
Multi-Level Logic with Constant Depth: Multi-Level Logic with Constant Depth:

Recent Research from ItalyRecent Research from Italy

Researchers:

Anna Bernasconi (U. Pisa), Valentina Ciriani (U.
Milano-Crema) , Roberto Cordone (U. Milano-Crema),

Fabrizio Luccio (U. Pisa), Linda Pagli (U. Pisa),
Tiziano Villa (U. Verona, speaker)

DIMACS-RUTCOR Workshop on Boolean
and Pseudo-Boolean Functions

in Memory of Peter L. Hammer

Rutgers, January 19-22, 2009

2-SPP: synthesis and testing2-SPP: synthesis and testing

Three-level logicThree-level logic

Three level networks of the form (Debnath, Sasao, Dubrova,
Perkowski, Miller and Muzio):

f = g1  g2

Where:

 gi is an SOP form

  is a binary operator:

 = AND : AND-OR-AND forms
 = EXOR: AND-OR-EXOR forms (EX-SOP)

OR-AND-OR (Sasao)

SPP (Luccio, Pagli): EXOR-AND-OR

An SPP form is a sum (OR) of pseudoproducts

The SPP problemThe SPP problem: find an SPP form for a
function F with the min. number of literals

PseudoproductPseudoproductPseudoproductPseudoproduct PseudoproductPseudoproduct

EXOR factorEXOR factor

SPP forms

SPP forms are a direct generalization of SOP forms:

15132154321 x)x)(xxx(xx)xxx(x +⊕⊕⊕+⊕⊕⊕

SPP forms

15132154321 x)x)(xxx(xx)xxx(x +⊕⊕⊕+⊕⊕⊕

x1
x2

x3

x4

x1
x5

x1
x2

x3

x5

x1

SPP forms

Advantages

 Compact expressions

 Good testability of EXORs

 Three levels of logic

Disadvantages

Unbounded fan-in
EXORs

 Impractical for many
technologies

Huge minimization
time

The affine space A over the vector space
V ⊆ {0,1}n (with operator ⊕) is:

A = {p ⊕ v | v∈V} = p ⊕ V

Translation
Point

Vector
Space

Affine spaces

 x1 x2 x3 x4
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

=

A

Affine space

⊕ 1 0 0 0

p

Translation point
 x1 x2 x3 x4
 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0

V

Vector space

Pseudocubes

ProductProduct = characteristic function of a cubecube

41 xx ⋅

PseudoproductPseudoproduct = characteristic function of a
pseudocubepseudocube

X1 X2 X3 X4
 1 0 0 1
 1 0 1 1
 1 1 0 1
 1 1 1 1

)xx(xx 4321 ⊕⊕⋅

X1 X2 X3 X4
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

Canonical Expressions CEX

One of them is called CEXCEX

A pseudocube can be represented by
different pseudoproducts

)x)(xx(x 4131 ⊕⊕
X1 X2 X3 X4
 0 0 1 1
 0 1 1 1
 1 0 0 0
 1 1 0 0

)x)(xx(x 4331 ⊕⊕

)x)(xx(x 4341 ⊕⊕

CEX(P) =CEX(P) =

P =

Pseudocubes and Affine Spaces

Theorem:

PseudocubesPseudocubes ⇔⇔ Affine Spaces Affine Spaces

Corollary:

Cubes Cubes ⊆⊆ Affine Spaces Affine Spaces

Pseudocube can be represented by:
CEX
Affine Space: p ⊕ V

Affine Spaces Affine Spaces

X1 X2 X3 X4
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

X3 X4
X1 X2

00

01

11

10

00 01 11 10

Pseudoproduct:
)xx(xx 4321 ⊕⊕⋅

⊕
X1 X2 X3 X4
 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0

 1 0 0 0=

Red: canonical variables

Black: non canonical variables

Cubes as Affine Spaces Cubes as Affine Spaces

X1 X2 X3 X4
 1 0 0 1
 1 0 1 1
 1 1 0 1
 1 1 1 1

X3 X4
X1 X2

00

01

11

10

00 01 11 10

Red: canonical variables

Black: non canonical variables

Product:

41 xx ⋅

⊕
X1 X2 X3 X4
 0 0 0 0
 0 0 1 0
 0 1 0 0
 0 1 1 0

 1 0 0 1=

Union of PseudocubesUnion of Pseudocubes

The union of of two pseudocubes is a
pseudocube iff they are affine spaces over the
same vector spacevector space.

