Special attention should be paid to the determination of the step length at each
iteration of the nonlinear programming procedure of Section �� Our procedure for
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the evaluation of the distribution function of the normal distribution �in common
with any other available procedure� does not give exact results� Only the expecta�
tions of the estimations are equal to the true values� This fact is very inconvenient
when determining the feasible part of the ray fxk � 	�x�k � xk� j 	 � �g� i�e� the
intersection of this ray with the boundary of the set of feasible solutions� We em�
ploy an iterative procedure which moves backwards and forwards along the ray and
successively reduces the length between evaluation points� In this way we are lead
near to the required intersection point�

We had to agree on an  optimality criterion!� A criterion formulated only in
terms of the value yopt may have been satisfactory� but we thought it more suitable
to formulate the following more rigorous stopping rule� The vector xk is considered
optimal if the di�erence between the values of the objective function at xk�� and xk
does not exceed �� of the latter and at the same time each individual component
of xk�� � xk does not exceed �� of the corresponding component of xk�

The computations were executed on a CDC ���� computer of the Hungarian
Academy of Sciences� The program consists of a main program and six overlays�
Five overlays concern the simplex method� the sixth one contains the algorithm
described in Section � and the evaluation procedure of the values of the multivariate
normal distribution function�

The problem was solved in two very similar runs the �rst executed the �rst phase
of the procedure and the other executed its second phase�

� Numerical Data and Results

The special model is of the following form

G�x� � P �a�ix � bi � �i�i� i � �� �� �� ��� p

a�ix � bi� i � 	� � � � � ���������

minc�x�

The linear functions on the left hand sides of the stochastic constraints are spe�
cialized as follows�

a��x � ��	x�	�

a��x � ������x�

�����

a��x � ��
���x��� x���

a��x � ����x� � x� � x
 � x��� ����	x���

Here x� and x� are the production of electrical energy by exogenous and endogenous
capacity respectively� x
 and x� are the imports of electrical energy in Rouble and

��



Dollar trade respectively� x�� is the value of the production of the electrical energy
sector� x�	 and x�
 are the values of the imports of the electrical energy sector in
Rouble and Dollar trade respectively� and x�� is the total value of the imports of
the electrical energy sector�

The expectations b�� b�� b�� b� and the standard deviations ��� ��� ��� �� on the
right hand sides of the stochastic constraints are the following
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��
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�����

b� � ������ �� � ����

b� � ������ �� � ��	�

The expectations of the random variables ��� ��� �� and �� are equal to zero�
their dispersions are equal to � and their covariance matrix is the following
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The linear functions in the second constraint block of Problem ����� are divided
into two groups� The �rst group contains the linear constraints having subscripts
i � 	� � � � � 	� the second group contains the remaining linear constraints with sub�
scripts i � 	�� � � � � ���� The latter are lower and upper bounds for some variables
and nonnegativity constraints for others� These and further numerical data for
Problem ����� can be found in ��� �under ��	 and in Appendices � and ���

The objective function� which is the pro�t multiplied by ��� is given by

c�x � x�	 � x�
����	�

where x�	 is the increase in the sector wage bill and x�
 is enterprise pro�t for the
sector before taxation� The prescribed probability level is p � ���

First phase� We used xlin� the optimal solution of the deterministic underlying
problem as the initial feasible solution� We computed the value of the function G

corresponding to this vector and obtained

G�xlin� � ����������

So the optimal solution xlin guarantees only a very low reliability level for the system�
Next we maximized the function G�x� under the linear constraints of Problem ������
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Five iterations were performed and the following numbers were obtained as values
of the function G�x� �the �rst corresponds to the vector xlin��

���� ���� ���� ���� ���� �����

The �rst phase could have been terminated upon attaining a probability greater than
���� so that four iterations would have been enough� However� we were interested in
seeing how high a probability level could be achieved under the linear constraints of
Problem ������ We interrupted the computations at the value ���� because it had
already been demonstrated that this maximal probability level is very high� The
�rst phase was executed in �� min� consisting of 
 min �� s of computing time and
	 min �� s of channel time�

Second phase� As starting vector we used the �nal vector obtained in the �rst
phase for which the value of the function G equals ����� The program ran �� min�
of which the computing time was �	 min and channel time was �� min�

Detailed description of the �� minutes total running time of the Second Phasey

Preparing the data for the simplex method � min �� s
Running the simplex method �� min �� s
Finding the step length � min �� s
Checking the optimality criteria and other computations � min

The optimization was performed in nine steps� The values of the objective func�
tion at each iteration were the following

����� ����� ������� ����� ��������
�������
 ������
� ������� �������� ������
��

It is surprising that at the optimal solution xstoch of the stochastic programming
model the value of the objective function is equal to the value of the objective func�
tion at xlin� As for the values of the function G� we have G�xstoch� � ��� and we
recall that G�xlin� � ����� Thus it is possible to achieve the same objective by a vec�
tor representing a considerably greater reliability level than xlin� This phenomenon
is remarkable apart from the special context of the numerical model�

Below we give those components of the vectors xlin and xstoch whose relative
di�erences are more than ����

ySince the preparation of this paper much better running times have been achieved�
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Component subscript xlin xstoch 
 x
���
stoch �p 
 ����

� � �����
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 ���� �����
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The economic meanings of these components are described below�

Economic meanings of components of the optimal solutions involved in this section�

Component subscript Meaning of the component

� Production of electrical energy by endogenous capacity in nuclear
power stations�

�� Individual investment project �Dunamenti II� to be completed in
�����

� Individual investment project of a nuclear power station at Paks�
to be completed in �����

�� Individual investment project of an oil operated power station� to
be completed in �����

� Consumption of natural gas in exogenous power stations�
� Consumption of fuel oil in exogenous power stations�
 Consumption of natural gas in endogenous power stations�
� Consumption of fuel oil in endogenous power stations�
�� Total machinery requirement of investments in the electrical en�

ergy sector�
�� Investment surplus in ����
�� Investment surplus in �����
�� Investment surplus in �����

The complete computer program was run with two more data�sets as an experi�
ment� In �a� and �b� we give a brief account of the results obtained�

�a� Except for the probability p the data remained unchanged� The new value
was somewhat greater than the old namely p � ���	� The value of the objective
function corresponding to the optimal solution of the stochastic programming model
is ����	�
� Thus there is no great di�erence relative to the former optimal value of
the objective function� The optimal solution di�ers considerably from both former

vectors� xlin and x
���
stoch� Here we list those components in which the relative is at

least ����

��



Component subscript xlin x
���
stoch �p 
 �����

� � �����
�� ��� �����
�� ���� ����
� � ����
� ��� ����
�� ��� ���
�� ��� ���

�b� In this case the reliability level is again p � ��� and except for the correlation
matrix the data remained unchanged� We have the following new correlation matrix
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The optimal value of the objective function is ����� which di�ers considerably
from the former optimal values of the objective function� The components in which
the relative deviation exceeds ��� are the following�

Component subscript xlin x
���
stoch �p 
 ���� C��

� � ����
� ��� ����
�� ���� ���
� � ���
� ��� ���
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�� �� ��
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The detailed economic analysis of the vectors xlin� x
���
stoch� x

���
stoch� x

���
stoch is not

our aim in this paper� The only thing that we mention is that the plans with high
reliability levels propose the consumption of more coal and less fuel oil in endogenous
power stations�
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