Multi-Level Logic with Constant Depth:
Recent Research from/Italy

Researchers:

Anna Bernasconi (U. Pisa), Valentina Ciriani (U.
Milano-Crema) , Roberto Cordone (U. Milano-Crema),
Fabrizio Luccio (U. Pisa), Linda Pagli (U. Pisa),
Tiziano Villa (U. Verona, speaker)

DIMACS-RUTCOR Workshop on Boolean
and Pseudo-Boolean Functions

In Memory of Peter L. Hammer
Rutgers, January 19-22, 2009

2-SPP: synthesis and testing

Three-level logic

* Three level networks of the form (Debnath, Sasao, Dubrova,
Perkowski, Miller and Muzio):

f=9,°9,
Where:

* g.is an SOP form

* O is a binary operator:

© = AND : AND-OR-AND forms
© = EXOR: AND-OR-EXOR forms (EX-SOP)

*OR-AND-OR (Sasao)
* SPP (Luccio, Pagli): EXOR-AND-OR

SPP forms

* SPP forms are a direct generalization of SOP forms:

(x LI x, O x, U X,) X +(X, U x, O X)(X, U X))+ X,

_/

Pseudoproduct Pseudoproduct Pseudoproduct

“* An SPP form is a sum (OR) of pseudoproducts

“* The SPP problem: find an SPP form for a
function F with the min. number of literals

SPP forms

(%, 0 X, U X5 LX) Xg 4 (X O %, 0 X5) (%, LX) + X

ol

X X X X
X7 NTE
; /

— >

X X X X
=

g e
‘\ 7

X X X
\\Q_//f

SPP forms

Advantages Disadvantages
* Compact expressions “* Unbounded fan-in
EXORs

* Good testability of EXORs
“** Impractical for many

* Three levels of logic technologies

“* Huge minimization
time

Affine spaces

“* The affine space A over the vector space
V O {0,1}" (with operator [1) is:

A={p0dv|vOlV}= pEIJVHJ

Vector
Space

Affine space Vector space

Pseudocubes

= characteristic function of a cube

X; X,

= characteristic function of a
pseudocube

X, {x, 0%, 0X,)

Canonical Expressions CEX

“* A pseudocube can be represented by
different pseudoproducts

CEX(P)= (X, LI x;)(x,0x,)

(Xl D X3)(X3 D X4)

(X H1X,) (X5 LX)

“* One of them is called CEX

Pseudocubes and Affine Spaces

“* Theorem:
Pseudocubes = Affine Spaces
“* Corollary:

Cubes [Affine Spaces

“* Pseudocube can be represented by:
¢*CEX
¢Affine Space: pQd V

Affine Spaces

X3 X4
X1X2\ 00 01 11 10
00 Pseudoproduct:
X, (X, U X, 0 X,)
01

11 Red: canonical variables

10 Black: non canonical variables

Cubes as Affine Spaces

X1X

X3 X4

00

01

11

10

OO0 01 11 10

Product:

X; X,

Red: canonical variables

Black: non canonical variables

Union of Pseudocubes

“* The union of of two pseudocubes is a
pseudocube iff they are affine spaces over the
same vector space.

cA=p0OV, A’=p'OV andp O p’OV
“* Bases of V |V T
Al A=p [

* Bases of V, ..., V, pO p’°

2-SPP forms

(%, LX) X + (X, L X5) (X, U X)) + X,
\ / \ /

Y Y
2-pseudoproduct 2-EXOR
X5 N

e

] D—j
Xl

Xy S /
2) >

>7

Solving the Disadvantages of SPP

2-SPP forms:

* Are still very compact
* Only 4% more literals than SPP expressions

* Have a reduced minimization time
* 92% less time than SPP synthesis

* Are practical for the current technology

* EXOR gates with fan-in 2 are easy to implement

Parity Function

SPP: (Xl X, U X, U X, U ... Xn)

SOP: is the sum of all the minterms with an odd
number of positive literals.

* SPP: polynomial cost in n

* SOP: exponential cost in n

2-SPP gives exponential gain

2-SPP: (Xl Xz)(xg X4) (Xn-l

SOP: is the sum of all the minterms (2%2)

Costs
* 2-SPP: polynomial cost in n

* SOP: exponential costinn (2%?)

