
July 24, 1998 1

C++ Tools
for

Logical Analysis of Data

Eddy Mayoraz
July 1998

Table of content
Abstract . 1
Acknowledgement . 1
Foreword . 1

PART 1 : Functionalities 3

Introduction 4
General structure of the software .4
Characteristic of input data .5
Protocols of experiments .6

Binarization 7
Generation of candidate attributes .7
Extraction of a subset of candidate attributes8
Sorting and pre-selection of the candidate attributes 9
 Binarization and confidence interval .10
Goodness of the binarization .10

Pattern generation 11
Prime patterns of small degree .11
Patterns covering specific observations 12
Suppression of subsumed patterns .12

Theory formation 13
Extraction of small subsets of patterns13
Patterns weighting .13
Combination of pseudo-Boolean functions 14

PART 2 : User Guide 16

Introduction 17

How to run the program 18
Binarization .18

Input / output file names . 18
Sequencing the experiments . 18
The seed of the random generator . 19
Steps of the binarization method . 19

Pattern generation .21
Input-output file names and sub-sampling . 21
Depth-first-search . 21
Breadth-first-search . 22
Patching . 23
Cleaning the sets of patterns . 23

Theory formation .23

Input-output file names . 23
Weighting the patterns . 23

Input and output files 25
Input data file .25

Formal description . 25
Simple example of input data . 26
Constraints and semantic . 26

Output files .27
Outputs of the binarization . 27
Example of output of the binarization . 27
Outputs of the pattern generation . 28
Example of outputs of the pattern generation module 28
Outputs of the theory formation . 29

Bibliography .32

is of
a
ibes
ives
ding
ility

es in

994-
for

nsions
. The
ny

odi-
l or
y. We
gen-
ee for

er of
they
eters
inap-
Abstract This document describes a software designed to experiment Logical Analys
Data (LAD). First, while reminding the user what is LAD all about, it gives
complete description of the possibilities of the software. A second part descr
how to use the different programs. In a third part (to be completed soon) it g
an insight on the modular structure of this software as well as an understan
of the semantics of its components, in order to provide the reader the possib
to modify the existing code, to add new components or to reuse some modul
different contexts.

Acknowledge-
ment

The author developed the basis of the code described in this document in 1
1995, during a post-doctoral visit at RUTCOR—Rutgers University's Center
Operations Research, New Jersey. During the last three years, several exte
and improvements have been achieved at IDIAP and others are still ongoing
author is thankful to his colleagues, in particular to Miguel Moreira and John
Mariéthoz for their precious collaboration in this work.

Foreword This software has been designed for research purpose. Modularity was a pre-
requisite, so that each step of Logical Analysis can easily be suppressed, m
fied or replaced in the processing chain. Moreover, in any combinatoria
logical analysis, there are several mathematical tools that are used constantl
tried to identify these tools and to implement them in separate modules of
eral purposes, so that they can be reused easily as often as possible (s
example classesMatrix , binMatrix , setCovering). For the realization of
this project we choose the C++ programming language[1] for its popularity and
its reasonably high level of abstraction.

This software has been designed for research purpose only. In particular, this
means that at any level of the program, it is always assumed that both, the us
the executable and the programmer using parts of this software, know what
are doing. For example, there is no systematic test on erroneous param
passed to any functions, and in case of misusage of modules or calls in an

d out
lower

null

ut

nt

the
es.
arch

ain

. A

ral
ew
xed
ill
propriate sequence, the result is unpredictable. The only tests that are carrie
are those that can help the user in tracking errors in his code. These are
level tests such as checking indices out of range, detecting unexpected
pointers, and are done systematically.

This document contains three parts.Part 1andPart 2are intended for the user of
this software, whilePart 3 is intended to the developer interested in using, b
also modifying and extending, some pieces of this software.

• The first partpresents an overview of the method LAD and the differe
functionalities of this software.

• The second partfocuses of the usage of three executable filesbin , pat
and the , which are programs providing a simple access to most of
components of this software through primitive console-type interfac
These programs are however not user-friendly, and are meant for rese
purposes only.

• The third part(to be completed soon) presents a description of the m
structural components of this software.