A = p ⊕ V, A’ = p’ ⊕ V and p ⊕ p’ ∉ V

Bases of V v1, … ,vk

 A ∪ A’= p ⊕ V’

Bases of V’ v1, … , vk, p ⊕ p’

2-SPP forms

15132542 x)x)(xx(xx)x(x +⊕⊕+⊕

x2

x4

x1

x5

x2

x3

x5

x1

2-pseudoproduct 2-EXOR

Solving the Disadvantages of SPP

2-SPP forms:

 Are still very compact
 Only 4% more literals than SPP expressions

 Have a reduced minimization time
 92% less time than SPP synthesis

 Are practical for the current technology
 EXOR gates with fan-in 2 are easy to implement

Parity Function

SOP: is the sum of all the minterms with an odd
number of positive literals.

Costs

 SPP: polynomial cost in n

 SOP: exponential cost in n

)x . xxx(x n4321 ⊕⊕⊕⊕⊕ ..SPP:

2-SPP gives exponential gain

SOP: is the sum of all the minterms (2n/2)

Costs

 2-SPP: polynomial cost in n

 SOP: exponential cost in n (2n/2)

2-SPP:)x (x ...)x)(xx(x n1-n4321 ⊕⊕⊕

 x1 x2 x3 x4

 0 0 0 1
 0 0 1 1
 0 1 0 1
 0 1 1 1

x3 x4
x1 x2

00

01

11

10

00 01 11 10

Product:

41 xx ⋅

CubesCubes

 x1 x2 x3 x4

 0 0 0 1
 0 0 1 0
 0 1 0 1
 0 1 1 0

x3 x4
x1 x2

00

01

11

10

00 01 11 10

2-pseudoproduct:

)x(xx 431 ⊕⋅

2-Pseudocubes2-Pseudocubes

Representation of 2-pseudocubes

A cube has an unique representation

A 2-pseudocube can be represented by different 2-pseudoproducts

97353421 x)x)(xx(x)xx(x ⊕⊕⊕

97553421 x)x)(xx(x)xx(x ⊕⊕⊕

97573421 x)x)(xx(x)xx(x ⊕⊕⊕

Canonical RepresentationCanonical Representation

97353421 x)x)(xx(x)xx(x ⊕⊕⊕

1x

1)x(x

1)x(x

1x

1)x(x

9

73

53

4

21














=
=⊕
=⊕

=
=⊕

} x,{x 21














=
=
=
=
=

=

1x

xx

xx

1x

xx

9

73

53

4

21

 }x , x{1, 94 }x , x,{x 753 }{x }{x 86

Representation of cubesRepresentation of cubes

97542 xxxxx

1x

1x

1x

1x

1x

9

7

5

4

2














=
=
=
=
=

 }x , x,x , x,x {1, 97542 }{x }{x }{x }{x 8631

Structure of 2-pseudoproductsStructure of 2-pseudoproducts

 }x , x{1, 94 }x , x,{x 753 }{x }{x 86} x,{x 21

Structure:

are the sets without complementations

 } x, x{1, 94 } x, x,{x 753 }{x }{x 86} x,{x 21

Structure

Union of 2-pseudocubes

A union of two 2-pseudocubes is a 2-pseudocube if

 The 2-pseudocubes have the same structure

 The complementations differ in just one set

 }x , x{1, 94 } x,x ,{x 753 }{x }{x 86} x,{x 21

 }{x }{x 86 }x , x{1, 94 }x , x,{x 753} x,{x 21

Union of 2-pseudocubes

The set with different complementations is split into two sets:
 A set containing the variables with the different

complementations
 A set containing the variables with the same complementations

∪
} x,x ,{x 753 }x , x{1, 94

 }{x }{x 86} x,{x 21

 }x , x{1, 94} x,{x 21 }x , x,{x 753
 }{x }{x 86

 }{x }{x 86

=
 }x , x{1, 94} x,{x 21 }x ,{x 75}{x3

2-SPP Minimization Problem2-SPP Minimization Problem

Boolean function F:
 single output
 represented by its ON-set

Problem:

Find a sum of 2-pseudoproducts that is a characteristic function for

F, and is minimal w.r.t. the number of literals/products

2-SPP Synthesis2-SPP Synthesis

Start with the minterms (points of the
function)