Cubes

X, X,
X, X,_ 00 01 11 10
00 » »
01 [o
11

10

2-Pseudocubes

X; X,
X; X\ 00 01 11 10

00 o o
01 o °

0 11

1

0 10

1

2-pseudoproduct:

X, (X, T X,)

Representation of 2-pseudocubes

* A cube has an unique representation

* A 2-pseudocube can be represented by different 2-pseudoproducts

(X; X5)X, (X5 O X5) (X5 T X7)X

(Xq X)X, (X5 T X5) (X5 T X7)Xg

(x, O Xz)x4(X3 g X7)(X5 n X7))(9

Canonical Representation

(Xq X)X, (X5 T X5) (X5 O X7)Xg

X
W
L]
X
3
~—
[
=
[

w
ol

© W
[
= X

\l

=la
hII
|
uisleisanisle
N

{Xl’xz} {1’X4’X9} {X3’X5’X7} {X6}

K)

Representation of cubes

X, X, XX Xg

11 X5, X0 X6, X7, Xo} Xy} Xg} KXo} 1Xg)

Structure of 2-pseudoproducts

* Structure:;

are the sets without complementations

KXo} 11 X4 Xo} X5, Xs, X7} 1Xg} 1Xg}

ﬂ Structure

Xu X} AL X Xe} X5 X5y X7} Xe} 1Xg}

Union of 2-pseudocubes

* A union of two 2-pseudocubes is a 2-pseudocube if
* The 2-pseudocubes have the same structure

* The complementations differ in just one set

X Xor 11, X4, X} {Xg, X5, X7} {X¢} {Xs}

KXo} 11X Xe} Xg X6, X} X6} 1Xg}

Union of 2-pseudocubes

*The set with different complementations is split into two sets:

* A set containing the variables with the different
complementations

* A set containing the variables with the same complementations

{X11X2} {1’X4’X9} {X31X5’X7} {XG} {Xg}

{Xl’xz} {1’X4’X9} {X31X5’X7} {Xa} {Xg}

=\

X xb {LxgXed {Xs} {Xs X} Xeb X}

2-SPP Minimization Problem

* Boolean function F:
* single output

* represented by its ON-set

Problem:

*Find a sum of 2-pseudoproducts that is a characteristic function for

F, and is minimal w.r.t. the number of literals/products

2-SPP Synthesis

* Start with the minterms (points of the
function)

* Perform the union of 2-pseudocubes in order
to find the set of

prime 2-pseudocubes

*Set covering step

Data structure for the union

* We represent each different structure only once

* Partitions with the same structure are grouped together

“* We perform the union only inside the same
group

Minimal form property

* SPP form: the minimal form depends on the variable ordering

* SOP form: the minimal form does not depend on the variable
ordering

*2-SPP form: the size of the minimal form does not depend on the
variable ordering

* Different 2-pseudoproducts represent the same 2-pseudocube

* But they have the same cost

A minimization example

F = {0001, 0010, 0101, 0110, 1101}

X, X,
X; X,\ 00 01 11 10
00 o -
R &
01 A [
\i""
11 &/
10

An example

the minterms:
0001 0010 0101 0110 1101

{1&1’%2’?3’)(4} {1’X11X2’X3’X4} {1’X1’X21i3’x4} {l’il’xz’xsiid {1’X1’X2’X3ax4}

have the same structure: {1, X, X,,X,, X,}

{1, X1 X, Xa0 X, Y O {1, X0, X0 X0, X,)

{1,X, X5, X5, X, {1, X, X5, X5, X, }

An example: the union

Structure: Sets:

{1, X, X5} X5, X4} (%50 0%, ahd {L.%. %} %, %}
{1, X3, X3, Xa} X0} (1% %0 %0}) and {2 %, X, X,} %)
{1, X} {X,, X5, X} 0%} {X0%0 %} and {1, %} { X5 Xs X}
ES X3 X4} {X11 Xz} {1, X3, X4} {X3, %5}
{1} X0 Xo0 X3 Xa b 13 fx0 %0, %,)
{1, X5, Xa, X0} X} %0 %0 .} {x}
{1,X,} { X Xa, X0} {05} {Xy %s0 %,

