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The Big Answer

Theorem (Prékopa 1971)

If a random vector ξ has a log-concave density, then its law is log-concave.

What makes the beauty of this Theorem?

The statement is very simple.

The result is powerful. Insertion

The consequences are manifold

Key for convexity theory in probabilistic programming. Impact on

Numerics Insertion

Stability

Structure
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Theorem (Prékopa 1971)

If a random vector ξ has a log-concave density, then its law is log-concave.

What makes the beauty of this Theorem?

The statement is very simple.

The result is powerful. Insertion

The consequences are manifold

Key for convexity theory in probabilistic programming. Impact on

Numerics Insertion

Stability

Structure
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Stability
Optimization problem: min{f (x) | x ∈ C, P(ξ ≤ Ax) ≥ p}

Distribution of ξ rarely known =⇒ Approximation by some η =⇒ Stability?

Solution set mapping: Ψ(η) := argmin {f (x) | x ∈ C, P(η ≤ Ax) ≥ p}

Theorem (R.H./W.Römisch 2004)

f convex, C convex, closed, ξ has log-concave distribution function

Ψ(ξ) nonempty and bounded

∃ x ∈ C : P(ξ ≤ Ax) > p (Slater point)

Then, Ψ is upper semicontinuous at ξ:

Ψ(η) ⊆ Ψ(ξ) + εB for dK (P ◦ η−1, P ◦ ξ−1) < δ

If in addition

f convex-quadratic, C polyhedron,

ξ has strongly log-concave distribution function,

then Ψ is locally Hausdorff-Hölder continuous at ξ:

dHaus(Ψ(η), Ψ(ξ)) ≤
√

dK (P ◦ η−1, P ◦ ξ−1) (locally around ξ)
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Strongly log-concave distribution functions

When is a distribution function Fξ strongly log-concave?

log Fξ(λx + (1− λ)y) ≥ λ log Fξ(x) + (1− λ) log Fξ(y) + κλ(1− λ)‖x − y‖2

Proposition

ξi independent, Fξi strongly log-concave =⇒ Fξ strongly log-concave.

Example

The multivariate normal distribution function with independent
components is strongly log-concave on bounded convex sets.

The uniform distribution on multivariate intervals [a, b] is strongly
log-concave on int [a, b].

Question 1: Density strongly log-concave =⇒ Distribution function strongly
log-concave?

Question 1’: Multivariate normal distribution function strongly log-concave?
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Failure of rotation invariance of strong log-concavity

uniform distribution on unit square and log

45o rotation of unit square
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Lipschitz continuity of distribution functions of
quasi-concave probability measures

Definition

A probability measure P on Rn is quasi-concave if

P(λA + (1− λ)B) ≥ min{P(A), P(B)}

for all λ ∈ [0, 1], A, B ∈ B(Rn).

Log-concavity (and α-concavity) implies quasi-concavity.

Theorem (R.H./W.Römisch 2005)

Let ξ have a quasi-concave law P and denote its distribution function by Fξ.

Fξ is Lipschitz ⇐⇒ Fξ is continuous

⇐⇒ supp P /∈ canonic hyperplane ⇐⇒ Var ξi 6= 0 ∀i

Corollary

If the s-dimensional random vector has a density fξ such that f−1/s
ξ is convex,

then its distribution function Fξ is Lipschitz continuous.
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Lipschitz continuity of singular normal distributions

Σ =

(
1 0
0 0

)
Σ =

(
1 1
1 1

)
Σ =

(
1 −1
−1 1

)
supp P

Ann Oper Res

Fig. 1 Distribution functions of 2-dimensional singular normal distributions with covariance matrix having
rank one (see text)

2 Lipschitz continuity of quasi-concave distributions

We start this section by introducing the class of quasi-concave probability measures (see
Prékopa 1995). By P(Rs) we denote the set of probability measures on R

s .

Definition 2.1 A probability measure μ ∈ P(Rs) is called quasi-concave whenever

μ(λA + (1− λ)B) ≥min{μ(A),μ(B)}
holds true for all convex and Borel measurable subsets A,B ⊆ R

s and all λ ∈ [0,1] such
that λA + (1− λ)B is Borel measurable.

It is well known that a large class of prominent multivariate distributions shares the prop-
erty of being quasi-concave. Among those are the multivariate normal distribution (nonde-
generate or singular), the Dirichlet-, Pareto-, Gamma-, Log-normal distributions (possibly
with a restricted range of parameters) as well as uniform distributions over compact, convex
subsets of R

s (see Prékopa 1995; Borell 1975). Consequently, all future statements in this
section apply in particular to singular normal distributions.
For the proof of our Lipschitz criterion, we shall make use of the following three propo-

sitions:

Proposition 2.1 A quasiconcave measure μ ∈ P(R) has either a density or coincides with
some Dirac measure, i.e. μ = δx for some x ∈ R.

Proof Follows immediately from Theorem 3.2 in Borell (1975). �

Proposition 2.2 If for all marginal distributions μi of μ ∈ P(Rs) there exist bounded den-
sities on R, then the distribution function Fμ of μ is Lipschitz continuous.