In this text, the following terminology and notations are extensively used
database is a set of observations. Anobservation is a point in a multi-
dimensional space. Each dimension of this space is refereed to as anattribute.
All the observationsof a particular database are partitioned into seve
classes, and the main purpose of this software is the classification of any n
observationinto one of the existing classes. The classes will always be inde
by c= 1,…,C, but most of the time this index will be omitted and, instead, it w
be mentioned in the text whether theobservationswe consider are from the same
class or from different classes. Theobservationsand the attributes are indexed
by p = 1,…,P andi = 1,…,I respectively.

PART 1

Functionalities

into
Introduction

General structure of the software

The complete data processing implemented in this software can be divided
three phases:

• binarization of data;
• generation of patterns;
• formation of theory;

accessible through three executablesbin , pat andthe . A fourth executableLAD
consists in a sequential call of the first three.Figure 1illustrates this structure.

utive
s of

hand,
with

sing
ea
le,

is no
Figure 1. General structure of the software

The generation of positive and negative patterns is produced by two consec
calls to a unique pattern generation procedure, after interchanging the role
positive and negativeobservations.

Note The binarization phase is designed to handle multiple classes. On the other
the pattern generation and the theory formation are restricted to problems
two classes only.

Characteristic of input data

• The complete analysis is implemented in such a way as to handle mis
data. Any missing data is potentially matching any value, with the id
that the “worse” value for our need will always be chosen. For examp
when we check whether the dataset is consistent (i.e. whether there
two identical observationsin two different classes), twoobservations
(1,2,?) and (1,?,3) from two different classes are inconsistent.

• Three types ofattributes are distinguished:
- thebinary attributes taking values 0 and 1 or false and true;
- thenominal attributes with a small finite set of possible values;
- thecontinuous attributes with values in a continuous interval.

The different attributes are also divided intounordered attributes and

Read
pos.+neg.
patterns results

Test perfs
and output

Read
original
dataset

Split data
into

training/test

Read
original

datasets
training+test

Write
binary

training+test
datasets

Write
set of

patterns

LAD

training+test
datasets

Read binary

the

Interchange positive and negative points

dataset
training

Read binary

pat

formation

Theory

generation

Pattern

bin

Binarization

.

can
idate
pro-

s
se

ther

tage
train-
nce
ordered attributes. Two values of anordered attributeare comparable,
while values of anunordered attributesare not. Abinary attributeis con-
sidered as ordered, with order 0 < 1 or false < true. ANominal attribute
with more than two possible values isunordered, while a two-valuednom-
inal attribute is assimilated to abinary attributeand thus is considered as
ordered. Finally, acontinuous attribute is obviouslyordered.

• Eachordered attributeof the original database can be specified asposi-
tive, negative or without monotonicity constraints. If an attribute
is positive (resp. negative), it cannot be used todiscriminatebetween a
positive and a negativeobservationif the first one has a smaller (resp
larger) value than the second one for this attribute.

Protocols of experiments

The original data can be either already split into training set and test set, or it
be constituted of a single dataset. In the last case, it is often desirable to val
the learning method through some cross-validation processes. Two popular
tocols of experiments are available.

TheN x K-fold cross-validation consists inN iterations of the follow-
ing procedure. The dataset is split intoK parts (each class is split as evenly a
possible); fork=1,…,K, the training data is composed of every data except tho
of the kth part, which are used as test data. It is also possible to do it the o
way around, i.e. using one fold for training, and theK−1 remaining folds as test.

In theN-resampling cross-validation protocol, at each of theN itera-
tions, the dataset is split at random into two parts according to a given percen
(each class is split as evenly as possible). The percentage of data used for
ing can vary between two bounds. This is useful to highlight the depende
between the efficiency of the algorithm and the training size.

type
abase

arge

g, a

ece-
l set
ps:

for
Binarization
The purpose of the binarization is the transformation of a database of any
into a Boolean database. This step can be omitted whenever the original dat
is already fully Boolean. For simplicity, in the present text abinary attribute
refers to a two-valued attribute of the original database, while aBoolean
attribute denotes a binary attribute resulting from the binarization. ABoolean
attribute either

(i) is identical to onebinary attribute,
(ii) is associated to a specific value of onenominal attribute,
(iii) corresponds to onecut point, i.e. a critical value along one continu-

ous attribute.
In case (iii), the Boolean attributetakes the value 1 whenever thecontinuous
attribute is greater than the cut point. While in case (ii), the Boolean attribute
has the value 1 if and only if thenominal attribute has the associated value.