An example

{11X1’ Xz} {X3’X4} {1’X1’ Xz} {XB’X4}
{1, X} X} {X3, X4}

L X, X5, X, } 1%, L, Xy X35 Xy} X5}
s Xg) X} Xg, Xa)

1, Xp} 1X5, X350 Xy} 1, Xp b X5, X350 Xy}
L, Xp) X} Xa) Xy}

An example: set covering

Prime 2-pseudoproducts:

Set covering
{1, X5, X5, X} {X1}
11X} (Ko} (Xg Xy

B) {x X,}
(1} X4 X5 Xa1 X,)
B =% 4} x,)
(1} { Xy Xa0 X}

X} X0} Xg, Xy}

An example

* 2-SPP minimal form:

X X3X4 FX;1(X5 U X,)

* SOP minimal form:

X, XX, + X XX, + X, XX,

Testability of 2-SPP forms

* In collaboration with Rolf Drechsler
* Testability is a major aspect of design process
* Testability of 2-SPP Three-Level Logic Networks.

* Fault models:
* Stuck at fault

* Cellular fault

Fault Model

* Fault model: Stuck at fault

* One input/output of a gate in circuit has a fixed constant value
(Oor1l)

i
;

B RO
VAN

%%

v

RO O OO0 0 OO
XX X XXX X X

U
Y

Redundancies

X4 X5 + (X

X4)XZ T Xl(X3

Fully testable networks

* A gate is fully testable if there does not exist
redundant fault on it

* A circuit is fully testable if all its gates are fully
testable.

Our Aim

* Study the testability of 2-SPP networks.

* Are the minimal 2-SPP networks fully testable?

* How can we improve the testability of a network?

2-SPP forms

(%, U X)X + (X, U X3)(X U Xg) + X,

— o —
- P
~

X X X X <
= Ol D N
L/ ;0\//,
\\
\
\
\
\
\
\
g) m
O
V \
/
/
/
/
4
//

X
N il] {1
%7/ W
/,/ ~\\
/

- -
N . ———

Testability

* Prime and irredundant SOP networks are fully testable in the
SAFM

*2-SPP minimal forms contain:
* EXOR part
* SOP part
* prime
* irredundant
* We must show:
* EXOR gates are fully testable
* The inputs to the SOP part can have all possible values

Inputs to the SOP part

(Xl D XZ)X4(X3 D XS)(XS D X7)X9 =
(%, 0 %)%, (X5 0 X5) (X5 0 X,)(Xg 0 X,)X

1, 0%,)=1 S
o - o
%XBDX7):1 oy ;
Xy =1 \ %XS_—]-)Q) =1

System of maximum rank

Testability of 2-SPPs

Main results:

¢ Theorem: 2-SPP forms minimal w.r.t. the number of 2-
pseudoproducts are

NOT fully testable

¢ Theorem: 2-SPP forms minimal w.r.t. the number of literals are
fully testable

Counter-example: Theorem 1

>

X4 X5 + (X

X4)XZ T Xl(XS

o

Theorem 2

Theorem 2: 2-SPP forms minimal w.r.t. the number of literals are
fully testable

Proof (sketch):

o

¢ 2-SPP is a SOP with an upper EXOR level

J

% The SOP networks are fully testable

’0

¢ All possible values can be applied to the AND layer (max. rank
of the system of EXORSs)

4

L)

)

* The EXOR gates are fully testable

Improving the testability

*Is the minimality really necessary for testability?
*No

*For SOP forms:
* Irredundancy (OR)
* Primality (AND)

*For 2-SPP forms:
* Irredundancy (OR)
* AND-Irredundancy (AND)
* EXOR-Irredundancy (EXOR)

SOP properties

* [rredundancy:

* A SOP form for a function f is irredundant if deleting any
product from it

* we get a different function

* Primality:

* A SOP form for a function f is prime if deleting any literal from
any product

* we get a different function

2-SPP properties

* [rredundancy:

