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Abstract

The stochastic programming model named STABIL is given by (1.1), where we minimize
a linear or nonlinear objective function under probabilistic and some further constraints.
In this paper we are concerned with a special case of this model-type, where the problem
functions ¢1,...,9m+m, [ are linear. The model is applied to the fourth Five-Year Plan of
the electrical energy sector of the Hungarian economy where the underlying deterministic
model is the corresponding deterministic sector model of the fourth Five-Year Plan. This
application is experimental, as the construction of the model and the computations were
performed at a time when the fourth Five-Year Plan was already running. In this paper
we describe the model, its solution algorithm, the computer program, the parameters of the
model and the computational results.

A very interesting phenomenon is that although there is no significant difference be-
tween the optimum value of the deterministic underlying problem and that of the related
STABIL model, the optimal solutions turned out to be different. Further, the reliability
level of the optimal solution of the deterministic underlying problem turned out to be very
low, while that of the optimal solution of the STABIL model is high. The appearance of
this phenomenon makes the numerical example interesting in itself, not just as a special

application.



1 Introduction

In this paper we describe in detail the probabilistically constrained stochastic pro-
gramming model named STABIL. The model, its theory and solution algorithm are
described briefly in [4, 5, 8]. Here we apply the model to the electrical energy sector
of the Hungarian economy in the setting of the fourth Five-Year Plan. The descrip-
tion of the linear programming model of the fourth Five-Year Plan can be found in

[1] and [3].

The name STABIL for the model is introduced in this paper. This name is not an
abbreviation; we have chosen it because the model contains a probabilistic constraint
which prescribes a high probability level with which the system must operate.

In this paper the computer program system for the solution algorithm of model
(1.1) is also described in a short form. For further details the reader is referred
to [2].

The application of our model is experimental for two reasons. Firstly, because
the underlying problem for the stochastic programming model was the deterministic
electrical energy sector model of the fourth Five-Year Plan — which was already in
operation at the time of this work. Thus we could not consider a practical application
of the numerical results. Secondly, there was a lack of information connected with
the relevant probability distribution for the random variables in the model and
subjective considerations were applied in order to specify this distribution.

The STABIL stochastic programming model is the following

G(x):P(gl(x)Zgﬂ izlv"'vm)zpv

(1.1) gi(x) > by, it=m+1,...,m+ M,

min f(z).
We are interested in the special case of the model when the functions g1, ..., gm+ar,
f are linear. The joint distribution of the random variables &y, ... ,&,, is supposed

to be continuous with logarithmic concave joint density. The case we are dealing
with here is the non-degenerate, multivariate, normal distribution (which has this
property). In model (1.1) p is a prescribed probability, 0 < p < 1, chosen near unity
in practice. In the electrical energy problem the values of p were chosen to be 0.9
and 0.95. In this problem, m = 4, M = 106, when the individual upper and lower
bounds and the nonnegativity constraints are incorporated, and the vector x has 46
components.

The deterministic model, which is the starting point for the stochastic program-
ming model construction, i.e. the underlying deterministic model for (1.1), is the



following

gz(x) > b27 1= ’ y M,
(1.2) gi(x) > by, it=m+1,...,m+M,
min f(z)

Supposing the values on the right hand side of the first row in (1.2) are random
leads to Model (1.1). In model construction in practice the random variables are
frequently replaced by their expectations. In such cases, in formulating the stochas-
tic programming decision model and specifying the probability distribution of the
random variables appearing in the model, the expectations can be removed from the
underlying deterministic model. Following this methodology, the random variables
of (1.1) will be written in the form

bi‘I'Uiﬁh i:l,...,m,

where

(1.3) E(3;) =0, 1=1,...,m.
We may also suppose that

(1.4) Vig:) =1, 1=1,...,m.

The symbols E, V are used to denote expectation and variance, respectively. As
mentioned above, we are interested in the special case of (1.1) when the functions
1y« 9m+M, [ are linear. Let us introduce the notation

gi(z) = dlw, i=1,....,m+ M,

(1.5)
f(z) = da.