Note The number ofcut pointsplaced along the samecontinuous attributeis not lim-
ited: it can be 0, or it can be as big as necessary.

Note With this binarization ofnominal attributes, if for a test data anominal attribute
takes a value that never occurred in the training dataset, everyBoolean attribute
corresponding to thenominal attribute is coded as 0.

The first step of the binarization procedure consists in the generation of a l
set ofBoolean attributescalled thecandidate attributes. The main stage of
the binarization procedure is the extraction of a small subset ofBoolean
attributes from the set ofcandidate attributes. Since the set ofcandidate
attributescan be very large and the extraction procedure is time consumin
facultative step can precede the extraction, in which thecandidate attributesare
ordered according to some criteria, and only a subset of them with high pr
dence is kept. Finally, the binarization itself takes place, according to the fina
of Boolean attributes obtained. So, the binarization phase consists of four ste

• generation ofcandidate attributes;
• ordering and selection ofcandidate attributes with highest precedence;
• extraction of a ‘minimal’ subset ofcandidate attributes;
• construction of the binary data.

Generation of candidate attributes

Onecandidate attributeis generated for each originalbinary attribute. There are
V candidate attributesgenerated for eachnominal attributetakingV > 2 distinct
values in the training set. Currently, two different methods are implemented
the generation of the candidatecut points. The first method, calledone-cut-per-
change, introduces acut point(t,i) (i.e. of valuet along attributei) if there exist
two observationsa andb belonging to two different classes such thatai < t =
(ai+bi)/2 < bi and if there is noobservationc with ai < ci < bi. The second
method introduces acut pointt = (ai + bi)/2 if there exists a pair ofobservations
a belonging to Classc’ andb belonging to Classc’’ > c’ so that eitheri is non-

nt

t of
is

us
ain
sub-
ults.
et of
ght-

ap
monotonicandai ≤ bi, or i is positiveandai < bi, or i is negativeandai > bi. It
will be refereed to as theone-cut-per-pair method.

The number ofcandidate attributesgenerated is usually very large it is
sometimes better to reduce this set in two steps:

• The candidate attributesare sorted and only the best are kept. Differe
sorting procedures are discussed in SectionSorting and pre-selection of
the candidate attributes.

• A global optimization procedure discussed in SectionExtraction of a sub-
set of candidate attributes extracts a small subset ofcandidate attributes.

Extraction of a subset of candidate attributes

A candidate attributed discriminates a pair ofobservations(a,b), if the val-
ues taken byd for a and forb differ. In other words, acandidate attributed asso-
ciated to abinary attribute i discriminates (a,b) if and only if ai≠bi. A
candidate attributed associated to anominal attributei with valuev discrimi-
nates (a,b) if eitherai =v, or bi = v, but not both. Acandidate attributed associ-
ated to a continuous attributei with cut pointvaluet discriminates (a,b) if and
only if t is neither smaller nor bigger than both,ai andbi. If i is positive(resp.
negative), (t,i) discriminates betweena belonging to classc’ andb belonging
to classc’’>c’ only if ai < t < bi (resp.ai > t > bi).

A good set ofcandidate attributesshould be such that any pair ofobserva-
tions from two different classesis discriminatedby at least one attribute of the
set. The original method proposed for the extraction of a small subse
attributes from a given setT determines the smallest subset of attributes with th
property by solving the following set covering problem:

Min Σd ∈ T zd

s.t. Σd ∈ T s d ab ⋅ zd ≥ 1 ∀ (a,b) from different classes

zd ∈ {0,1} ∀ d ∈ T (1)

wheresdab = 1 if d discriminates betweena andb, andsdab = 0 otherwise.

In the current form of the software, this problem can be solved by vario
heuristics. This is satisfactory since, in this application, it is not critical to obt
the minimum subset of attributes. Experiment even showed that some larger
sets than the ones provided by our heuristics often led to better final res
Therefore, the current version of this procedure for the extraction of a subs
attributes provides the liberty to specify any positive integer value as the ri
hand-side of the constraints in (1).

