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2-SPP: synthesis and testing2-SPP: synthesis and testing



Three-level logicThree-level logic

Three level networks of the form (Debnath, Sasao, Dubrova, 
Perkowski, Miller and Muzio): 

f = g1  g2

Where:

  gi is an SOP form 

   is a binary operator: 

 = AND :  AND-OR-AND forms 
 = EXOR:  AND-OR-EXOR forms  (EX-SOP)

OR-AND-OR (Sasao)

SPP (Luccio, Pagli): EXOR-AND-OR



An SPP form is a sum (OR) of pseudoproducts

The SPP problemThe SPP problem: find an SPP form for a 
function F with the min. number of literals

PseudoproductPseudoproductPseudoproductPseudoproduct PseudoproductPseudoproduct

EXOR factorEXOR factor

SPP forms

SPP forms are a direct generalization of SOP forms:

15132154321 x)x)(xxx(xx )xxx(x +⊕⊕⊕+⊕⊕⊕



SPP forms

15132154321 x)x)(xxx(xx )xxx(x +⊕⊕⊕+⊕⊕⊕
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SPP forms

Advantages

 Compact expressions

 Good testability of EXORs

 Three levels of logic

Disadvantages

Unbounded fan-in 
EXORs

 Impractical for many 
technologies

Huge minimization 
time



The affine space A over the vector space
V ⊆ {0,1}n (with operator ⊕) is:

A = {p ⊕ v | v∈V} =  p  ⊕  V 

Translation 
Point

Vector 
Space

Affine spaces

 x1   x2  x3  x4
  1    0    0    0
  1    0    1    1
  1    1    0    1
  1    1    1    0

=

A

Affine space 

⊕  1    0    0    0

p

Translation point 
 x1   x2  x3  x4
  0    0    0    0
  0    0    1    1
  0    1    0    1
  0    1    1    0

V

Vector space 



Pseudocubes

ProductProduct = characteristic function of a cubecube

41 xx ⋅

PseudoproductPseudoproduct = characteristic function of a 
pseudocubepseudocube

X1  X2  X3  X4
  1    0    0    1
  1    0    1    1
  1    1    0    1
  1    1    1    1

)xx(xx 4321 ⊕⊕⋅

X1  X2  X3  X4
  1    0    0    0
  1    0    1    1
  1    1    0    1
  1    1    1    0



Canonical Expressions CEX

One of them is called CEXCEX

A pseudocube can be represented by 
different pseudoproducts

)x)(xx(x 4131 ⊕⊕
X1  X2  X3  X4
  0    0    1    1
  0    1    1    1
  1    0    0    0
  1    1    0    0

)x)(xx(x 4331 ⊕⊕

)x)(xx(x 4341 ⊕⊕

CEX(P) =CEX(P) =

P =



Pseudocubes and Affine Spaces

Theorem: 

PseudocubesPseudocubes ⇔⇔  Affine Spaces Affine Spaces 

Corollary:

Cubes Cubes ⊆⊆  Affine Spaces Affine Spaces 

Pseudocube can be represented by:
CEX
Affine Space:  p ⊕  V 



Affine Spaces Affine Spaces 

X1  X2  X3  X4
  1    0    0    0
  1    0    1    1
  1    1    0    1
  1    1    1    0

X3 X4
X1 X2

00

01

11

10

00    01    11    10

Pseudoproduct: 
)xx(xx 4321 ⊕⊕⋅

⊕
X1  X2  X3  X4
  0    0    0    0
  0    0    1    1
  0    1    0    1
  0    1    1    0

  1    0    0    0=

Red: canonical variables

Black: non canonical variables



Cubes as Affine Spaces Cubes as Affine Spaces 

X1  X2  X3  X4
  1    0    0    1
  1    0    1    1
  1    1    0    1
  1    1    1    1

X3 X4
X1 X2

00

01

11

10

00    01    11    10

Red: canonical variables

Black: non canonical variables

Product: 

41 xx ⋅

⊕
X1  X2  X3  X4
  0    0    0    0
  0    0    1    0
  0    1    0    0
  0    1    1    0

  1    0    0    1=



Union of PseudocubesUnion of Pseudocubes

The union of of two pseudocubes is a 
pseudocube iff they are affine spaces over the 
same vector spacevector space.