The mathematical model and the solution algorithms presented in this paper were
constructed by A. Prékopa. The procedure for evaluating the distribution function
of the multivariate normal distribution, the computer program for the solution of
the problem (except for the linear programming package, which was worked out by
G. Kéri), and the numerical computations were done by I. Dedk. The formulation of
the deterministic underlying problem and all data collection were done by S. Ganczer
and K. Patyi. The application of the stochastic programming model to the electrical
energy sector, i.e. the adaptation of the model was done jointly by the authors of
this paper.



2 Detailed Description of the Stochastic Programming
Model

We are concerned with the numerical solution of the following special case of the

STABIL model

G<x>=P(i<a;x—bi>z@, i:l,...7m)2p,

(2.1) ax > by, it=m+1,...,m+M,
minc'z,
where z € R"™.

A. Prékopa proved [5, 6] that if the joint distribution of the random variables
B1,..., 0y is continuous and the joint density is of the form

(2.2) e 9@ L eR™,

where Q(z) is a convex function on the entire space, which can take values equal
to o0, then the function given by G/(z) is logarithmic concave on the entire space
R™. In our model we suppose that the joint distribution of the random variables
B1y..., Bm is a nondegenerate normal distribution. In this case their joint density
is of the form

1 6—1/22'0_12
(2m)m/2/1C] 7
where the matrix C' is the covariance (correlation) matrix of the random variables

ﬁlv s 7ﬁm7 Le.
(2.4) ci = E(Bibr), ,k=1,...,m.

(2.3)

Since the distribution is non-degenerate the matrix C' is positive definite, so C'~!
exists and is also positive definite. Hence, by a well known theorem, the function
given by

(2.5) FC7 1z,
is convex in the entire space R™. If the joint density of the random variables
Biy.-.yPm is (2.3), then the function G(z) is logarithmic concave on the entire

space R™, i.e. for every pair of vectors z1,22 € R™ and 0 < A < 1 we have the
inequality

(2.6) G + (1= Nag) > [Gl)]P [Glaa)]

Since G'(z) > 0 for every @ € R”, this implies that log G(z) is a finite valued
concave function on the entire space R™.



Algorithm for the Solution of Problem (2.1)

The function in the first constraint of (2.1) is quasiconcave. If a nonlinear pro-
gramming method converges whenever the constraints are quasi-concave and the
objective function is linear, it can be applied for the solution of our problem. Such
a method is Zoutendijk’s method of feasible directions, in particular Procedure P2
[10, p. 74]. For the proof of the convergence in case of quasi-concave constraining
functions and a convex objective function (to be minimized) see [4, 5, 7]. Before
presenting the method for the solution of Problem (2.1) we describe Zoutendijk’s
method for the problem

(2.7) G(z) > p, atx > by, vel, min f(z),

where the functions G and f are not specialized according to (1.1) and (1.5) and
I denotes the appropriate constraint index set. We suppose that the functions
f(z), G(x) are differentiable on the entire space R™ Suppose further, that the
set determined by the linear constraints is nonempty and bounded. Let x; be an
arbitrary vector satisfying the constraints of Problem (2.7). We define by induction
the successive iterations; suppose we have already determined the vectors x4, ...,z
and want to determine the vector zj4y at the (k + 1)th iteration. One iteration
consists of two parts. In the first part we solve the following direction finding problem

Glap) + VG(zp)lr —x] +0y > p, @i > b,
(2.8)
(AS I7 Vf($k)[$—$k] <Y, miny7

where @ is an arbitrary positive number fixed throughout the whole procedure. The
number of the variables in the linear programming problem (2.8) is n + 1, since
the vector # has m components and y is also variable. There is always at least
one vector satisfying the constraints of (2.8) — the n + 1 component vector = zy,
y = 0. Since & varies in a bounded set, the objective function is bounded from below,
hence Problem (2.8) has a finite optimum. Let yop¢ denote the optimal value of the
objective function of Problem (2.8). If yope = 0, then the procedure terminates. If
Yopt 7 0, which means in this case yopt < 0, then we proceed to the second part of
the (k + 1)th iteration, which is the determination of the step length. Let 23 be an
optimal solution of Problem (2.8). Then we minimize the function of the variable A
given by

(2.9) flae + Aaf —2x))

on that part of the halfline x3 + Az} — 2x), A > 0, which belongs to the set of
feasible solutions of Problem (2.7). Under very general assumptions this minimum
is obtained for some A. If A; is a minimizing A, then we define 2541 as

(2.10) Th41 = T + /\k(xz — xk)



Solution of Problem (2.1) in Two Phases

In the second phase we solve Problem (2.1) under the assumption that we have a
vector x1 satisfying the constraints. In the first phase our aim is to find a vector zy
satisfying the constraints.