Perform the union of 2-pseudocubes in order
to find the set of

prime 2-pseudocubes

Set covering step

Data structure for the union

 We represent each different structure only once

Partitions with the same structure are grouped together

 We perform the union only inside the same
group

Minimal form property

SPP form: the minimal form depends on the variable ordering

SOP form: the minimal form does not depend on the variable
ordering

2-SPP form: the size of the minimal form does not depend on the
variable ordering

 Different 2-pseudoproducts represent the same 2-pseudocube

 But they have the same cost

A minimization exampleA minimization example

F = {0001, 0010, 0101, 0110, 1101}

X3 X4
X1 X2

00

01

11

10

00 01 11 10

An exampleAn example
the minterms:

0001 0010 0101 0110 1101

}x,x,x,x{1, 4321 }x,x,x,x{1, 4321}x,x,x,x{1, 4321 }x,x,x,x{1, 4321}x,x,x,x{1, 4321

have the same structure: } x,x, x, x{1, 4321

}x,x,x,x{1,}x,x,x,x{1, 43214321 ∪ }x ,{x }x ,x {1, 4321=

}x,x,x,x{1,}x,x,x,x{1, 43214321 ∪ }{x } x,x ,x {1, 2431=

…

An example: the unionAn example: the union

Structure: Sets:

 } x,{x } x, x{1, 4321

 }{x } x, x, x{1, 2431

 } x,x, x{ } x{1, 4321

 } x,{x } x, x{1, 2143

 } x,x, x,{x {1} 4321

 }{x } x, x, x{1, 1432

 } x, x, x{ }x{1, 4312

and

and

 }x ,{x }x ,x {1, 4321 }x ,{x } x,x {1, 4321and

 }{x } x,x ,x {1, 2431 }{x }x , x,x {1, 2431

 } x,x, x{ }x {1, 4321 }x ,x, x{ }x {1, 4321

 } x,{x } x,x {1, 2143

 } x,x, x,{x {1} 4321

 }{x } x,x , x{1, 1432

 } x,x , x{ }x{1, 4312

An exampleAn example

 }x ,{x }x ,x {1, 4321 }x ,{x } x,x {1, 4321∪
 }x ,{x }{x }x {1, 4321

 }{x } x,x ,x {1, 2431 ∪ }{x }x , x,x {1, 2431

 }x ,{x }{x }x {1, 4321

 }x ,{x }{x }x {1, 4321

 } x,x, x{ }x {1, 4321 ∪ }x ,x, x{ }x {1, 4321

An example: set coveringAn example: set covering

Prime 2-pseudoproducts:

 } x,{x } x,x {1, 2143

 } x,x, x,{x {1} 4321

 }{x } x,x , x{1, 1432

 } x,x , x{ }x{1, 4312

 }x ,{x }{x }x {1, 4321

Set covering

 }x ,{x }{x }x {1, 4321

 }{x } x,x , x{1, 1432

An example

2-SPP minimal form:

SOP minimal form:

)x(xxxxx 431432 ⊕+

431431432 xxxxxxxxx ++

Testability of 2-SPP forms

In collaboration with Rolf Drechsler

Testability is a major aspect of design process

Testability of 2-SPP Three-Level Logic Networks.Testability of 2-SPP Three-Level Logic Networks.

Fault models:Fault models:

 Stuck at fault Stuck at fault

 Cellular faultCellular fault

Fault Model

Fault model: Stuck at fault

 One input/output of a gate in circuit has a fixed constant value
(0 or 1)

x2
x4

x1
x5

x2
x3

x5x1

0
0
0
0
0
0

0
1

1

0

1

0

0

1

0

0

Redundancies

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

)x(xx)xx(x 431243 ⊕+⊕Ff =

=

Fully testable networks

A gate is fully testable if there does not exist
redundant fault on it

A circuit is fully testable if all its gates are fully
testable.

Our Aim

Study the testability of 2-SPP networks.

Are the minimal 2-SPP networks fully testable?

How can we improve the testability of a network?