Proof See Proposition 3.8 in Römisch and Schultz (1993). �

Proposition 2.3 If μ ∈ P(R) is a quasiconcave measure with density fμ, then fμ is
bounded.

Proof According to Theorem 3.2 in Borell (1975), the possibly extended-valued function
1/fμ is convex and the support of μ is a convex subset of R. Assuming that fμ is un-
bounded, there exists a sequence {xn} ⊆ R such that fμ(xn) ≥ n. If {xn} is unbounded, then,
without loss of generality, it is increasing, hence [x1,∞) ⊆ suppμ and {1/fμ(xn)} is de-
creasing. Since 1/fμ is convex, it follows that 1/fμ is decreasing on [x1,∞). Therefore,
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René Henrion 80th birthday of Professor András Prékopa
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Linear probabilistic constraints with Gaussian
coefficient matrix: structural properties

Feasible Set: Mp := {x ∈ Rn | P(Ξx ≤ a) ≥ p}

Denoting by ξi the rows of Ξ, we assume that ξi ∼ N (µi , Σi) ∀i .

Theorem (R.H. 2007)

Mp is compact if p > min
i
{Φ(‖µi‖Σ−1

i
)}

(Φ = one-dimensional standard normal distribution function)

Mp is empty if p ≥ min
ai <0

{Φ(‖µi‖Σ−1
i

)}

If a ≥ 0 then Mp is a nonempty and star-shaped (=⇒ connected) set.
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Linear probabilistic constraints with Gaussian
coefficient matrix: convexity

Mp := {x ∈ Rn | P(Ξx ≤ a) ≥ p} vec Ξ ∼ N (µ, Σ) (ξi = rows of Ξ)

Theorem (Prékopa 1974)

If all cross covariance matrices Cov (ξi , ξj) are proportional, then Mp is convex
for p ≥ 0.5. The same holds true, if the ξi refer to the columns of Σ.

Theorem (R.H./C. Strugarek 2008)

If all ξi are pairwise independent (not the components of ξi !), then Mp is
convex for p ≥ p∗ := Φ(max{

√
3, τ}) with

τ := max
i

λ
(i)
max [λ

(i)
min]

−3/2 ‖µi‖

λ
(i)
max , λ

(i)
min := largest and smallest eigenvalue of Σi .

Question: Does it hold true that Mp is convex for p ≥ 0.5 (or: p ≥ p̄) for any
multivariate normal distribution of the elements of Ξ?

René Henrion 80th birthday of Professor András Prékopa
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Linear probabilistic constraints with a random
coefficient row vector

Mα
p := {x ∈ Rn | P(〈ξ, x〉 ≤ α) ≥ p}

Theorem (R.H. 2007)

Let ξ have a density. Then, there exists some d such that

Mα
p = {d}+

(
M−α

1−p

)c
∀α 6= 0 ∀p ∈ (0, 1)

Result has an impact on properties which are not affected by translation and
closure (e.g., convexity, boundedness, nontriviality).
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Linear probabilistic constraints with Gaussian
coefficient matrix: Gradients

Mp := {x ∈ Rn | P(Ξx ≤ a) ≥ p} vec Ξ ∼ N (µ, Σ) (ξi = rows of Ξ)

P(Ξx ≤ a) ≥ p} = Φ0,Σ(x)(α(x))

(Σ(x))i,j := 〈x , Cov (ξi , ξj)x〉
αi(x) := ai − 〈µi , x〉

=⇒ for fixed x : value of a multivariate normal distribution function Question:

Gradients?

Sensitivities of normal distribution functions w.r.t. correlations?
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Gradients?

Sensitivities of normal distribution functions w.r.t. correlations?
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Boldog éveket,
jó egészséget

és még sok uj tételt
kivánok önnek!
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Uniform Distribution on the Disk

Formula for the distribution function:

Fξ(x, y) =


ϕ(x, y) if x ≤ 0, y ≤ 0
2ϕ(0, y)− ϕ(−x, y) if y ≤ 0, x ≥ 0
2ϕ(x, 0)− ϕ(x,−y) if y ≥ 0, x ≤ 0
1− 2ϕ(0,−y)− 2ϕ(−x, 0) + ϕ(−x,−y) if y ≥ 0, x ≥ 0

,

where

ϕ(x, y) :=

{
1

2π

(
x
√

1− x2 + y
√

1− y2 + 2yx + arcsin x − arcsin
(
−

√
1− y2

))
if x2 + y2 ≤ 1

0 else

-1

0

1

2

-1

0

1

20.0

0.5

1.0 Check log-concavity!

Density is a constant =⇒ log-concave.

back

René Henrion 80th birthday of Professor András Prékopa



Probabilistic constraints in hydro power management

Numerical experiments for Electricité de France (A. Möller, WIAS Berlin)
Profit maximization in hydro power production, reservoir with random inflow and prices, probabilistic filling level
constraints.
Optimal release policy with weekly decisions over one year (n=52):
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Optimal release policy with daily decisions over half a year (n=182):
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