In the second phase we take into account the meaning of the function G and the
fact that f is a linear function of the form (1.5). The gradient of the function G will
be given in the next section. The gradient of the function f is the constant vector
. Function (2.9) has the form

(2.11) d (g + May — xp)).

This is to be minimized on a bounded interval since the set of vectors x defined by
the constraints of Problem (2.1) is convex and bounded. Since we have yope < 0,
it follows that ¢’z} < xp. Thus 2} # 23 which implies that the set of vectors
r = x4+ A2} — xg) for 0 < A < 1is a nondegenerate interval, which implies that
the closed interval mentioned above (which contains it) is also nondegenerate. The
minimum is attained at the endpoint of this larger interval which corresponds to a
positive A value. It is easy to see that the vector ;41 is a boundary point of the set
defined by the constraints of the problem. Thus all the points x5, zs,... generated
by the algorithm are boundary points.

In the first phase we want to find a vector z; satisfying the constraints of Problem
(2.1). We use the method described for the solution of Problem (2.7), but now we
maximize the first constraining function ' of Problem (2.1) under the linear con-
straints of Problem (2.1). This can be considered as a special case of Problem (2.7).
Thus we apply the algorithm to the problem

(2.12) arx > by, e, max G'(z),
i.e. to the equivalent problem

(2.13) arx > by, e, min(—G(z)),
until we reach a vector x; which satisfies the inequality
(2.14) G(z1) > p.

This vector 1 can be used as the starting vector for the second phase. The method
applied to Problem (2.13) can be summarized as follows. We start from a vector
z1 which satisfies the constraints of the Problem (2.13); such a vector can easily be
found by linear programming. If we have already determined the vectors zy,..., 2z
then in order to define z;y; we consider the following direction finding problem

(2.15) aiz>b;, 1€l, —G(z)+ V(-G(z))(z— 2x) <y, miny



which can be reformulated as
(2.16) az>b;, 1€, min(VG(z)(z — z1)).

The stopping rule and the step length determination was discussed above in connec-
tion with Problem (2.7). Zoutendijk’s method applied in the first phase is just the
well known gradient method.

3 Convergence of the Procedure

As mentioned above, the convergence of the procedure applied to Problem (2.7) was
considered in [4, 5, 7]. We recall the main theorem in a weaker, but for the present
purpose more useful, form.

THEOREM 1. Suppose that the following conditions hold

(i) The functions G and f are defined on the whole space R"™ and have a continuous
gradient there.

(i) The function G is quasiconcave and the function f is convex on the entire
space.

(iii) The set K = {x | ala > b;, i € I} is non-empty and bounded.

(iv) For every x satisfying the equality G(z) = p there corresponds a vector y in
the set of feasible solutions with the property that

(3.1) VG (z)(y —x) > 0.

If the procedure terminates in a finite number of steps and the last vector is xy,
then we have

(3.2) J(an) = min f(2).
If the sequence xq, 3, ... is infinite then we have
(3.3) Jim f(2x) = min f(z),

where L is the set of the feasible solutions of the problem.

The convergence of the procedure applied to Problem (2.1) can be proved using
Theorem 1. We formulate two different theorems for the two phases. It is obvious
that the first phase must terminate in a finite number of steps, while in the second
phase it is enough if the procedure converges. First we consider the convergence
problem of the second phase.



THEOREM 2. Besides the assumptions formulated in connection with Problem (2.1)
suppose that there exists a vector y € L for which

(3.4) G(y) > p.

Then the second phase procedure is either finite, when the last vector xy satisfies
Relation (3.2), or it is infinite and Relation (3.3) holds. As before, L denotes the
set of feasible solutions of the problem.

Proof. We have to prove that assumptions (i)—(iv) of Theorem 1 hold. Assump-
tions (i) and (ii) are satisfied trivially. Assumptions (iii) was introduced earlier in
connection with Problem (2.1). So we only have to check the validity of Assumption
(iv). The proof will be indirect. Suppose there exists an z € L for which G(z) =p
such that for every feasible y € L we have

(3.5) VG (z)(y —z) <0.
The function log G is finite-valued and concave in the entire space. This implies that
the following inequality holds for every y € R™

(36)  logG(y) —logG(a) < VlegGi(x)(y — 7) = =——VG(x)(y - o).