2-SPP forms

15132542 x)x)(xx(xx)x(x +⊕⊕+⊕

x2

x4

x1

x5

x2

x3

x5

x1

SOP

Testability

Prime and irredundant SOP networks are fully testable in the
SAFM

2-SPP minimal forms contain:
 EXOR part
 SOP part

 prime
 irredundant

We must show:
 EXOR gates are fully testable
 The inputs to the SOP part can have all possible values

Inputs to the SOP partInputs to the SOP part

1x

1)x(x

1)x(x

1x

1)x(x

9

73

53

4

21














=
=⊕
=⊕

=
=⊕

=

1x

1)x(x

1)x(x

1)x(x

1x

1)x(x

9

75

73

53

4

21
















=
=⊕
=⊕
=⊕

=
=⊕

System of maximum rank

=⊕⊕⊕ 97353421 x)x)(xx(x)xx(x

9757353421 x)x)(xx)(xx(x)xx(x ⊕⊕⊕⊕

Testability of 2-SPPs

Main results:

 Theorem: 2-SPP forms minimal w.r.t. the number of 2-
pseudoproducts are

NOT fully testable

 Theorem: 2-SPP forms minimal w.r.t. the number of literals are

fully testable

Counter-example: Theorem 1

)x(xx)xx(x 431243 ⊕+⊕

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

Ff =

=

Theorem 2

Theorem 2: 2-SPP forms minimal w.r.t. the number of literals are
fully testable

Proof (sketch):

 2-SPP is a SOP with an upper EXOR level

 The SOP networks are fully testable

 All possible values can be applied to the AND layer (max. rank
of the system of EXORs)

 The EXOR gates are fully testable

Improving the testability

Is the minimality really necessary for testability?

No

For SOP forms:
 Irredundancy (OR)
 Primality (AND)

For 2-SPP forms:
 Irredundancy (OR)
 AND-Irredundancy (AND)
 EXOR-Irredundancy (EXOR)

SOP properties

Irredundancy:

 A SOP form for a function f is irredundant if deleting any
product from it

 we get a different function

Primality:

 A SOP form for a function f is prime if deleting any literal from
any product

 we get a different function

2-SPP properties

Irredundancy:

 A 2-SPP form for a function f is irredundant if deleting any 2-
pseudoproduct from it

 we get a different function

AND-Irredundancy

 A 2-SPP form for a function f is AND-irredundant if deleting any
factor from any 2-pseudoproduct

 we get a different function

EXOR-Irredundancy

A 2-SPP form for a function f is EXOR-irredundant if replacing
any literal with 0 or 1 in any EXOR factor

 we get a different function

)x(xx)xx(x 431243 ⊕+⊕

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

=

Is not EXOR-irredundant!

Minimal 2-SPP forms

Definition: a 2-SPP form is OR-AND-EXOR-
irredundant if it satisfies the three properties.

Theorem: OR-AND-EXOR-irredundant 2-SPP forms
are fully testable in the SAFM.

2-SPP minimal w.r.t. literals:
 are OR-AND-EXOR- irredundant

2-SPP minimal w.r.t. 2-pseudoproducts:
 are not EXOR- irredundant

Making a network testable

We try to replace each

with

without changing the function

p)x(x ji ⊕

px or px or pxor px jiji

Example

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

)x(xx)xx(x 431243 ⊕+⊕F =

Fully testable!

Practical Issues

 The synthesized form could be non-minimal:
The set covering phase is not always exact

 We seldom have redundancies in practice

 We can design fully testable non- minimal
forms (heuristics)

MetricsMetrics

CMOS:
 k fan-in AND/OR gates cost k literals
 k fan-in EXOR gates cost 4(k-1) literals

 2-EXOR gates cost 4 literals:

FPGA:
 k fan-in AND/OR/EXOR gates cost k literals

 2-EXOR gates cost 2 literals

212121 xxxx)x(x +=⊕

Conclusion

Theoretical results:
 2-SPP minimal w.r.t. the number of literals are fully testable
 2-SPP minimal w.r.t. the number of 2-pseudoproducts are NOT

fully testable
 But we can make them fully testable

2-SPP vs SOP
 2-SPP forms are more compact
 SOP and 2-SPP are fully testable
 Minimization time for 2-SPP is too high

 heuristics

EXOR Projected Sum of ProductsEXOR Projected Sum of Products

Motivations

Two level logic (SOP) is the classical approach to logic synthesis

Three or four level networks

 are more compact (less area) than SOPs

 are harder to optimize

Our purpose is to find a compact formcompact form with

 a bounded number of levels

 an efficient minimization algorithm

Overview

Derivation of EP-SOPs (EXOR-Projected Sum of Products) from
SOPs

EP-SOP representation
 without remainder
 with remainder

Projection algorithms

Minimal EP-SOP forms:
 Computational complexity (NPNP-hard)
 Approximation algorithms