* A 2-SPP form for a function { is irredundant if deleting any 2-
pseudoproduct from it

* we get a different function

* AND-Irredundancy

* A 2-SPP form for a function f is AND-irredundant if deleting any
factor from any 2-pseudoproduct

* we get a different function

EXOR-Irredundancy

* A 2-SPP form for a function f is EXOR-irredundant if replacing
any literal with 0 or 1 in any EXOR factor

* we get a different function

E= (Xs X4)X, (X Xz)(xs X,)

(X3 O X)X, + X, (X5 L Xy)

Is not EXOR-irredundant!

Minimal 2-SPP forms

* Definition: a 2-SPP form is OR-AND-EXOR-
irredundant if it satisfies the three properties.

* Theorem: OR-AND-EXOR-irredundant 2-SPP forms
are fully testable in the SAFM.

* 2_-SPP minimal w.r.t. literals:

* are OR-AND-EXOR- irredundant

*2-SPP minimal w.r.t. 2-pseudoproducts:

* are not EXOR- irredundant

Making a network testable

* We try to replace each
(x, Ox;)p
with

X;p or X;p or XxX;p or Xxp

without changing the function

Example

)

—)
=) >

A W

N

o

>

XX KX X XX

3
4

F = (X3 X4)X2+(X1 Xz)(x3 X4)
- ~ J

F= (X3 X4)X, +X1(X3 X4)

Fully testable!

Practical Issues

* The synthesized form could be non-minimal:

* The set covering phase is not always exact
* We seldom have redundancies in practice

* We can design fully testable non- minimal
forms (heuristics)

Metrics

*CMOS:
* k fan-in AND/OR gates cost k literals
* k fan-in EXOR gates cost 4(k-1) literals
* 2-EXOR gates cost 4 literals:

(X, O X;) = XX, + XX,

*FPGA:
* k fan-in AND/OR/EXOR gates cost k literals
* 2-EXOR gates cost 2 literals

Conclusion

* Theoretical results:
* 2-SPP minimal w.r.t. the number of literals are fully testable

* 2-SPP minimal w.r.t. the number of 2-pseudoproducts are NOT
fully testable

* But we can make them fully testable

*2-SPP vs SOP
* 2-SPP forms are more compact
* SOP and 2-SPP are fully testable
* Minimization time for 2-SPP is too high

* heuristics

EXOR Projected Sum of Products

Motivations

*Two level logic (SOP) is the classical approach to logic synthesis

* Three or four level networks
* are more compact (less area) than SOPs

* are harder to optimize

* Our purpose is to find a compact form with
* a bounded number of levels

* an efficient minimization algorithm

Overview

* Derivation of EP-SOPs (EXOR-Projected Sum of Products) from
SOPs

* EP-SOP representation
* without remainder

* with remainder
* Projection algorithms

* Minimal EP-SOP forms:
* Computational complexity (NPY?-hard)

* Approximation algorithms

* Experimental results

Example SOP vs EP-SOP

X3 X4
X1=Xx200 01 11 10

X3 X4
X1 X2 00 01 11 10 of ¢ [|@]D

od((() 1CC(1_
01<)514>

11] C | C (T)_'

1q @] Df ¢ | X1 = X300 _01 11 10
ol D] o]
1) C 1

Example SOP vs EP-SOP

minimal SOP form

XX, Xs + X X, X5 + X XX, + X XoXs + X X,

EP-SOP form

(X O X5)(XX5 + X, X5 + XaX,) (X U X,) (XX + X X5 + X5X,)

Minimization of the EP-SOP

X3 X4
X1=x2, 00 01 11 10 |[x1=x2} 00 01 11 10
ol ¢ [c [@]D o|l ¢ [c N
1| o] ¢ [@ D 1l ¢ ¢ |\]Z
X3 X4 X3 X4
X1 # X2, 00 01 11 10 [X1=x2) 00 01 11 10

ol @]
(D

a

]

C

]

AT

a

]

B

C

]

Example SOP vs EP-SOP

minimal SOP form
X XoXs X XX, + X X Xs + X X, X, + X5X,

minimal EP-SOP form
(Xl Xz)x3 B (X1 Xz)(X3 i X3X4)

EP-SOP networks

SOP,

two levels _ﬂ_)_
X \)X |
XJ v4 j;

B
SOP, J

two levels

X;)SOP, +(x; I X;)SOP,

EP-SOP without remainder

* Given

* a SOP expression @

* a pair of variables x; and x.