1
G(x)
If y € L, then (3.5) and the inequality G'(z) > 0 together imply that
(3.7) Gly) < G(z) = p.

This contradicts to (3.4); thus the theorem is proved. O

The following theorem summarizes our statement in connection with the finite-
ness of the first phase.

THEOREM 3. Besides the assumptions already introduced in connection with Prob-
lem (2.1), assume that there exists a vector y € K, for which inequality (3.4) holds.
Then, starting from any vector zy € K, we reach a vector lying in the set L after a
finite number of steps.

Proof. The method applied in the first phase is the classical gradient method, so
we might refer to any already existing convergence theorem for the gradient method.
For the sake of presenting a unified approach, however, we refer to Theorem 1.
By Theorem 1 it follows that if we apply the method of the first phase not to
Problem (2.13) but to the problem

(3.8) arz > by, i €1, min(—log G(2)),



then the sequence zq, z9, ... obtained is either finite, and the last vector z minimizes
the objective function of Problem (3.8), or the following relation holds

(3.9) lim (—logG'(z)) = min(—log G(2)).

k—oc0 zeK

Now the problem of type (2.16) corresponding to (3.8) is

(3.10) az>b;, 1€l, min (— VG (zk) (2 — zk)) .

1
G ()
The objective functions of Problem (3.10) and (2.16) differ only by a positive con-
stant factor; hence the sets of optimal solutions are the same. This is also the
situation in the second part of the kth iteration in which the step length is deter-
mined, as it makes no difference whether the function —G or the function —log G
is minimized. Thus if we obtain a sequence zq, z9,... by the procedure applied to
Problem (3.8), this sequence is also appropriate for Problem (2.13). Hence in case
of a finite sequence the last vector simultaneously minimizes the functions —log G
and —G, and in case of an infinite sequence

(3.11) lim (—G(zz)) = min(—-G(2)).

k—oo zeK
But, in either case, since there exists a y € K for which G(y) > p holds, after a
finite number of steps we must reach a vector lying in the set L. Thus the theorem
is proved. O

4 Evaluation of the Gradient of the Non-linear Con-

straining Function

In both the first and second phases of the procedure applied to the solution of Prob-
lem (2.1) we need values of the gradient of the function G/(z). In addition we need
the function values G'(z). We return to the problem of determination of these latter
values in Section 6. We show here that the method we use to determine values of
G/ (z) is essentially suitable for the determination of values of VG/(2). We shall see
that while the evaluation of G/(z) requires the evaluation of the distribution function
of the m-dimensional normal distribution, the evaluation of VG/(z) requires the eval-
uation of the distribution function of the (m — 1)-dimensional normal distribution.

Denote by ¢(z;C') the probability density function (2.3) and ®(z;C') the corre-



sponding probability distribution function. We introduce the following notation.

Li(x):%(a;w—bi), i=1,...,m
(4.1) Z
Ly(z)

(4.2) G(z) = ®(L(2); O).

It is well known in probability theory that if F'(z) = F(z1,...,2y) is the abso-
lutely continuous joint distribution function of the random variables &, ... ,&,,, then
the following relation holds between the conditional distribution function F'(zy,...,
Zm | z1) of the random variables &, ..., given that & = z; and the partial
derivative of the function F’ with respect to z;

OF(z1,..., Zm)
82’1

(43) :F(2’27... y Zm | Zl)f1(21)7

where fi(z) is the density function of the random variable &;. Similar equalities hold
for the derivatives with respect to the other variables. Applying formula (4.3) for
the distribution function ®(z;C') we obtain

0P(z;,C
(4.4) % — Dz, o | 21)(2),
1
where ¢(z) is the density function of the standard normal distribution. It is also
well-known that

(45)  B(z,... 20| 2) = P ( 2 iz m  Hm A -5<1>) ,

=) U=, )7

where the covariance matrix S(1) has elements

(1) _ ik — 7Tkl Ly
(4.6) Sy = 0= r2) 1721 = 12,17 iwk=2,...,m.
Similar formulae hold if one of the variables z;,..., 2, plays the role of z;. The
corresponding covariance matrices will be denoted by S@ . 80,

