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Conjunctions and Patterns

Consider a dataset Ω = Ω+ ∪ Ω− ⊂ {0, 1}n, with Ω+ ∩ Ω− = ∅.

A conjunction is a clause involving literals from
{x1, . . . , xn, x1, . . . , xn}. A conjunction defines a subcube of {0, 1}n in
which a subset of the components is fixed to 0 or 1.

A positive pattern is a homogeneous conjunction, i.e. a subcube
having:

(i) a nonempty intersection with Ω+,

(ii) an empty intersection with Ω−.

A negative pattern is defined similarly.

The concept of a pattern is frequently relaxed to allow the inclusion
of a small number of points of the other set.



LAD Models and Discriminants

A pattern P is said to “cover” a point ω if ω is in the subcube defined
by P.

LAD Model: collection M = M + ∪M− of positive and negative
patterns so that every point in Ω is covered by at least one pattern of
M .

Let M + = {P1, . . . ,Pr} and M− = {N1, . . . ,Ns}.

LAD Discriminant Function: for a point ω ∈ {0, 1}n the
discriminant function associated with model M is given by

∆(ω) =
r∑

j=1
αjPj(ω)−

s∑
j=1

βjNj(ω),

where α, β are positive real vectors and Pj(ω) = 1 if ω is covered by
Pj , and Pj(ω) = 0 otherwise.



LAD Classification

The weights α and β are chosen so that

∆(ω) ≥ 0, for every ω ∈ Ω+

∆(ω) ≤ 0, for every ω ∈ Ω−.

Given a model M and an associated discriminant function ∆, the
LAD classification of a new point ω ∈ {0, 1}n is as follows:

If ∆(ω) > 0, then ω is classified as positive

If ∆(ω) < 0, then ω is classified as negative

If ∆(ω) = 0, then ω is not classified
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LAD Models and Margin of Separation

Dataset:
Class 1 2 3 4 5 6 7
+ 1 0 0 0 0 1 1
+ 0 1 1 1 0 0 1
+ 1 1 0 1 0 1 0
– 0 0 0 1 0 1 0
– 0 1 1 0 1 1 1
– 1 0 1 1 1 0 0



LAD Models and Margin of Separation

Dataset:

Class 1 2 3 4 5 6 7
+ 1 0 0 0 0 1 1 ∆ =+0.5
+ 0 1 1 1 0 0 1 ∆ =+0.5
+ 1 1 0 1 0 1 0 ∆ =+1.0
– 0 0 0 1 0 1 0
– 0 1 1 0 1 1 1
– 1 0 1 1 1 0 0

Positive patterns: x1x3 and x2x4 (both with a 0.5 weight).



LAD Models and Margin of Separation

Dataset:

Class 1 2 3 4 5 6 7
+ 1 0 0 0 0 1 1 ∆ =+0.5
+ 0 1 1 1 0 0 1 ∆ =+0.5
+ 1 1 0 1 0 1 0 ∆ =+1.0
– 0 0 0 1 0 1 0 ∆ =– 0.5
– 0 1 1 0 1 1 1 ∆ =– 1.0
– 1 0 1 1 1 0 0 ∆ =– 0.5

Positive patterns: x1x3 and x2x4 (both with a 0.5 weight).
Negative patterns: x3x5 and x1x6 (both with a –0.5 weight).
Margin of separation: +0.5 + | − 0.5| = 1.0.



LAD Models and Margin of Separation

Dataset:

Class 1 2 3 4 5 6 7
+ 1 0 0 0 0 1 1 ∆ =+0.66
+ 0 1 1 1 0 0 1 ∆ =+0.66
+ 1 1 0 1 0 1 0 ∆ =+0.66
– 0 0 0 1 0 1 0 ∆ =– 0.5
– 0 1 1 0 1 1 1 ∆ =– 1.0
– 1 0 1 1 1 0 0 ∆ =– 0.5

Positive patterns: x1x3, x2x4, and x5x7 (all with a 0.33 weight).
Negative patterns: x3x5 and x1x6 (both with a –0.5 weight).
Margin of separation: +0.66 + | − 0.5| = 1.16.