A = p ⊕ V,  A’ = p’ ⊕ V  and p ⊕ p’ ∉ V

Bases of V       v1, … ,vk 

                 A ∪ A’= p  ⊕ V’

Bases of V’      v1, … , vk, p ⊕ p’



2-SPP forms

15132542 x)x)(xx(xx )x(x +⊕⊕+⊕
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2-pseudoproduct 2-EXOR



Solving the Disadvantages of SPP

2-SPP forms:

 Are still very compact
 Only 4% more literals than SPP expressions

 Have a reduced minimization time
 92% less time than SPP synthesis

 Are practical for the current technology
  EXOR gates with fan-in 2 are easy to implement



Parity Function

SOP: is the sum of all the minterms with an odd 
number of positive literals.

Costs

 SPP: polynomial cost in n

 SOP: exponential cost in n 

)x  .  xxx(x n4321 ⊕⊕⊕⊕⊕ ..SPP:



2-SPP gives exponential gain

SOP: is the sum of all the minterms (2n/2)

Costs

 2-SPP: polynomial cost in n

 SOP: exponential cost in n   (2n/2)

2-SPP: )x (x ...  )x)(xx(x n1-n4321 ⊕⊕⊕



 x1  x2  x3  x4

  0    0    0    1
  0    0    1    1
  0    1    0    1
  0    1    1    1

x3 x4
x1 x2

00

01

11

10

00    01    11    10

Product: 

41 xx ⋅

CubesCubes



 x1  x2  x3  x4

  0    0    0    1
  0    0    1    0
  0    1    0    1
  0    1    1    0

x3 x4
x1 x2

00

01

11

10

00    01    11    10

2-pseudoproduct: 

)x(xx 431 ⊕⋅

2-Pseudocubes2-Pseudocubes



Representation of 2-pseudocubes

A cube has an unique representation

A 2-pseudocube can be represented by different 2-pseudoproducts

97353421 x)x)(xx(x)xx(x ⊕⊕⊕

97553421 x)x)(xx(x)xx(x ⊕⊕⊕

97573421 x)x)(xx(x)xx(x ⊕⊕⊕



Canonical RepresentationCanonical Representation

97353421 x)x)(xx(x)xx(x ⊕⊕⊕
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Representation of cubesRepresentation of cubes

97542 xxxxx
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Structure of 2-pseudoproductsStructure of 2-pseudoproducts

 }x , x{1, 94 }x , x,{x 753  }{x    }{x 86} x,{x 21

Structure:

are the sets without complementations

 } x, x{1, 94 } x, x,{x 753  }{x    }{x 86} x,{x 21

Structure



Union of 2-pseudocubes

A union of two 2-pseudocubes is a  2-pseudocube if 

 The 2-pseudocubes have the same structure

 The complementations differ in just one set

 }x , x{1, 94 } x,x ,{x 753  }{x    }{x 86} x,{x 21

 }{x    }{x 86 }x , x{1, 94 }x , x,{x 753} x,{x 21



Union of 2-pseudocubes

The set with different complementations is split into two sets:
 A set containing the variables with  the different 

complementations
 A set containing the variables with  the same complementations

∪
} x,x ,{x 753 }x , x{1, 94

 }{x    }{x 86} x,{x 21

 }x , x{1, 94} x,{x 21 }x , x,{x 753
 }{x    }{x 86

 }{x    }{x 86

=
 }x , x{1, 94} x,{x 21 }x ,{x 75}{x3



2-SPP Minimization Problem2-SPP Minimization Problem

Boolean function F:
 single output
 represented by its ON-set

Problem:

Find a sum of 2-pseudoproducts that is a characteristic function for 

F, and is minimal w.r.t. the number of literals/products



2-SPP Synthesis2-SPP Synthesis

Start with the minterms (points of the 
function)

