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The Big Answer

Theorem (Prékopa 1971)
If a random vector ¢ has a log-concave density, then its law is log-concave.
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The Big Answer

Theorem (Prékopa 1971)
If a random vector ¢ has a log-concave density, then its law is log-concave.

What makes the beauty of this Theorem?
@ The statement is very simple.
@ The result is powerful.
@ The consequences are manifold

Key for convexity theory in probabilistic programming. Impact on
@ Numerics
@ Stability
@ Structure
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Stability

Optimization problem:  min{f(x) | x € C, P(¢ < Ax) > p}
Distribution of ¢ rarely known = Approximation by some n = Stability?

Solution set mapping: W(7) := argmin {f(x) | x € C, P(n < Ax) > p}
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Stability

Optimization problem:  min{f(x) | x € C, P(¢ < Ax) > p}

Distribution of ¢ rarely known = Approximation by some n = Stability?
Solution set mapping: W(7) := argmin {f(x) | x € C, P(n < Ax) > p}
Theorem (R.H./W.R&misch 2004)

@ f convex, C convex, closed, £ has log-concave distribution function

@ V(&) nonempty and bounded
@ dxe C: P(¢< Ax) > p (Slater point)

Then, V s upper semicontinuous at &:

V(n) CW(E)+eB for dk(Pon ', Pot ') <é
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Stability

Optimization problem:  min{f(x) | x € C, P(¢ < Ax) > p}

Distribution of ¢ rarely known = Approximation by some n = Stability?
Solution set mapping: W(7) := argmin {f(x) | x € C, P(n < Ax) > p}
Theorem (R.H./W.R&misch 2004)

@ f convex, C convex, closed, £ has log-concave distribution function
@ V(&) nonempty and bounded
@ dxe C: P(¢< Ax) > p (Slater point)

Then, V s upper semicontinuous at &:
V(n) CW(E)+eB for dk(Po 77_1,IP’O§_1) <90

If in addition

@ f convex-quadratic, C polyhedron,

@ ¢ has strongly log-concave distribution function,
then V s locally Hausdorff-Hélder continuous at &:

Ohaus(W(1), W(€)) < V/dk(Pon—1,Po&-T) (locally around ¢)
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Strongly log-concave distribution functions

When is a distribution function F¢ strongly log-concave?

log Fe(Ax + (1 = A)y) > Alog Fe(x) + (1 = A)log Fe(y) + rA(1 = X)[[x — yII?
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Strongly log-concave distribution functions

When is a distribution function F¢ strongly log-concave?

log Fe(Ax + (1 = A)y) > Alog Fe(x) + (1 = A)log Fe(y) + rA(1 = X)[[x — yII?

Proposition

& independent, F¢,; strongly log-concave —- F, strongly log-concave.

@ The multivariate normal distribution function with independent
components is strongly log-concave on bounded convex sets.

@ The uniform distribution on multivariate intervals [a, b] is strongly
log-concave on int [a, b].
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Strongly log-concave distribution functions

When is a distribution function F¢ strongly log-concave?

log Fe(Ax + (1 = A)y) > Alog Fe(x) + (1 = A)log Fe(y) + rA(1 = X)[[x — yII?

Proposition

& independent, F¢,; strongly log-concave —- F, strongly log-concave.

@ The multivariate normal distribution function with independent
components is strongly log-concave on bounded convex sets.

@ The uniform distribution on multivariate intervals [a, b] is strongly
log-concave on int [a, b].

Question 1: Density strongly log-concave —- Distribution function strongly
log-concave?
Question 1’: Multivariate normal distribution function strongly log-concave?
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Failure of rotation invariance of strong log-concavity

uniform distribution on unit square and log

45° rotation of unit square
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Lipschitz continuity of distribution functions of
quasi-concave probability measures

Definition

A probability measure P on R" is quasi-concave if
P(AA+ (1 — A)B) > min{P(A),P(B)}

forall A € [0,1], A, B € B(R").

Log-concavity (and a-concavity) implies quasi-concavity.

Theorem (R.H./W.Rémisch 2005)

Let ¢ have a quasi-concave law P and denote its distribution function by Fe.

Fe is Lipschitz <= F¢ is continuous
< suppP ¢ canonic hyperplane <= Var¢; # 0 Vi
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Lipschitz continuity of distribution functions of
quasi-concave probability measures

Definition

A probability measure P on R" is quasi-concave if
P(AA+ (1 — A)B) > min{P(A),P(B)}

forall A € [0,1], A, B € B(R").

Log-concavity (and a-concavity) implies quasi-concavity.
Theorem (R.H./W.Rémisch 2005)

Let ¢ have a quasi-concave law P and denote its distribution function by Fe.