The measure of pair discrimination ofcandidate attributesassociated to
continuous attributescan be refined if one considers that the larger the g
betweent andai andbi the better. For any pair ((a,b),(t,i)), thediscriminating
power of d = (t,i) betweena andb is defined as

r-

set-

two
the

or a

t

s, a

early
min{|t − ai| , |t − bi|} / (maxa ai − mina ai) (2)

if (t,i) discriminatesbetweena andb, and is 0 otherwise. The choice of the no
malization (denominator of expression(2))is arbitrary and it could be replaced
for example by the standard deviation along attributei. With this definition, the
maximaldiscriminating poweris 0.5, and thediscriminating powerof candidate
attributes associated tonominal or binary attributesis arbitrarily set to 0.5,
wheneverdiscrimination occurs.

In the current procedure for the extraction of a small subset ofcut points,
an alternative is proposed, based on thediscriminating powerinstead of the
binary discrimination. The integer linear program expressing the previous
covering problem inequation (1)is replaced by a linear program wheresdab is
the discriminating powerof d betweena and b, and the right-hand-side is an
arbitrary value representing the required minimal discrimination between
observationsfrom different classes. So, we have currently two methods for
extraction of a small subset ofcut points: the first one is based on abinary-dis-
crimination, while the second one is based on acontinuous-discrimina-
tion.

For both methods, it can happen that the problem has no solution f
specific right-hand-side. In such cases, for each pair (a,b) leading to a non satis-
fiable constraint, all thezd corresponding tosdab > 0are set to 1 and the constrain
is removed for the system of inequalities.

Sorting and pre-selection of the candidate
attributes

Three different ordering criteria are now available. In each of these method
weight is associated to eachcandidate attribute, which are then sorted in a
weight decreasing sequence. The first method, calledordering-by-entropy,
assumes that a goodcandidate attributecontains by itself a lot of information for
the global classification. A weight given by

max{ Σc pc
1 ln(pc

1) , Σc pc
0 ln(pc

0) } (3)

is associated to acandidate attribute, wherepc
s is the conditional probability that

anobservationa is in classc given that thecandidate attributetakes valuesona.
These weights are clearly non positive, and sinceΣc pc

1 = Σc pc
0 = 1, a weight is

0 if and only ifpc
s = 1 for onec=1,…,C and ones= 0,1.

The second method,ordering-by-minimal-discrimination, associ-
ates to acandidate attributed a weight proportional to its smallest non-zerodis-
criminating powerover all possible pairs ofobservationsfrom two different
classes. This weighting measures the robustness of an attribute and it cl
favors the ones associated to nominal orbinary attributes.

The motivation for theordering-by-minimal-discriminationmethod is that
a cut pointwith low discriminating powerfor some pairs ofobservationsshould

of

ne.

aced

nfi-
If

nto

nd at
the

set

rectly

of
set,
-
ali-

 set.
be avoided. Instead of the minimaldiscriminating power, the third method,
ordering-by-total-discrimination, associates to each attribute the sum
the discriminating powerfor all possible pairs ofobservationsfrom different
classes. This third weighting method has also some similarity with the first o
For example, an attribute associated to an originalbinary attributehas adiscrim-
inating powerof either 0 or 0.5 for each pair ofobservations, therefore its weight
depends on the number of pairs itdiscriminates.

 Binarization and confidence interval

In the final stage of the binarization procedure, the original database is repl
by a new one with oneBoolean attribute for each remainingcandidate attribute.

In the case the extracting method is based oncontinuous-discrimination,
we do care about thediscriminating powerof a cut pointfor each pair ofobser-
vations. However, it may happen that acut pointwhich has been selected for its
highdiscriminating powerbetween some pairs, has a poordiscriminating power
between some other pairs, and we would like to avoid relying on thiscut pointto
distinguish the latter pairs ofobservations. A natural way to model this is to
define a confidence intervalθ for all the cut points(t,i), and to define the bina-
rized coefficient as being 1 ifai > t+θ, 0 if ai < t−θ andunknown if |t−ai| ≤ θ.

In the current implementation, we have the possibility to set up this co
dence parameterθ, which is used through the whole binarization procedure.
this confidence is non-zero, the notions ofdiscriminationand ofdiscriminating
poweras well as the weighting methods for thecut pointsused in the previous
steps are modified as expected.