Large Margin LAD Models

Problem: Construct a LAD model and an associated discriminant
function maximizing the margin of separation between points in the
training set.

Recall that
∆(ω) =

∑
j
αjPj(ω)−

∑
k
βkNk(ω),

and that we want

∆(ω) ≥ r , for ω ∈ Ω+,

∆(ω) ≤ −s, for ω ∈ Ω−,

for some r , s > 0. The margin of separation is given by r + s.

We want to find a set of patterns, values for r , s, and the
weights α and β so that r + s is maximized.



Large Margin LAD Models: Formulation

We can obtain an optimal discriminant function by solving the
following linear program (MP):

maximize r + s − C
∑
ω∈Ω

εω

subject to:
∆(ω) + εω ≥ r , ∀ ω ∈ Ω+ (1)
∆(ω)− εω ≤ −s, ∀ ω ∈ Ω− (2)∑
Pi∈P

αi =
∑

Nj∈N
βj = 1, (3)

with α, β ≥ 0, r ≥ 0, s ≥ 0, εω ≥ 0, for every ω ∈ Ω, and C being
a penalty factor for the violating margin of separation.

Typically MP cannot be solved directly. We apply column generation
to iteratively construct an optimal discriminant function, starting
from a simple set of patterns P ∪N .



Large Margin LAD Models: Subproblem

Let λ and µ be the dual variables associated to (1) and (2).

To find a conjunction with positive reduced cost we solve:

maximize
∑
ω∈Ω+

(−λω)yω +
∑
γ∈Ω−

µγyω

subject to: ∑
i:ωi=0

xi +
∑

j:ωj=1
xc

j + nyω ≤ n,∀ ω ∈ Ω

∑
i:ωi=0

xi +
∑

j:ωj=1
xc

j + yω ≥ 1,∀ ω ∈ Ω

x, xc ∈ {0, 1}n

y ∈ {0, 1}|Ω|.



Large Margin LAD Models: Subproblem

Also known as...

(S1) maximize
∑
ω∈Ω

 ∏
i:ωi=0

pi
∏

j:ωj=1
pc

j

βω
subject to: pj , pc

j ∈ {0, 1}, j = 1, . . . ,n,

We solve (S1) approximately with a simple branch-and-bound
procedure, branching on terms.



Large Margin LAD Models

Table: Histograms of discriminant values of positive and negative points.

(— positive points; — negative points)



Large Margin LAD Models



Large Margin LAD Classifiers: Results

Dataset SMO J48 Rand.For. Mult.Perc. LM-LAD
breast-w 0.965 ± 0.011 0.939 ± 0.012 0.967 ± 0.009 0.956 ± 0.012 0.942 ± 0.024
credit-a 0.864 ± 0.025 0.856 ± 0.031 0.882 ± 0.027 0.831 ± 0.032 0.815 ± 0.044
hepatitis 0.772 ± 0.084 0.652 ± 0.086 0.722 ± 0.101 0.727 ± 0.065 0.738 ± 0.091
krkp 0.996 ± 0.003 0.994 ± 0.003 0.992 ± 0.003 0.993 ± 0.002 0.962 ± 0.031
boston 0.889 ± 0.028 0.837 ± 0.045 0.875 ± 0.024 0.893 ± 0.031 0.840 ± 0.045
bupa 0.701 ± 0.045 0.630 ± 0.041 0.731 ± 0.046 0.643 ± 0.020 0.678 ± 0.034
heart 0.837 ± 0.039 0.799 ± 0.052 0.834 ± 0.051 0.815 ± 0.025 0.814 ± 0.033
pima 0.727 ± 0.029 0.722 ± 0.026 0.736 ± 0.030 0.726 ± 0.023 0.682 ± 0.023
sick 0.824 ± 0.027 0.926 ± 0.020 0.832 ± 0.023 0.852 ± 0.049 0.815 ± 0.041
voting 0.961 ± 0.018 0.960 ± 0.015 0.961 ± 0.016 0.944 ± 0.025 0.945 ± 0.025

Table: Classification accuracy of Weka algorithms and LM-LAD.