Experimental results

Example SOP vs EP-SOPExample SOP vs EP-SOP

X3 X4
X1 X2

00

01

11

10

00 01 11 10

1

0

1

10

11

1

1

0

0

1

0 1 1

0

X3 X4
X1 = X2

 0

 1

00 01 11 10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00 01 11 10

1 01

11

1

0 1

Crossing product

Example SOP vs EP-SOPExample SOP vs EP-SOP

)x x xx x)(xx(x)x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

43321321321321 xx xxx xxx xx x xxx ++++
minimal SOP form

EP-SOP form

Minimization of the EP-SOPMinimization of the EP-SOP

X3 X4
X1 = X2

 0

 1

00 01 11 10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00 01 11 10

1 01

11

1

0 1

X1 = X2

 0

 1

00 01 11 10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00 01 11 10

1 01

11

1

0 1

Example SOP vs EP-SOPExample SOP vs EP-SOP

)xxx)(x(x)xx(x 43321321 +⊕+⊕

43321321321321 xx xxx xxx xx x xxx ++++
minimal SOP form

minimal EP-SOP form

EP-SOP networksEP-SOP networks

SOP1

two levels

SOP2

two levels

2ji1ji)SOPx(x)SOPx(x ⊕+⊕

xi

xJ

EP-SOP without remainderEP-SOP without remainder
Given Given

 a SOP expression a SOP expression φ φ

 a pair of variables xa pair of variables xi i and xand xjj

The SOP The SOP φ is equivalent toφ is equivalent to

where:where:

 is the projection of φ in the space is the projection of φ in the space

 is the projection of φ in the space is the projection of φ in the space

)x(x)x(x jiji ⊕⊕ ϕ⊕+ϕ⊕
EP-SOP without remainder

⊕ϕ
⊕ϕ

ji xx =

ji xx =

EP-SOP without remainder: projectionEP-SOP without remainder: projection

For each product For each product pp in in the SOP in in the SOP φ:φ:

 If If pp contains both variables contains both variables xxi i and xand xjj::

 it ends up in one of the two SOPs andit ends up in one of the two SOPs and

 with a literal removalwith a literal removal

 If If pp contains one variable or none (contains one variable or none (crossingcrossing):):

 it ends up in it ends up in bothboth SOPs and SOPs and

 ⊕ϕ ⊕ϕ

 ⊕ϕ ⊕ϕ

Example of projectionExample of projection

43321321321321 xx xx x xxx xxx xxx ++++

EP-SOP:EP-SOP:
)x x xx x)(xx(x)x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

min SOP:min SOP:

The EP-SOP form is not minimal!The EP-SOP form is not minimal!

Minimization of the EP-SOP formMinimization of the EP-SOP form

EP-SOP:EP-SOP:

)x x xx x)(xx(x)x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

)xxx)(x(x)xx(x 43321321 +⊕+⊕

SOP minimization SOP minimization

Example EP-SOP with remainderExample EP-SOP with remainder

X3 X4
X1 X2

00

01

11

10

00 01 11 10

1

0

1

10

11

1

1

0

0

1

0 1 1

0

X3 X4

X1 = X2

 0

 1

00 01 11 10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00 01 11 10

1 01

11

0

0 0

X3 X4
X1 X2

00

01

11

10

00 01 11 10

1

0

0

00

00

0

1

0

0

1

0 0 1

0

remainder

Crossing
product

EP-SOP with remainderEP-SOP with remainder

Consider Consider

 a SOP expression a SOP expression φ φ

 a couple of variables xa couple of variables xi i and xand xjj

The SOP The SOP φ can be written asφ can be written as

ρ+ϕ⊕+ϕ⊕ ⊕⊕)x(x)x(x jiji

EP-SOP with remainder

remainder

EP-SOP with remainder: projectionEP-SOP with remainder: projection

Given a SOP Given a SOP φ and two variables xφ and two variables xi i and xand xj j ::