Goodness of the binarization

In most utilization of this software, the whole database available is first split i
two parts (see SectionProtocols of experiments): the training set is used for
the construction of the classifier, and thetesting set is used to measure the
quality of the classifier. This quality depends on each stage of the analysis, a
the end of the binarization procedure it is possible to measure what will be
best result that could ever be achieved, given this binarization.

Indeed, after a binarization of the training set and the validation
according to the same rule, it might happen that anobservationof one class in
the training set is identical to anobservationof another class in the validation
set. Assuming that the classifier elaborated in the next stages classifies cor
eachobservationof the training set, we can determine a list ofobservationsin
the validation set that will be surely incorrectly classified. Another source
unavoidable wrong classification is due to non-coherent binarized validation
i.e. containing identicalobservationsin different classes. A procedure is avail
able to count the total number of unavoidable wrong classifications on the v
dation set, assuming that the classifier commits no mistakes on the training

s. A

on is

nce

rsed.

re
tive

nicity
neg-

-

ber

adth-
e. A

-first-

ntrol

ing
at
uta-

only
Pattern generation
The second phase of logical analysis consists in the generation of pattern
pattern is a term covering at least one positiveobservationand none of the
negative ones. In contrast with the binarization phase, the pattern generati
designed for databases with two classes only. As illustrated in. General struc-
ture of the software, the same pattern generation procedure is called twice: o
when theobservationsof class 1 play the role of positiveobservationswhile
those of class 2 are the negative ones, and once when these roles are reve

For simplicity, we will describe this procedure only for the case whe
positive observationshave to be covered by patterns; the case where nega
observationsare covered is similar, when positive and negativeobservationsare
exchanged. Another difference between the two cases occurs when monoto
is involved. A positive (resp. negative) Boolean variable can not appear as a
ative (resp. positive) literal in apatternin the first situation, while it is the other
way around in the second situation.

We first generate a large set ofpatternsof small degree, then some addi
tional patternsare produced to cover the positiveobservationsnot covered by
any smallpatterns, finally different strategies are proposed to reduce the num
of patterns while keeping the most interesting ones.

Prime patterns of small degree

The present procedure for the generation of patterns of small degree is a bre
first-search that explores the whole set of terms up to a given maximal degre
breadth-first-search is slower and more space consuming than a depth
search, but is has the advantage to yield the exhaustive list ofpatternsup to a
certain degreed.

Beside the maximal degree of terms, several other parameters can co
this generation of patterns. The minimal number of positiveobservationscov-
ered by each interestingpattern can be set to higher values than 1.

The satisfactory coverage of each positiveobservationcan be any positive
integer. Setting this parameter to a low value will allow the procedure reduc
the number of positiveobservationsalong the way, by suppressing those th
have been sufficiently covered, and this can sensitively improve the comp
tional time. Note that this suppression ofobservationsis done after the comple-
tion of the exploration of each new depth in the tree of terms. Therefore, the
patternsthat will be omitted due to this optimization arepatternscovering only
observations already heavily covered bypatterns of smaller degree.

By definition, apattern is prime if none of its literals can be dropped
without violating this property. Consequently, aprime patternhas a minimal
Hamming distance of exactly 1from the set of negativeobservations. In some
occasions, it might be interesting to rely onpatternsof higher degree but more
distant from the negativeobservations. A positive integral parameter allows us

that
-

lot

-

m-
ut

o-

ec-

t

wo
-

specifying this minimal distance which is 1 by default.

On the other hand, in some other cases we may want to relax the property
none of the negativeobservationsis covered, since a term covering a large num
ber of positiveobservationsand just one or two negative ones may contain a
of information about our classification problem. The parameterξ has been intro-
duced for that purpose with the meaning that a term coveringp positiveobserva-
tions is allowed to cover

ξ p N −/N + (4)

negativeobservations, whereN − andN + denote the number of positive and neg
ativeobservations.

Patterns covering specific observations

The previous procedure has the advantage to enumerate all theprime patternsof
small degree. However, it suffers from a combinatorial explosion and if the nu
ber ofBoolean attributesis large, this breadth-first-search can not be carried o
beyond a very small degree. It may thus happen that someobservationsare cov-
ered by too fewpatterns or nopattern at all.

In this case, it can be desirable to find outpatternsfocusing on the cover-
age of each of theseobservations. Thus, the pattern generation module incorp
rate a second procedure, optional, for the coverage of uncoveredobservations.

