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Basic many-server model. Halfin-Whitt regime
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Number of customers in the systeZ" , birth-dpaticess
=> Stationary distribution can be explicitly writtencaanalyzed

Diffusion scaling: 77 = £ =r
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Standard fact: Convergence of stationary
distributions, Z" = Z, and moreover
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Multiple customer classes, single server pool
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Exponential service
times, different rates

OOOOOOOOO0)] ir/mi =1

N" =r 4+ a+/r = load + a+/r

Arbitrary service/queuing discipline without idlirep Stationary distribution exists

Diffusion scaled number in the systemZg“ — Zi =i/ pi)r
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Problem:Uniform inr bounds on the stationary distribution (Z;{“)

Those imply bounds on the diffusion scaled queue lengths and server idieness as well



More general models. Motivation
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— Cust. service ratg; depends on
both cust. typé and server poq| Server poo|

Motivation:

— Call centers: customers = calls; servers = agents
— Health care systems (fashionable!): cust. = pt#jeservers = doctors, nurses, hospital beds, etc.

— Large resource pools in cloud computing

Problems:

— Design and analysis of efficient real-time schaayitouting controls
— Diffision-scale tightness around desired operapiomt = Good performance



Multi-class, single-pool: main results

Theorem 1. 460 > O s.t. in stationary regime,
uniformly on r and all non-idling disciplines:

lim supEexp(@VZr'") < 00,

T—00 i

limsup Eexp(0> Z"") < oco.

r—00 i

Corollary. Stationary distributions are tight. There

exists a limit in distribution:

(Z]) = (Zy).
Theorem 2. If v; > 0, Vi, there exists 0 > 0O s.t.

E exp (9(2 Zi‘")2> < 0.

If v; < u;, Vi, there exists 6 > 0 s.t.

Eexp (9(2 Z;)Q) < oo.




Quick comments

If discipline is FIFO, we have 81/PH/N single-class system. Tightness results for
GI/GI/N by Gamarnik-Goldberg’2011

For some specific disciplines (e.g. priority, queu@baing), it is possible to obtain
process convergence to a diffusion limit:

(Z7(t), t >0) = (Z(t), t > 0),
dZ(t) = C1(Z(@)Z(t) + CodW (1).

Not particularly useful for proving tightness: debes behaviorf Z”(0) = O(1)
But that’s exactly what needs to be proved for stesidie

It looks like you cannot avoid discipline-specificadysis of system dynamics, e.g.
discipline-specific Lyapunov functions



Key difficulty with using workload as L yapunov function

Diffusion scaled workload (expected unfinished work): ®" = >>; Z7 /u;

Diffusion scaled total number in the system: 7" =73, Z{

Diffusion scaled i-queue length: QF = Qi /\/r
> Qf =127 —a]t

System state, determines all other variables: S

Markov process generator: AF = AF(S5)

ADPT = —[Z" Na] — ZZ(Vz/Mz)Qf

Due to class-dependence of service rates, it is gagsible for workload to
be large positive, and yet have positive drift



M onotonicity

If we reduce abandonment rates, we can construat-&dhog discipline
with larger number of customers:

Lemma [Monotonicity] Consider a modified set
of abandonment rates 1/;-'< < vy;. Then, for the
modified system, there exists another non-idling
discipline, s.t.

Doesnotwork in opposite directiorcannofclaim that by increasing
abandonment rates we can have a discipline with srmalfaber of
customers.



Poisson lower bound

If abandonment rates do not exceed service ratess, then we have
automatic lower bound:

Z! > Poisson(\;r/u;), Vi

Lemma [Poisson lower bound] If v; < p;, Vi,
then for any fixed 6 > 0O,

T—00

limsup Eexp(0> Z"") < co.
i

i

By monotonicity, to obtain bound on>>; Z,>" it suffices to assume zero

abandonment rates, so that the above lemma holds.
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Proof of Theorem 1 upper bound

Need to show qu[ﬂ_)SngEexp(HZZf’Jr) < 00

for some&>0, assuming zero abandonment rates, and thus

T—00

Suffices to show li7[n_>sogp Eexp() d") < oo because
7

S 2 ="+ 20 Ju;
7 7

limsup Eexp(0> Z"") < oo
i

Important observatiorkor any fixed numbel,

7" = Zz;*tz 72N <b = Zzgﬁ <b+>- 2
7

7 7 1
Therefore,
@ S 20 i < b1 Y Z0T 4 bo
17 1
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Proof of Theorem 1 upper bound (cont.)

Aexp(0P") < exp(§@") [0AD" 4 02| = exp(0D") [—0(Z" A a) + cb?| =

- negative for smalé>0
P

I{2" > a} exp(§®") | ~a + cb?]
+1{0 < Z" < a} exp(6P") | 6|
+I{Z" < 0} exp(63") 02" + 6]

3 <0 2P + b

Take expectation w.r.t. stationary distribution, USEA exp(0®™) = 0 and (e.g.)