Perform the union of 2-pseudocubes in order 
to find the set of 

prime 2-pseudocubes

Set covering step



Data structure for the union

 We represent each different structure only once

Partitions with the same structure are grouped together

  We perform the union only inside the same 
group 



Minimal form property

SPP form: the minimal form depends on the variable ordering 

SOP form: the minimal form does not depend on the variable 
ordering 

2-SPP form: the size of the minimal form does not depend on the 
variable ordering 

 Different 2-pseudoproducts represent the same 2-pseudocube

 But they have the same cost



A minimization exampleA minimization example 

F = {0001, 0010, 0101, 0110, 1101}

X3 X4
X1 X2

00

01

11

10

00    01    11    10



An exampleAn example
the minterms:

0001           0010           0101          0110        1101

}x,x,x,x{1, 4321 }x,x,x,x{1, 4321}x,x,x,x{1, 4321 }x,x,x,x{1, 4321}x,x,x,x{1, 4321

have the same  structure:  } x,x, x, x{1, 4321

}x,x,x,x{1,}x,x,x,x{1, 43214321 ∪  }x ,{x  }x ,x {1,  4321=

}x,x,x,x{1,}x,x,x,x{1, 43214321 ∪  }{x  } x,x ,x {1,  2431=

…



An example: the unionAn example: the union

Structure:                                Sets:

 } x,{x  } x, x{1, 4321

 }{x  } x, x, x{1, 2431

 } x,x, x{  } x{1, 4321

 } x,{x  } x, x{1, 2143

 } x,x, x,{x  {1} 4321

 }{x  } x, x, x{1, 1432

 } x, x, x{  }x{1, 4312

and

and

 }x ,{x  }x ,x {1, 4321  }x ,{x  } x,x {1, 4321and

 }{x  } x,x ,x {1, 2431  }{x  }x , x,x {1, 2431

 } x,x, x{  }x {1, 4321  }x ,x, x{  }x {1, 4321

 } x,{x  } x,x {1, 2143

 } x,x, x,{x  {1} 4321

 }{x  } x,x , x{1, 1432

 } x,x , x{  }x{1, 4312



An exampleAn example

 }x ,{x  }x ,x {1, 4321  }x ,{x  } x,x {1, 4321∪
 }x ,{x  }{x  }x {1, 4321

 }{x  } x,x ,x {1, 2431 ∪  }{x  }x , x,x {1, 2431

 }x ,{x  }{x  }x {1, 4321

 }x ,{x  }{x  }x {1, 4321

 } x,x, x{  }x {1, 4321 ∪  }x ,x, x{  }x {1, 4321



An example: set coveringAn example: set covering

Prime 2-pseudoproducts:

 } x,{x  } x,x {1, 2143

 } x,x, x,{x  {1} 4321

 }{x  } x,x , x{1, 1432

 } x,x , x{  }x{1, 4312

 }x ,{x  }{x  }x {1, 4321

Set covering 

 }x ,{x  }{x  }x {1, 4321

 }{x  } x,x , x{1, 1432



An example

2-SPP minimal form:

SOP minimal form:

)x(xxxxx 431432 ⊕+

431431432 xxxxxxxxx ++



Testability of 2-SPP forms

In collaboration with Rolf Drechsler

Testability is a major aspect of design process

Testability of 2-SPP Three-Level Logic Networks.Testability of 2-SPP Three-Level Logic Networks.

Fault models:Fault models:

   Stuck at fault Stuck at fault 

   Cellular faultCellular fault



Fault Model

Fault model: Stuck at fault 

 One input/output of a gate in circuit has a fixed constant value 
(0 or 1)

x2
x4

x1
x5

x2
x3

x5x1

0
0
0
0
0
0

0
1

1

0

1

0

0

1

0

0



Redundancies

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

)x(xx)xx(x 431243 ⊕+⊕Ff  =

=



Fully testable networks

A gate is fully testable if there does not exist 
redundant fault on it

A circuit is fully testable if all its gates are fully 
testable.



Our Aim

Study the testability of 2-SPP networks.

Are the minimal 2-SPP networks fully testable?

How can we improve the testability of a network?