Suppression of subsumed patterns

Even if all thepatternsgenerated by the procedure described in the previous s
tion are incomparable on the whole hypercube (as they are allprime), it might
happen that the set ofobservationsfrom the training set covered by apatternP1
is a subset of the set ofobservationscovered by anotherpatternP2. In this case,
patternP2 is said tosubsume P1. An optional procedure is provided to rule ou
the subsumed patterns. However, in the present implementation, apattern sub-
sumedonly by patternsof larger degree is not suppressed. Moreover, when t
patternscover the same set ofobservations, the one of larger degree is sup
pressed, and if the two degrees are identical, both are kept.

ted
pos-

ad of
et of

AD
sis is
tion
ave

trac-

g

and

s is
y

them.

all
hod

his
Theory formation
The previous stage produces two sets ofpatterns, one for the positiveobserva-
tions, and the other for the negativeobservations. In the last stage of this analy-
sis, to eachpattern is associated a weight, and the classifier will be represen
by a combination of the two pseudo-Boolean functions corresponding to the
itive and negativeobservations. However, even after the suppression ofsub-
sumed patterns, the set of remainingpatterns is still quite big. For practical
reasons, it was convenient to include at the beginning of this last stage (inste
at the end of the previous stage), another possibility to extract a smaller subs
interestingpatterns.

Extraction of small subsets of patterns

The suppression ofsubsumed patternsturned out to erase a large number ofpat-
terns in many applications. Nevertheless, one of the main advantages of L
versus other approaches, is that the interpretation of the results of the analy
simple and clearly understandable for any expert in the field the classifica
problem comes from. To make this interpretation feasible, it is important to h
a very small number ofpatterns, even if the prediction accuracy may slightly
drop. For that purpose, a second facultative procedure is provided for the ex
tion of a small number ofpatterns. The minimal subset ofpatternscovering the
same set of positiveobservationsis given in a natural way by a set-coverin
problem. As for the binarization (see SectionExtraction of a subset of candidate
attributes), the right-hand-side (minimal coverage) can be set to any value
different heuristics are available for the resolution of this NP-Hard problem.

Patterns weighting

When any trainingobservationis covered by at least onepattern, each of these
two pseudo-Boolean functions is 0on one set ofobservationsand positive on the
other. Therefore, a simple way to combine the two pseudo-Boolean function
by amajority vote, i.e. for each newobservation, the guessed class is given b
the pseudo-Boolean function with higher value.

Several methods for weighting thepatternshave been implemented in the
current version. The simplest one associates a constant value to each of
For several others, the weight is function of the number ofobservationscovered
by thepattern(linear, quadratic, cubic or exponential are available). Since sm
patternsmight be more desirable than large ones, another weighting met
associates a weight 2−d to apattern of degreed.

The next weighting method is a combination of two previous ones. In t
case, it is assumed that the weight of apattern should be proportional to the
probability that one of the trueobservationsof the pattern is in the list of our
observations. Therefore, apatternof degreed coveringp observationswill have
a weightp2-d.

lean
.

the

sitive

of
osi-

ider
rity
djusts

nt
itive

alf-
e

Finally, a fifth weighting method tends to determine the weights ofpat-
terns in order to increase the minimal non-zero value of each pseudo-Boo
function in the set of trainingobservations. Two different cases are considered
In the first one, the weights of each of the two sets ofpatternsare set indepen-
dently by solving the following linear program:

max k
s.t. Ax≥k

Σqxq= 1
xq≥ 0 , (5)

wherexq is the weight of theqth patternandA is a 0-1 matrix with one column
per pattern and one row perobservationin the class covered by thepatterns:
ai,q = 1if and only if theqth patterncovers theith observation. By opposition, in
the second case, the weightsx andy for thepatternsof the two pseudo-Boolean
functions are fixed simultaneously by the solution of:

max k
s.t. Ax≥k

By≥k
Σqxq +Σryr = 1
xq, yr ≥ 0 , (6)

whereA andB are two 0-1 matrices associated to the two sets ofobservations
and ofpatterns.