*The SOP o is equivalent to

&

X;)0 s + (X

X

EP-SOP Wit\hGUt remainder

* where:

[]

. $ — is the projection of ¢ in the space X; = Xj

] 1is the projection of @ in the space y = y.
| J

EP-SOP without remainder: projection

For each product p in in the SOP ¢:

* If p contains both variables x; and x:

* it ends up in one of the two SOPs (I) . and (I)D

* with a literal removal

* If p contains one variable or none (crossing):

* it ends up in both SOPs (I) 5 and (I)D

Example of projection

min SOP:
X1X2X3 +X1X2X3 +X1X2X3 +X1X2X3 +X3X4

\ y \
EP-SOP:| | \

(X 0 X,) (X, X5 + X,X5 + XX,) + (X U X,) (X, X5 + X, X5 + X5X,)

The EP-SOP form is not minimal!

Minimization of the EP-SOP form

EP-SOP:

(X, sz)(\x + X, X5 + X x4) (X, DXZ)Q(x + X, X, +

Y

SOP minimization

(X,

/

Xo X5 + (X

1Y

SOP minimization

/

X,)(X5 + X3X

Example EP-SOP with remainder

X3 X4
X1X2 _00 01 11 10
oo | c|c|a@]lD
01 () S
11 | €] € ()1__
10 () C]
X3 X4
X1 =Xx2\ 00 01 11 10
o [« [T
1] €| € |\d]f

X3 X4
X1X2 00 01 11 10

oo | clc]o

o1 | C|C]C|I

11 | ¢ | C | C |1

10| C|lc]C]a
X3 X4

X1 = X2\ 00 01 11 10
0 K N\| o] ¢

B

C

EP-SOP with remainder

* Consider
* a SOP expression @

* a couple of variables x; and x;

*The SOP ¢ can be written as remainder

G OX)05 + (X OX,)oy +p
S 4
~

EP-SOP with remainder

EP-SOP with remainder: projection

Given a SOP ¢ and two variables x; and x; :

For each product p in ¢

* If p contains both variables
it ends up in one of the two SOPs (I) 0 and (I)D

* If p contains one variable or none ()
it ends up in the remainder p

SOP X X, X5 + X X, X5 XX, X5 + X, X, X5 + XX,

EP-SOP (Xl X2)X3 +(X1 Xz)xs + X3X,

EP-SOP forms

SOP form
X XoXa + X XoXs + X XX, + X X, X, + X5X,

EP-SOP form without remainder
(Xl Xz)xs o (Xl Xz)(X3 7 X3X4)

EP-SOP form with remainder
(Xl Xz)x3 & (Xl X2)X3 T X3X,

Minimal forms

SOP and EP-SOP have related sizes
* Does a minimal SOP produce a minimal EP-SOP?

* How to choose x;and x;?

Minimal forms

Trivial idea:
* try all variables pairs

* project the SOPs (the projection algorithms are
polynomial)

=11 0 is an optimal SOP
- (I) 7 and (I)Dmight be optimal

* Bad news: (I)D and q)D are not optimal even if ¢ is!

Computational complexity

*Even if the original SOP form is minimal,
we must further minimize (I) and (I) o
[[

(6 O x)OT" +(x O x))o7"

“* Minimizing (I)D and (I) Is as difficult as
optimizing a generic SOP form.

“* Theorem: Even if (I) IS optimal, minimizing(l)D
and (I)D Is an NP"P-hard problem.

