
Stationary distribution of large-scale queueing systems 
in Halfin-Whitt regime: Exponential bounds

A.Stolyar (Bell Labs)

joint work(s) with D.Gamarnik (MIT) and E.Yudovina (Cambridge) 

Stochastic Networks conference, DIMACS, October 2011



2

Outline

� Many-server systems: 

– Halfin-Whitt asymptotic regime 
– problem statement: stationary distribution bounds 
– motivation

� Multi-customer-class, single-server-pool model:

– Results
– Proof outline

� More general, multi-server-pool model, under natural load balancing:

– Negative result in full generality
– Positive result for a special case

� Conclusions
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Basic many-server model. Halfin-Whitt regime

Exponential service 
times, rate = 1

Poisson, rate = 

Number of customers in the system       , birth-death process
=> Stationary distribution can be explicitly written and analyzed

Diffusion scaling:

Abandonment, rate = 
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Multiple customer classes, single server pool

Poisson

Exponential service 
times, different rates

Poisson Poisson

Arbitrary service/queuing discipline without idling => Stationary distribution exists

Diffusion scaled number in the system:

Problem:Uniform in r bounds on the stationary distribution of 

Those imply bounds on the diffusion scaled queue lengths and server idleness as well
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� Pools are different and flexible:

– Cust. service rate µij depends on                                                     
both cust. type i and server pool j

� Motivation: 

– Call centers: customers = calls; servers = agents
– Health care systems (fashionable!): cust. = patients; servers = doctors, nurses, hospital beds, etc.

– Large resource pools in cloud computing

� Problems:

– Design and analysis of efficient real-time scheduling/routing controls                

– Diffision-scale tightness around desired operating point = Good performance

More general models. Motivation 

Cust. type i Cust. type m

Server pool j

� Several customer types,each has a flow of 
arrivals

� Several large server pools,homogeneous 
servers within each pool
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Multi-class, single-pool: main results 
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Quick comments

� If discipline is FIFO, we have a  M/PH/N single-class system. Tightness results for 
GI/GI/N by Gamarnik-Goldberg’2011

� For some specific disciplines (e.g. priority, queue balancing), it is possible to obtain 
process convergence to a diffusion limit:

� Not particularly useful for proving tightness: describes behavior if 
But that’s exactly what needs to be proved for steady-state

� It looks like you cannot avoid discipline-specific analysis of system dynamics, e.g. 
discipline-specific Lyapunov functions
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Key difficulty with using workload as Lyapunov function

Diffusion scaled total number in the system:

Diffusion scaled workload (expected unfinished work):

System state, determines all other variables:

Markov process generator:

Due to class-dependence of service rates, it is quite possible for workload to 
be large positive, and yet have positive drift

Diffusion scaled i-queue length:
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Monotonicity

If we reduce abandonment rates, we can construct a non-idling discipline 
with larger number of customers:

Does notwork in opposite direction: cannotclaim that by increasing 
abandonment rates we can have a discipline with smaller number of 
customers.
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Poisson lower bound

If abandonment rates do not exceed service rates, νi � µi, then we have 
automatic lower bound:

By monotonicity, to obtain bound on                    it suffices to assume zero 
abandonment rates, so that the above lemma holds.
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Proof of Theorem 1 upper bound

Need to show

Important observation.For any fixed number b, 

for some θ>0, assuming zero abandonment rates, and thus

Suffices to show                                                because

implies

Therefore,
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Proof of Theorem 1 upper bound (cont.)

negative for small θ>0

Take expectation w.r.t. stationary distribution, use                                  and (e.g.)
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Proof of Theorem 1 upper bound (cont.)

Using again the upper bound on        ,

And we are done:
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Proof of Theorem 1 lower bound

Need to show

Important observation (in opposite direction).For any fixed number b, 

for some θ>0. Not automatic, because νi > µi is possible => No Poisson 
lower bound.However, we already do have the upper bound:

Suffices to show                                                because

implies

Therefore,
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Proof of Theorem 1 lower bound (cont.)

Write upper bound on

Take expectation w.r.t. stationary distribution, and break down the RHS into cases 

Gives

and then
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On the proof of Theorem 2

In the proof of Theorem 1, need to be careful with the domain of generator, so as 
an intermediate step we show (for the upper bound):

This implies 

In the proof of Theorem 2, we only have:

which is good enough to claim for the limit:

However,
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Halfin-Whitt regime for a more general model

� Feasible activities ((ij)-edges) form a tree

� Relation between parameters λi, µij, βj is such that the (smallest possible) system 
utilization is                         : next slide
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Halfin-Whitt regime for a general model 

� Optimal LP solution is such that ρ=1 and λij > 0 for all edges (ij)

� Implies that on fluid-scale perfect load balancing is achievable
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Equilibrium point. Diffusion scaling 

Desired operating point (“equilibrium” point):

� Zero queues:

� Perfect load balancing: Number of i-customers occupying j-servers

Diffusion scaling:
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Natural load balancing strategy 

� Customer routing: Go to least loaded 
server pool (along an available edge (ij))

� Server scheduling: Take customer from 
the longest queue (along an available (ij))

� No need to know any parameters => Very desirable feature

� Intuitively, should work just fine

� Unfortunately, can be unstable around the equilibrium point                    
=> No tightness of diffusion-scaled stationary distributions
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Natural load balancing strategy: µµµµij=µµµµj case 
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Discussion

� Showing diffusion-scale tightness/bounds in many-server models is challenging

� For multi-customer-class, single-server-pool model:

– Prove exponential bounds, uniform w.r.t. scale parameter and all non-idling 
disciplines 

– Sub-Gaussian tail result for a weak limit of stationary distribution, given 
positive abandonment rates

– Using lower bounds to obtain upper bounds, and vice versa:
» may be of more general use
» in our case, enables use of workload as Lyapunov function

� For more general, multi-server-pool model:

– Prove uniform exponential bounds for natural load balancing, in the special case 
of server-only dependent  service rates

� Many more challenges remain ...