EI{Z" < 0} exp(6D") [—927“ + CQQ} < EI{Z" < 0} [cl exp(6'>"Z07) + cz} . 6 > 0.

EI{Z" > a} exp(8D") < c3, uniformly in r



Proof of Theorem 1 upper bound (cont.)

EI{Z" > a} exp(8D") < c3, uniformly in r
Using again the upper bound &’ :

EI{Z" < a}exp(0P") < cq, uniformly in r

And we are done:
Eexp(d") < c5, uniformly in 7.
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Proof of Theorem 1 lower bound

Need to show Ii?m%songexp(HZZZ’_) < o0
7

for some&>0. Not automaticbecause’, > 1 is possible =>No Poisson
lower boundHowever, we already do have the upper bound:

lim supEexp(QZZZ"F) < 00
i

rT—00

Suffices to show lim sup E exp(—6 > P <o because
7

S 20T ==+ 20
7 1

Important observation (in opposite directioRor any fixed numbd,

7" = Zzﬁ_z 20"z = Y20 < bty AR
7 [ 7

1
Therefore,
@S S 2 < S 20 1)
2 7
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Proof of Theorem 1 lower bound (cont.)

Write upper bound on Aexp(—6®")

Take expectation w.r.t. stationary distribution, anglak down the RHS into cases

{Z" <b}, {Z" >b}, b< O fixed

Gives

EI{Z" < b}exp(—0d") < c3, uniformly in r

and then

Eexp(—0®") < cs, uniformly in r
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On the proof of Theorem 2

In the proof ofTheorem ] need to be careful with the domain of generao® s
an intermediate step we show (for the upper bound):

EI{®" < k}exp(0d") < C, uniformly in r, k.

This implies
Eexp(8d") < C, uniformly in r

In the proof ofTheorem 2we only have:
limsup EI{®" < k}exp(8[®"]?) < C, Vk.
which is good enough to claim for the limit:

E exp(8[®]?) < C.

However,
Eexp(8[®7]?) = oo, Vr.
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Halfin-Whitt regime for a more general model

r — oo Sscaling parameter

QOO 1©OOOO| ILOOO
N; = Bjr

¢ Feasible activities(lj)-edges) form a tree

¢ Relation between parametetsy;, 3 is such that the (smallest possible) system
utilization is 1 — O(1/+v/r) : next slide ;



Halfin-Whitt regime for a general model

" Fluid-scale” load balancing LP: Ai Am
min p l l
{Aij}p h v
subject to ’ ‘\
\N \../(A2. \ « - '\
2 Nigl \Pjlig) = P VI, \
i LA
A’Lj Z 07
ZAZJ — >‘i7 Vi , o g
i ; Mgy Hmg
B;

¢ Optimal LP solution is such thate1 andA; > 0O for all edgedi))

¢ Implies that on fluid-scale perfect load balancingahkievable
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Equilibrium point. Diffusion scaling

Desired operating point (“equilibrium” point):
¢ Zero queues:Q; =0

¢ Perfect load balancing: Number of i-customers ocmgpjservers
Wi = (Nij/pig)r

Diffusion scaling: Qr=Qr/r

W= W — (Ngj/pi)rl/V/r
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Natural load balancing strategy

-

¢ Customer routing: Go to least loaded
server pool (along an available edge (ij))

¢ Server scheduling: Take customer from
the longest queue (along an available (ij))

v VERY
O000e 0000

¢ No need to know any parameters => Very desirableifea

¢ Intuitively, should work just fine

¢ Unfortunately,can be unstable around the equilibrium point
=> No tightness of diffusion-scaled stationary disttitis
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Natural load balancing strategy: t4=/ case

Theorem 3. Suppose p;; = p; and all p; = 0.
Then the sequence of stationary distributions
of ((Qg),(@gj)) has uniform in r exponential
bounds.

Lyapinov function:
LN =73 exp(6Q;) + > B;exp(8V}/5;)
l J
for 8 > 0 and 6 < 0,

w;:wajgo.
(]
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Discussion

¢ Showing diffusion-scale tightness/bounds in many-senaxels is challenging

¢ For multi-customer-class, single-server-pool model:

— Prove exponential bounds, uniform w.r.t. scale ipatar and all non-idling
disciplines

— Sub-Gaussian tail result for a weak limit of stadigndistribution, given
positive abandonment rates

— Using lower bounds to obtain upper bounds, and \acgav

» may be of more general use
» In our case, enables use of workload as Lyapunastifam

¢ For more general, multi-server-pool model:

— Prove uniform exponential bounds for natural Ibathncing, in the special case
of server-only dependent service rates

¢ Many more challenges remain ...
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