For each product For each product pp in in φ φ

 If If pp contains both variables contains both variables
it ends up in one of the two SOPs andit ends up in one of the two SOPs and

 If If pp contains one variable or none (contains one variable or none (crossingcrossing))
it ends up in the remainder it ends up in the remainder ρρ

 ⊕ϕ ⊕ϕ

43321321 xxx)x(x)xx(x +⊕+⊕
43321321321321 xx xxx xxx xx x xxx ++++SOPSOP

EP-SOPEP-SOP

EP-SOP forms EP-SOP forms

43321321 xxx)x(x)xx(x +⊕+⊕

43321321321321 xx xxx xxx xx x xxx ++++
SOP form

EP-SOP form without remainder
)xxx)(x(x)xx(x 43321321 +⊕+⊕

EP-SOP form with remainder

Minimal forms

SOP and EP-SOP have related sizes

 Does a minimal SOP produce a minimal EP-SOP?

 How to choose xHow to choose xi i and xand xjj?

Minimal forms

Trivial idea:

 try all variables pairs

 project the SOPs (the projection algorithms are
polynomial)

 If is an optimal SOP
 and might be optimal

 Bad news: and are not optimal even if is! ⊕ϕ ⊕ϕ

 ⊕ϕ ⊕ϕ

ϕ

ϕ

Minimizing and is as difficult as
optimizing a generic SOP form.

Theorem: Even if is optimal, minimizing
and is an NPNP-hard problem.

Computational complexity

Even if the original SOP form is minimal,
we must further minimize and : ⊕ϕ ⊕ϕ

min
ji

min
ji)x(x)x(x ⊕⊕ ϕ⊕+ϕ⊕

 ⊕ϕ ⊕ϕ

ϕ ⊕ϕ
 ⊕ϕ

Approximation algorithms

Good news:

 If we choose a good strategy we can produce a near-optimal EP-
SOP in polynomial time

 Strategy:
– Choose the pair of variables appearing in the largest number of

products of φφ
– Project φ with respect to that couple φ with respect to that couple

3.3. minimize the two projected SOPs with a two-level logic heuristic minimize the two projected SOPs with a two-level logic heuristic

 The algorithm is polynomial:The algorithm is polynomial:
 O((nO((nvarvar))22 ∙ n ∙ nprodprod))

 O(nO(nvarvar ∙ n ∙ nprodprod))

 polynomial (e.g., using Espresso not exact)polynomial (e.g., using Espresso not exact)

Approximation algorithms

Theorem. The resulting number of products is at The resulting number of products is at
most:most:

(4 - 2ν/ |φ|φ|) times the optimum (without remainder)

twice the optimum (with remainder)

even without reoptimizing and .

The polynomial reoptimization of the two SOPs can improve the
result

 ⊕ϕ ⊕ϕ

Approximation algorithms

A sketch of the proof:

 The optimal EP-SOP costs at least ½ of the optimal SOP

 Without remainder:
 the products with both variables appear only once in the projected

SOPs
 the other products appear twice

 With remainder:
 the products with both variables appear only once in the projected

SOPs
 the other products appear in the remainder

Experimental results (1)Experimental results (1)

 ESPRESSO benchmark suite

 Four variants of the algorithm

 without remainder (N) and with remainder (R)

 with global frequency (G) and local frequency (L)
(the same couple of variables for all outputs
or a specific couple for each output)

 Physical area and delay computed by SIS

 Pentium 1.6 GHz with 1GB RAM

Experimental results (2)Experimental results (2)

The area of the XOR gates cannot be neglected (esp. for L)

Nevertheless, in 35% of the cases EP-SOP has a lower area

Experimental results (3)Experimental results (3)

On average, the best algorithm is RG

The area can reduce by 40%-50% (adr4, f51m, root, z4)

Experimental results (4)Experimental results (4)

We have compared the results of our heuristics with the optimal EP-
SOP:

 without rest:
 for the 76% of the benchmarks, the result is optimal
 for the 88% of the benchmarks, the gap is below 10%

 with rest:
 for the 64% of the benchmarks, the result is optimal
 for the 84% of the benchmarks, the gap is below 10%

ConclusionsConclusions

The heuristic algorithm often finds the optimal form

In 35% of the cases EP-SOP has a lower area

Projection and reoptimization add a limited time overhead

This suggests to use EP-SOPs as a fast post-processing step after
SOP minimization