SMO J48 Rand.For. Mult.Perc. CAP-LAD
J48 4-1-5
Rand.For. 1-1-8 4-1-5
Mult.Perc. 0-4-6 2-2-6 0-2-8
S.Log. 1-1-8 1-2-7 0-2-8 1-2-7
CAP-LAD 0-1-9 2-1-7 0-0-10 2-1-7
LM-LAD 0-0-10 0-1-9 0-1-9 0-0-10 0-1-9

Table: Matrix of wins, losses and ties (95% confidence interval).
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LAD-Based Regression

Consider a dataset Ω ⊂ {0, 1}n and the values of an unknown target
function r : Ω→ IR, and let yi = r(ωi), ωi ∈ Ω. We want to find a
function f : Ω→ IR that approximates r “well enough”.

Measures of interest:

• Least Absolute Residual (LAR) measure:
|Ω|∑
i=1
|f (ωi)− yi |.

• Correlation coefficient between the values of f and r over Ω.

Approach:

Construct a regression function in the space of conjunctions (i.e. use
conjunctions as independent variables).



LAD-Based Regression: Formulation

Let C0 = {C1, . . . ,Cn} be the set of conjunctions consisting of the n
positive literals, i.e. Cj = xj (j = 1, . . . ,n). The LAR-best linear
approximation of r using C0 can be found by solving

minimize
m∑

i=1
ei

subject to: ei + β0 +
∑

Cj∈C0

βj Cj(ωi) ≥ yi , i = 1, . . . ,m (4)

ei − β0 −
∑

Cj∈C0

βj Cj(ωi) ≥ −yi , i = 1, . . . ,m (5)

βj ≥ 0, j = 0, . . . ,n
ei ≥ 0, i = 1, . . . ,m.

Let λ∗ and µ∗ be the optimal vectors of dual variables associated to
constraints (4) and (5), respectively.



LAD-Based Regression: Subproblem

Find a new conjunction whose inclusion in C0 is likely to improve the
current LAR-approximation by solving the following problem (S2):

maximize
∑
ω∈Ω

 ∏
i:ωi=0

pi
∏

j:ωj=1
pc

j

 (λ∗ω − µ∗ω)

subject to: pj , pc
j ∈ {0, 1}, j = 1, . . . ,n,

with pj being a binary decision variable corresponding to the inclusion
of literal xj in the resulting conjunction. Similarly, pc

j corresponds to
the inclusion of xj .

Problem (S2) is an instance of (S1) and is solved with the B&B
algorithm previously mentioned.



LAD-Based Regression: Results

Mean Absolute Error
Algorithms AB BH MPG RAK SV Borda
LR 1.59 3.33 2.73 0.16 0.87 9
MP 1.62 2.94 2.90 0.13 0.44 14
SVR 1.54 3.17 2.63 0.16 0.70 12
PBR 1.82 3.11 2.37 0.15 0.29 15

Table: Mean absolute error of regression algorithms applied to 5
datasets.

Correlation
Algorithms AB BH MPG RAK SV Borda
LR 0.73 0.86 0.89 0.64 0.67 9
MP 0.75 0.91 0.92 0.82 0.90 19
SVR 0.73 0.84 0.89 0.64 0.63 9
PBR 0.51 0.86 0.89 0.68 0.94 13

Table: Correlation of regression algorithms applied to 5 datasets.
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Conclusions and Future Work

X Large margin LAD models: parameter-free, accurate models

X Extension of LAD methodology to regression problems

K Quadratic objective functions

K More applications and different loss functions for regression
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• Coming soon...
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