Approximation algorithms

Good news:

N¢

¢ If we choose a good strategy we can produce a near-optimal EP-
SOP in polynomial time

% Strategy:

Choose the pair of variables appearing in the largest number of
products of ¢

Project ¢ with respect to that couple

minimize the two projected SOPs with a two-level logic heuristic
%* The algorithm is polynomial:

O((n,,,)” - nprod)

O(ny,, * N0

polynomial (e.g., using Espresso not exact)

Approximation algorithms

Theorem. The resulting number of products is at
most:

“*(4 - 2v/ |o|) times the optimum (without remainder)
*“*twice the optimum (with remainder)

even without reoptimizing (I) - and (I)D.

The polynomial reoptimization of the two SOPs can improve the
result

Approximation algorithms

A sketch of the proof:
* The optimal EP-SOP costs at least V2 of the optimal SOP

* Without remainder:

* the products with both variables appear only once in the projected
SOPs

* the other products appear twice

* With remainder:

* the products with both variables appear only once in the projected
SOPs

* the other products appear in the remainder

Experimental results (1)

ESPRESSO benchmark suite

Four variants of the algorithm
* without remainder (N) and with remainder (R)

* with global frequency (G) and local frequency (L)
(the same couple of variables for all outputs
or a specific couple for each output)

Physical area and delay computed by SIS

Pentium 1.6 GHz with 1GB RAM

Experimental results (2)

min SOP min EP-SOP
NL RG
Benchmark delay area delay | CPU
addm4 47.9 975 404 | 0.04
adr4 19.2 155 16.0 | 0.03
amd 46.7 1040 391 | 0.03
b2 79.8 4180 813 | 0.04
b4 30.5 841 33.1 | 0.01
325 381 25.7 | 0.02
26.6 314 30.0 | 0.01
43.6 777 39.2 | 0.01
23.1 236 19.7 | 0.01
114.5 3900 104.6 | 0.08
31.5 . 339 264 | 0.04
48.3 1015 425 | 0.05
79.8 4180 81.3 | 0.06
41.4 1041 37.3 | 0.03
38.5 1040 37.2 | 0.01
57.3 2693 63.2 | 0.34
41.0 883 51.8 | 0.01

The area of the XOR gates cannot be neglected (esp. for L)
Nevertheless, in 35% of the cases EP-SOP has a lower area

Experimental results (3)

Benchmark

CPU

min SOP

area

delay

min EP-SOP

NL
area

delay | CPU

RG
area

ml
m2
m181
mlip4
mp2d
newcond
p82
radd
rckl
rd73
risc
root
sqroé
vg2
vix1
x6dn
x9dn
z4

0.01
0.01
0.60
0.31
0.25
0.01
0.01
0.39
0.04
0.03
0.01
0.35
0.06
0.53
0.17
0.18
0.20
0.01

208
710
166
734
362
114
239
183
341
220
228
592
278
341
324
1054
384
171

19.6
37.8
18.4
36.4
26.0
17.4
18.4
15.7
49.7
25.6
18.7
35.5
25.5
18.6
21.3
36.8
23.0
18.3

352
393
311
891
420
124
302
181
519
308
435
380
462
581
497
870
560
165

21.2 1 0.03
40.5 | 0.01
249 | 0.01
40.1 | 0.03
289 | 0.01
18.6 | 0.01
239 | 0.01
19.5 | 0.01
72.3 | 0.01
284 | 0.03
32.7 | 0.03
253 | 0.03
26.2 | 0.01
260 | 0.03
21.1 | 0.01
349 | 0.01
242 | 0.04
20.6 | 0.01

On average, the best algorithm is RG

The area can reduce by 40%-50% (adr4, f51m, root, z4)

308
861
240
839
333
119
241
120
495
339
310
349
330
468
365
817
424

99

Experimental results (4)

* We have compared the results of our heuristics with the optimal EP-
SOP:

* without rest:

* for the 76% of the benchmarks, the result is optimal

* for the 88% of the benchmarks, the gap is below 10%
* with rest:

* for the 64% of the benchmarks, the result is optimal

* for the 84% of the benchmarks, the gap is below 10%

Conclusions

*The heuristic algorithm often finds the optimal form
*In 35% of the cases EP-SOP has a lower area
* Projection and reoptimization add a limited time overhead

*This suggests to use EP-SOPs as a fast post-processing step after
SOP minimization