2-SPP forms

15132542 x)x)(xx(xx )x(x +⊕⊕+⊕

x2

x4

x1

x5

x2

x3

x5

x1

SOP



Testability

Prime and irredundant SOP networks are fully testable in the 
SAFM

2-SPP minimal forms contain:
 EXOR part
 SOP part

 prime 
 irredundant 

We must show:
 EXOR gates are fully testable
 The inputs to the SOP part can have all possible values



Inputs to the SOP partInputs to the SOP part
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Testability of 2-SPPs

Main results:

 Theorem: 2-SPP forms minimal w.r.t. the number of 2-
pseudoproducts are

NOT fully testable

 Theorem: 2-SPP forms minimal w.r.t. the number of literals are

fully testable



Counter-example: Theorem 1

)x(xx)xx(x 431243 ⊕+⊕

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

Ff  =

=



Theorem 2

Theorem 2: 2-SPP forms minimal w.r.t. the number of literals are 
fully testable

Proof (sketch):

 2-SPP is a SOP with an upper EXOR level

 The SOP networks are fully testable

 All possible values can be applied to the AND layer (max. rank 
of the system of EXORs)

 The EXOR gates are fully testable



Improving the testability

Is the minimality really necessary for testability?

No

For SOP forms:
 Irredundancy  (OR)
 Primality (AND) 

For 2-SPP forms:
 Irredundancy  (OR)
 AND-Irredundancy  (AND) 
 EXOR-Irredundancy  (EXOR)



SOP properties

Irredundancy:

 A SOP form for a function f is irredundant if deleting any 
product from it 

 we get a different function

Primality:

 A SOP form for a function f is prime if deleting any literal from 
any product 

 we get a different function



2-SPP properties

Irredundancy:

 A 2-SPP form for a function f is irredundant if deleting any 2-
pseudoproduct from it 

 we get a different function

AND-Irredundancy

 A 2-SPP form for a function f is AND-irredundant if deleting any 
factor from any 2-pseudoproduct 

 we get a different function



EXOR-Irredundancy

A 2-SPP form for a function f is EXOR-irredundant if replacing 
any literal with 0 or 1  in any EXOR factor 

 we get a different function

)x(xx)xx(x 431243 ⊕+⊕

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

=

Is not EXOR-irredundant!



Minimal 2-SPP forms

Definition: a 2-SPP form is OR-AND-EXOR-
irredundant if it satisfies the three properties.

Theorem: OR-AND-EXOR-irredundant 2-SPP forms 
are fully testable in the SAFM.

2-SPP minimal w.r.t. literals:
 are OR-AND-EXOR- irredundant

2-SPP minimal w.r.t. 2-pseudoproducts:
 are not EXOR- irredundant



Making a network testable

We try to replace each 

with

without changing the function

p)x(x ji ⊕

px or px or pxor px jiji



Example

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

)x(xx)xx(x 431243 ⊕+⊕F =

Fully testable!



Practical Issues

 The synthesized form could be non-minimal:
The set covering phase is not always exact

 We seldom have redundancies in practice

 We can design fully testable non- minimal 
forms (heuristics)



MetricsMetrics

CMOS:
 k fan-in AND/OR gates cost k literals
 k fan-in EXOR gates cost 4(k-1) literals

 2-EXOR gates cost 4 literals:

FPGA:
 k fan-in AND/OR/EXOR gates cost k literals

 2-EXOR gates cost 2 literals

212121 xxxx)x(x +=⊕



Conclusion

Theoretical results:
 2-SPP minimal w.r.t. the number of literals are fully testable
 2-SPP minimal w.r.t. the number of  2-pseudoproducts are NOT 

fully testable
 But we can make them fully testable

2-SPP vs SOP
 2-SPP forms  are more compact 
 SOP and 2-SPP are fully testable 
 Minimization time for 2-SPP is too high

 heuristics



EXOR Projected Sum of ProductsEXOR Projected Sum of Products



Motivations

Two level logic (SOP) is the classical approach to logic synthesis

Three or four level networks 

 are more compact (less area) than SOPs

 are harder to optimize

Our purpose is to find a compact formcompact form with 

 a bounded number of levels

 an efficient minimization algorithm



Overview

Derivation of EP-SOPs (EXOR-Projected Sum of Products) from 
SOPs 

EP-SOP representation
 without remainder
 with remainder

Projection algorithms

Minimal EP-SOP forms: 
 Computational complexity (NPNP-hard)
 Approximation algorithms