Fe is Lipschitz <= F¢ is continuous
< suppP ¢ canonic hyperplane <= Var¢; # 0 Vi

Corollary

If the s-dimensional random vector has a density f. such that fg‘/ ° is convex,
then its distribution function F¢ is Lipschitz continuous.
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Lipschitz continuity of singular normal distributions
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Lipschitz continuity of singular normal distributions
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Linear probabilistic constraints with Gaussian

coefficient matrix:

Feasible Set: | M, := {x € R" | P(Zx < ) > p} |

Denoting by & the rows of =, we assume that & ~ N (u;, ;) Vi.

Theorem (R.H. 2007)

@ M, is compact if p > m,i”{d’(”/“”z;‘ )}
(® = one-dimensional standard normal distribution function)

© My is empty if p > min{®(||u|; )}

@ /f a> 0 then M, is a nonempty and star-shaped (—- connected) set.
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Linear probabilistic constraints with Gaussian

coefficient matrix:

’Mp o= {xeR”\]P’(Exga)zp}‘ vec= ~ N(p,X) (& = rows of =)

Theorem (Prékopa 1974)

If all cross covariance matrices Cov (&;, &;) are proportional, then M, is convex
forp > 0.5. The same holds true, if the &; refer to the columns of .
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Linear probabilistic constraints with Gaussian

coefficient matrix:

’Mp o= {xeR”\]P’(Exga)zp}‘ vec= ~ N(p,X) (& = rows of =)

Theorem (Prékopa 1974)

If all cross covariance matrices Cov (&;, &;) are proportional, then M, is convex
forp > 0.5. The same holds true, if the &; refer to the columns of .

Theorem (R.H./C. Strugarek 2008)

If all ¢; are pairwise independent (not the components of &;!), then M, is
convex for p > p* := ®(max{\/3, 7}) with
min

7= max A AL [l

Af,",),.,x,)\ﬁf,),n := largest and smallest eigenvalue of ¥;.
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Linear probabilistic constraints with Gaussian

coefficient matrix:

’Mp o= {xeR”\]P’(Exga)zp}‘ vec= ~ N(p,X) (& = rows of =)

Theorem (Prékopa 1974)

If all cross covariance matrices Cov (&;, &;) are proportional, then M, is convex
forp > 0.5. The same holds true, if the &; refer to the columns of .

Theorem (R.H./C. Strugarek 2008)

If all ¢; are pairwise independent (not the components of &;!), then M, is
convex for p > p* := ®(max{\/3, 7}) with

(1)

= max A8, W 173/2
!

min

[l

Af,",),.,x,)\ﬁf,),n := largest and smallest eigenvalue of ¥;.

Question: Does it hold true that M, is convex for p > 0.5 (or: p > p) for any
multivariate normal distribution of the elements of =?
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Linear probabilistic constraints with a random

coefficient row vector

| Mg = {x € R" | P({&,X) < a) > p} |

Theorem (R.H. 2007)

Let & have a density. Then, there exists some d such that

Mg = {d} + (M;fp)c Va #0Vp € (0,1)

Result has an impact on properties which are not affected by translation and
closure (e.g., convexity, boundedness, nontriviality).
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Linear probabilistic constraints with Gaussian

coefficient matrix:

’Mp ={xeR"|P(=x< a) Zp}‘ vec= ~ N(p, X) (& = rows of =)
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Linear probabilistic constraints with Gaussian

coefficient matrix:

’Mp ={xeR"|P(=x< a) Zp}‘ vec= ~ N(p, X) (& = rows of =)

PEx<a)>p} = ¢** W (a(x)
(Z(x));; = (x,Cov (&, &)x)
a,-(X) = aj— </_L,',X>

— for fixed x: value of a multivariate normal distribution function
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Linear probabilistic constraints with Gaussian

coefficient matrix:

’Mp ={xeR"|P(=x< a) Zp}‘ vec= ~ N(p, X) (& = rows of =)

PEx<a)>p} = ¢** W (a(x)
(Z(x));; = (x,Cov (&, &)x)
a,-(X) = aj— </_L,',X>

— for fixed x: value of a multivariate normal distribution function Question:

Gradients?

Sensitivities of normal distribution functions w.r.t. correlations?
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Boldog éveket,
jO egészséget
és még sok uj tételt
kivanok 6nnek!
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Uniform Distribution on the Disk

Formula for the distribution function:

(X, ¥) if x<0,y<0
F _ ) 20(0,y) = o(=x,y) if y<0,x>0
€00V =0 20(x,0) — (x, —y) it y>0 x<0
1=2¢(0, —y) — 2¢(=x,0) + o(=x,—y) if y>0,x>0

where

6 1) __{ # (x\/1 —x2 4+ y /1 —y2+2yx+arcsinx—arcsin(—\/1 —yz)) it x2 4+ y2 <A1
R 0 else

Check log-concavity!

Density is a constant —> log-concave.
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Numerical experiments for Electricité de France (A. Moller, WIAS Berlin)

Profit maximization in hydro power production, reservoir with random inflow and prices, probabilistic filling level
constraints.

Optimal release policy with weekly decisions over one year (n=52):
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Optimal release policy with daily decisions over half a year (n=182):
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