Now we give a formula for VG/(z) in terms of the components of the vectors
ai,...,ay, given by a;1,...,a;,, 7 =1,...,m. We describe the components of this

10



vector, but to avoid cumbersome notation do not display them in vector form, as
follows

L2 ($) — 7‘12L1($) Lm ($) — T‘lle($) . 1 ai;
(P ) e
L1($) - T‘mle($) Lm—l(w) - rmm—le(x) X m Ui
(4.7) +q>( Q-2 gz (ST -5t )) ¢(Lm(x))gm,

1=1,...,n.

The numerical determination of the values of the function ¢ is easy, and an inspection
of (4.7) shows that the same method may be used for the determination of VG/(z)
and G(z).

5 Formulation of the Economic Problem

At the Institute of Economic Planning of the Hungarian National Planning Office
a linear programming model was developed as a part of the planning method for
the fourth Five-Year Plan. It is a large-scale model comprising the interrelations of
physical values and financial processes and has a decomposition structure, i.e. the
model contains sectors related to the branches of the national economy. Our un-
derlying deterministic model is the electrical energy sector model of this large-scale
model. When formulating our model the remaining sectors were assumed to work at
fixed levels. Special features of the electrical energy sector were taken into account
such as the long time-lag to production of investments in energy, the substitution
possibility of different kinds of fuels, etc. The variables of the model can be classi-
fied in the following manner: production of electrical energy by exogenous capacity
(completed before the planning period), production of electrical energy by endoge-
nous capacity (to be completed during the planning period), use of various kinds of
fuels, import and export of electrical energy in relation to both Rouble and Dollar
trade, investment in individual projects (new power stations) and investment vari-
ables which take into account the different financial resources, purposes and manners
of use. The constraints of the model contain manpower balances, constraints on in-
vestment, foreign trade balances, balance of the state budget, constraints containing
the demand for electrical energy and other financial constraints.

Numerical data for the model were obtained from the large scale model mentioned
above, from coordination with works in planning and from official statistics. Since
the plan indices are obtained by forecasting, we face uncertainty, so the formulation
of a stochastic model is reasonable. We assumed that uncertainty in the statistical
data is negligible relative to that of the plan indices. Having analysed their economic

interpretation, four constraints of the deterministic model were regarded stochastic,
i.e. m =4 in Model (2.1).

11



We now outline the interpretation of these four constraints and their right hand
side values in the deterministic model. The value b; is the planned deficit of foreign
trade in Roubles and the first constraint prescribes that this deficit should not
exceed a certain planned level. The value by and the corresponding constraint have
the same interpretation for dollar trade. The underlying deterministic version of the
third and fourth stochastic constraints express the relations between the electrical
energy sector and the other sectors. The third constraint is essentially the row of
the input-output table corresponding to the electrical energy sector. This constraint
includes the requirement for the electrical energy sector which assures equilibrium of
input and output of the national gross product in value terms. The value b3 is equal
to the sum of inputs of all productive sectors except electrical energy sector. Finally,
the right hand side value by4 is equal to the cumulative minimum demand for electrical
energy in the productive sectors (except electrical energy) and the nonproductive
sectors. The corresponding constraint is the product balance of electrical energy
in natural units. The right hand side values of the stochastic constraints in the
stochastic programming model are by+o1 31, bo+0232, b3+0303, by+0454. The joint
distribution of these random variables was supposed to be normal. Its parameters
are given in Section 7.

6 Brief Description of the Computer Program

The detailed description of the computer program of Model (2.1) can be found in
[2]. Here we outline only the most important features.

The main problem was the numerical determination of the values of the joint
distribution function ® of the random variables f3i,...,3,,. We recall that the
determination of these values and of the gradient values is essentially the same
problem (see (4.2) and (4.7)). The determination of the values of the function ¢
is carried out by a subroutine using a modified Monte Carlo integration technique.
We approximate the integral of the function ¢(z;C') over the set {z | z < u} in
the following way. First we choose a vector ug so that the integral over the set
{z | up < z < u} should be very near the integral over the former set. Then we
choose uniformly distributed random points from the set {z | ug < z < u} and take
the arithmetic mean of the function values belonging to these points. It is possible to
determine the number of random points resulting in a required precision, i.e. so that
the relative error does not exceed a prescribed level. In the special model concerning
us we deal with the four-dimensional normal distribution. The computation of one
value of the distribution function takes 0.5 s when the prescribed upper bound for
the relative error is 5%.