Experimental results



Example  SOP vs EP-SOPExample  SOP vs EP-SOP

X3 X4
X1 X2
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0 1

Crossing product



Example  SOP vs EP-SOPExample  SOP vs EP-SOP

)x x xx  x)(xx(x  )x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

43321321321321 xx xxx xxx xx x xxx ++++
minimal SOP form

EP-SOP form



Minimization of  the EP-SOPMinimization of  the EP-SOP

X3 X4
X1 = X2
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0 10
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1 1

X3 X4
X1 ≠ X2
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00    01    11  10

1 01
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X1 = X2

 0

 1

00    01    11  10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00    01    11  10

1 01

11

1

0 1



Example  SOP vs EP-SOPExample  SOP vs EP-SOP

)xxx)(x(x  )xx(x 43321321 +⊕+⊕

43321321321321 xx xxx xxx xx x xxx ++++
minimal SOP form

minimal EP-SOP form



EP-SOP networksEP-SOP networks

SOP1

two levels

SOP2

two levels

2ji1ji )SOPx(x  )SOPx(x ⊕+⊕

xi

xJ



EP-SOP without remainderEP-SOP without remainder
Given Given 

 a SOP expression a SOP expression φ φ 

 a pair of variables xa pair of variables xi i and xand xjj

The SOP The SOP φ is equivalent toφ is equivalent to

where:where:

                 is the projection of φ in the space is the projection of φ in the space 

                 is the projection of φ in the space is the projection of φ in the space 

 )x(x  )x(x jiji ⊕⊕ ϕ⊕+ϕ⊕
EP-SOP without remainder

⊕ϕ
⊕ϕ

ji xx =

ji xx =



EP-SOP without remainder: projectionEP-SOP without remainder: projection

For each product For each product pp in in the SOP  in in the SOP φ:φ:

 If If pp contains both variables  contains both variables xxi i and xand xjj::

 it ends up in one of the two SOPs            andit ends up in one of the two SOPs            and

 with a literal removalwith a literal removal

 If If pp contains one variable or none ( contains one variable or none (crossingcrossing):):

 it ends up in it ends up in bothboth SOPs          and SOPs          and

 ⊕ϕ   ⊕ϕ

 ⊕ϕ   ⊕ϕ



Example of  projectionExample of  projection

43321321321321 xx xx x xxx xxx xxx ++++

EP-SOP:EP-SOP:
 )x x xx  x)(xx(x )x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

min SOP:min SOP:

The EP-SOP form is not minimal!The EP-SOP form is not minimal!



Minimization of the EP-SOP formMinimization of the EP-SOP form

EP-SOP:EP-SOP:

 )x x xx  x)(xx(x )x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

)xxx)(x(x  )xx(x 43321321 +⊕+⊕

SOP minimization SOP minimization



Example  EP-SOP with remainderExample  EP-SOP with remainder
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EP-SOP with remainderEP-SOP with remainder

Consider Consider 

 a SOP expression a SOP expression φ φ 

 a couple of variables xa couple of variables xi i and xand xjj

The SOP The SOP φ can be written asφ can be written as

ρ+ϕ⊕+ϕ⊕ ⊕⊕  )x(x  )x(x jiji

EP-SOP with remainder

remainder



EP-SOP with remainder: projectionEP-SOP with remainder: projection

Given a SOP Given a SOP φ and two variables xφ and two variables xi i and xand xj j ::

For each product For each product pp in  in φ φ 

 If If pp contains both variables contains both variables
it ends up in one of the two SOPs           andit ends up in one of the two SOPs           and

 If If pp contains one variable or none ( contains one variable or none (crossingcrossing))
it ends up in the remainder it ends up in the remainder ρρ

 ⊕ϕ   ⊕ϕ

43321321 xxx)x(x  )xx(x +⊕+⊕
43321321321321 xx xxx xxx xx x xxx ++++SOPSOP

EP-SOPEP-SOP



EP-SOP  forms EP-SOP  forms 

43321321 xxx)x(x  )xx(x +⊕+⊕

43321321321321 xx xxx xxx xx x xxx ++++
SOP form

EP-SOP form without remainder 
)xxx)(x(x  )xx(x 43321321 +⊕+⊕

EP-SOP form with remainder 



Minimal forms

SOP and EP-SOP have related sizes 

 Does a minimal SOP produce a minimal EP-SOP?