Special attention should be paid to the determination of the step length at each
iteration of the nonlinear programming procedure of Section 2. Our procedure for

12



the evaluation of the distribution function of the normal distribution (in common
with any other available procedure) does not give exact results. Only the expecta-
tions of the estimations are equal to the true values. This fact is very inconvenient
when determining the feasible part of the ray {zp + A(2} —2x) | A > 0}, i.e. the
intersection of this ray with the boundary of the set of feasible solutions. We em-
ploy an iterative procedure which moves backwards and forwards along the ray and
successively reduces the length between evaluation points. In this way we are lead
near to the required intersection point.

We had to agree on an “optimality criterion”. A criterion formulated only in
terms of the value y,p may have been satisfactory, but we thought it more suitable
to formulate the following more rigorous stopping rule. The vector zj is considered
optimal if the difference between the values of the objective function at 2347 and z
does not exceed 1% of the latter and at the same time each individual component
of 211 — x;, does not exceed 2% of the corresponding component of .

The computations were executed on a CDC 3300 computer of the Hungarian
Academy of Sciences. The program consists of a main program and six overlays.
Five overlays concern the simplex method, the sixth one contains the algorithm
described in Section 2 and the evaluation procedure of the values of the multivariate
normal distribution function.

The problem was solved in two very similar runs; the first executed the first phase
of the procedure and the other executed its second phase.

7 Numerical Data and Results

The special model is of the following form

G(z) = Plale > b+ 0if;, i=1,2,3,4)>p
(7.1) alx > b, i=5,...,110,

The linear functions on the left hand sides of the stochastic constraints are spe-
cialized as follows:
ajx = —25w95,
ahy = —16.6Tx26
abr = 0.8696w24 + 240,
ayr = 0.9(x1 + 22 + x6 + x7) — 0.115294.

(7.2)

Here zy and z4 are the production of electrical energy by exogenous and endogenous
capacity respectively, zg¢ and z7 are the imports of electrical energy in Rouble and

13



Dollar trade respectively, x44 is the value of the production of the electrical energy
sector, z95 and x95 are the values of the imports of the electrical energy sector in
Rouble and Dollar trade respectively, and z49 is the total value of the imports of
the electrical energy sector.

The expectations by, bs, b3, b4 and the standard deviations o4, 09, 03, 04 on the
right hand sides of the stochastic constraints are the following

by = —48313, oy = 483,
by= —426, o= 4,

(7.3) ? ?
bs= 16000, o3 = 160,
by= 19000, o4 = 195.

The expectations of the random variables 3y, 82, 83 and (4 are equal to zero,
their dispersions are equal to 1 and their covariance matrix is the following

1 -0.8 04 0.4
-0.8 1 0.1 0.1

0.4 0.1 1 0.9

0.4 0.1 09 1

(7.4) C =

The linear functions in the second constraint block of Problem (7.1) are divided
into two groups. The first group contains the linear constraints having subscripts
v =05,...,52; the second group contains the remaining linear constraints with sub-
scripts ¢ = 53,...,110. The latter are lower and upper bounds for some variables
and nonnegativity constraints for others. These and further numerical data for
Problem (7.1) can be found in [9] (under 7.5 and in Appendices 3 and 4).

The objective function, which is the profit multiplied by —1, is given by
(7.5) v = w35 — 36,

where x35 is the increase in the sector wage bill and zs¢ is enterprise profit for the
sector before taxation. The prescribed probability level is p = 0.9

First phase. We used zyy, the optimal solution of the deterministic underlying
problem as the initial feasible solution. We computed the value of the function G
corresponding to this vector and obtained

(7.6) G (@1n) = 0.09.

So the optimal solution z);, guarantees only a very low reliability level for the system.
Next we maximized the function G(z) under the linear constraints of Problem (7.1).

14



Five iterations were performed and the following numbers were obtained as values
of the function G(z) (the first corresponds to the vector zjiy):

0.09;  0.13;  0.72;  0.90;  0.94;  0.97.

The first phase could have been terminated upon attaining a probability greater than
0.9, so that four iterations would have been enough. However, we were interested in
seeing how high a probability level could be achieved under the linear constraints of
Problem (7.1). We interrupted the computations at the value 0.97 because it had
already been demonstrated that this maximal probability level is very high. The
first phase was executed in 19 min, consisting of 8 min 49 s of computing time and
5 min 19 s of channel time.

Second phase. As starting vector we used the final vector obtained in the first
phase for which the value of the function G equals 0.97. The program ran 46 min,
of which the computing time was 25 min and channel time was 12 min.

Detailed description of the 46 minutes total running time of the Second Phase!

Preparing the data for the simplex method 3 min 10 s
Running the simplex method 30 min 39 s
Finding the step length 6 min 34 s
Checking the optimality criteria and other computations 2 min

The optimization was performed in nine steps. The values of the objective func-
tion at each iteration were the following

—4033;  —4101;  —4366.9 —4367;  —4367.32;
—4367.48; —4367.84; —4367.9; —4369.71; —4369.86.

It is surprising that at the optimal solution zgeen of the stochastic programming
model the value of the objective function is equal to the value of the objective func-
tion at zj,. As for the values of the function G, we have G(zsoch) = 0.9 and we
recall that G'(z1in) = 0.09. Thus it is possible to achieve the same objective by a vec-
tor representing a considerably greater reliability level than z);,. This phenomenon
is remarkable apart from the special context of the numerical model.

Below we give those components of the vectors zp, and zgocn, Whose relative
differences are more than 10%.

Since the preparation of this paper much better running times have been achieved.
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(1)

Component subscript Tlin  Tstoch = ooy (P = 0.9)

20 0 1233.9
21 994 13.7
22 1950 714.4
23 517 1586.2
43 2370 1655.8
46 2407 1007.3

The economic meanings of these components are described below.

FEeconomic meanings of components of the optimal solutions involved in this section.

Component subscript

Meaning of the component

5

10

12

13

20
21
22
23
41

43
45
46

Production of electrical energy by endogenous capacity in nuclear
power stations.

Individual investment project “Dunamenti II” to be completed in
1977.

Individual investment project of a nuclear power station at Paks,
to be completed in 1978.

Individual investment project of an oil operated power station, to
be completed in 1978.

Consumption of natural gas in exogenous power stations.
Consumption of fuel oil in exogenous power stations.
Consumption of natural gas in endogenous power stations.
Consumption of fuel oil in endogenous power stations.

Total machinery requirement of investments in the electrical en-
ergy sector.

Investment surplus in 1972.

Investment surplus in 1974.

Investment surplus in 1975.

The complete computer program was run with two more data-sets as an experi-
ment. In (a) and (b) we give a brief account of the results obtained.

(a) Except for the probability p the data remained unchanged. The new value
was somewhat greater than the old namely p = 0.95. The value of the objective

function corresponding to the optimal solution of the stochastic programming model
is —4365.8. Thus there is no great difference relative to the former optimal value of
the objective function. The optimal solution differs considerably from both former

vectors, Zj, and x
least 10%.

(1)

stoch*®

Here we list those components in which the relative is at
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Component subscript Zlin 2% (p = 0.95)

stoch

5 0 0.353
10 0.1 0.003
13 0.37 0.44
20 0 11.1
21 994 1080
41 830 938
46 2407 1.24

(b) In this case the reliability level is again p = 0.9 and except for the correlation
matrix the data remained unchanged. We have the following new correlation matrix

1 —-0.7 03 0.3
-07 1 0.1 0.1

03 01 1 09

03 01 09 1

(7.7) Cy =

The optimal value of the objective function is —4292 which differs considerably
from the former optimal values of the objective function. The components in which
the relative deviation exceeds 10% are the following:

Component subscript Zlin J:S’gch (p=0.9,Cy)

5 0 10.1
12 0.23 0.11
13 0.37 0.5
20 0 341
21 994 879
22 1950 1602
23 524 720
41 830 930
45 2962 2429
46 2407 38
The detailed economic analysis of the vectors zj 2@ B g ot
my» “stoch? “stoch? *““stoch

our aim in this paper. The only thing that we mention is that the plans with high
reliability levels propose the consumption of more coal and less fuel oil in endogenous
power stations.
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