 How to choose xHow to choose xi i and xand xjj?



Minimal forms

Trivial idea:

 try all variables pairs 

 project the SOPs (the projection algorithms are 
polynomial)

 If       is an optimal SOP
       and       might be optimal

 Bad news:        and       are not optimal even if     is! ⊕ϕ   ⊕ϕ

 ⊕ϕ   ⊕ϕ

ϕ

ϕ



Minimizing       and       is as difficult as 
optimizing a generic SOP form.

Theorem: Even if      is optimal, minimizing       
and       is an NPNP-hard problem.

Computational complexity

Even if the original SOP form is minimal,
we must further minimize        and       :  ⊕ϕ   ⊕ϕ

min
ji

min
ji )x(x  )x(x ⊕⊕ ϕ⊕+ϕ⊕

 ⊕ϕ   ⊕ϕ

ϕ  ⊕ϕ
  ⊕ϕ



Approximation algorithms

Good news:

 If we choose a good strategy we can produce a near-optimal EP-
SOP in polynomial time 

  Strategy:
– Choose the pair of variables appearing in the largest number of 

products of φφ
– Project φ with respect to that couple φ with respect to that couple 

3.3. minimize the two projected SOPs with a two-level logic heuristic minimize the two projected SOPs with a two-level logic heuristic 

 The algorithm is polynomial:The algorithm is polynomial:
 O((nO((nvarvar))22 ∙ n ∙ nprodprod) ) 

 O(nO(nvarvar ∙ n ∙ nprodprod) ) 

 polynomial (e.g., using Espresso not exact)polynomial (e.g., using Espresso not exact)



Approximation algorithms

Theorem. The resulting number of products is at The resulting number of products is at 
most:most:

(4 - 2ν/ |φ|φ| ) times the optimum (without remainder)

twice the optimum (with remainder)

even without reoptimizing         and         .

The  polynomial reoptimization of the two SOPs can  improve the 
result

 ⊕ϕ   ⊕ϕ



Approximation algorithms

A sketch of the proof:

 The optimal EP-SOP costs at least ½ of the optimal SOP

 Without remainder: 
 the products with both variables appear only once in the projected 

SOPs
 the other products appear twice

 With remainder: 
 the products with both variables appear only once in the projected 

SOPs
 the other products appear in the remainder



Experimental results (1)Experimental results (1)

 ESPRESSO benchmark suite

 Four variants of the algorithm

 without remainder (N) and with remainder (R)

 with global frequency (G) and local frequency (L)
(the same couple of variables for all outputs 
or a specific couple for each output)

 Physical area and delay computed by SIS

 Pentium 1.6 GHz with 1GB RAM 



Experimental results (2)Experimental results (2)

The area of the XOR gates cannot be neglected (esp. for L)

Nevertheless, in 35% of the cases EP-SOP has a lower area



Experimental results (3)Experimental results (3)

On average, the best algorithm is RG

The area can reduce by 40%-50% (adr4, f51m, root, z4)



Experimental results (4)Experimental results (4)

We have compared the results of our heuristics with the optimal EP-
SOP:

 without rest:
 for the 76% of the benchmarks, the result is optimal
 for the 88% of the benchmarks, the gap is below 10%

 with rest:
 for the 64% of the benchmarks, the result is optimal
 for the 84% of the benchmarks, the gap is below 10%



ConclusionsConclusions

The heuristic algorithm often finds the optimal form

In 35% of the cases EP-SOP has a lower area

Projection and reoptimization add a limited time overhead 

This suggests to use EP-SOPs as a fast post-processing step after 
SOP minimization