Combination of pseudo-Boolean functions

For many applications, there is no reason to believe that a majority vote is
best combination of the two pseudo-Boolean functionsf + andf − (for the posi-
tive class and the negative class respectively). For example, if the sets of po
and negativeobservationsare very unbalanced and so are the two sets ofpat-
terns, it would be reasonable to apply the majority rule after a normalization
the weights. The present version provides an option where each weight of p
tive patternis divided by the sum of the weights of the positivepatternsand sim-
ilarly for the negativepatterns.

Beside a normalization of the pseudo-Boolean functions, we might also cons
a shift (addition of a constant value) of one of them, before applying the majo
rule. The present version of the software also proposes a procedure that a
two parameters:α for the normalization andβ for the shift:αf + +β will be com-
pared tof −. For a better result, someobservationsshould be excluded from the
training set for thePattern generationphase, and reintroduced for the adjustme
of α andβ. The two parameters are presently chosen as follows. Each pos
and negativeobservationa of the training set is represented by the pair (f+(a), f−

(a)). Thus, they correspond to points in the plane, and the goal is to find the h
plane of the equationα x+ +β≥x− containing as many points representing positiv
observationsand as few points corresponding to negativeobservations. If the
two sets of points in the plane are linearly separable, we will pickα andβ from

:

the solutions of

max k
s.t. α f +(a) +β−f −(a)≥k ∀ positiveobservationa

α f +(a) +β−f −(a)≤−k ∀ negativeobservationa. (7)

When the two sets of points in the plane are not linearly separable,α andβ are
chosen to minimize the following non-negative piece-wise linear expression

Σa |α f +(a) +β−f −(a)|c(a, α, β) , (8)

wherec(a, α, β) is 1 if a is a positive (resp. negative)observationandαf+(a) +β−
f−(a) is negative (resp. positive), otherwisec(a, α, β) = 0.

PART 2

User Guide

tured

pec-
f
rted,
ent of
pro-
this

ram at
Introduction
The current version of the executable filesbin , pat andthe , or LAD, enable the
user to apply the complete chain of transformations and analyses of data pic
in. General structure of the software.

The main input of this program is a file containing the database in a format s
ified in SectionInput data file. The basic output of this program is the table o
results of a sequence of experiments, for which several information are repo
as well as some statistics (means and standard deviations) for each elem
information. However, when a single problem is solved in a session of the
gram, many additional outputs are possible, providing much more details on
particular run. Each of these possible outputs will be discussed in SectionOutput
files.

The next section enumerates the sequence of questions asked by the prog
the beginning of each session, and describes their meanings and effects.

of the
f the

-
ach
nding

ord-

by
The
ple-

ode.

om-
eri-

fix

rom a
Q3),

(if

g
and

using
How to run the program
In this section, the sequence of questions asked to the user at each step
program is detailed. This is subdivided into three subsections, one for each o
three modulesbin , pat andthe . The executableLAD is essentially a concatena
tion of the former three programs and it takes entries into a file where e
parameter can be preceded on the same line by the text of the correspo
question.

As already mentioned, the program has two slightly different behaviors, acc
ing to the fact that a single problem is executed (single-run), or a sequence of
problems are executed (multiple-runs). A multiple-run is characterized either
by the execution of many problems for one particular size of training set, or
the experimentation of different sizes of training set in the same session.
sequence of questions varies slightly in the single-run mode or in the multi
run mode, and this will be mentioned along the way.

Binarization

In each of the three programs, the first question allows selecting the debug m
Q1 Trace level {1=normal, 2=debug} (default 1) :

In fact, a third level of debug extremely verbose is also available. It is not rec
mended to use some information level 2or 3for a session with multiple exp
ments, since the amount of information displayed might be gigantic.

Input / output file names

All the files generated by the binarization module will have a common pre
entered at the following question.

Q2 Prefix for the output files :

The split between training and test data can either be generated at random f
common database by setting A3 to ‘no’ (A3 denotes the answer to Question
or two data files are available as input (A3 = yes).

Q3 Read separate training and testing data files {y,n} :

Then the input file name is expected. Only its prefix must by entered in Q4
A3 = yes) or in Q5 (if A3= no).

Q4 Prefix X of the files (X.tra X.tes) with original data :

Q5 Prefix X of the file (X.all) with original data :

Sequencing the experiments

If A3 = yes, there will be clearly only one experiment with the given trainin
dataset. Otherwise, the protocol of experiments (i.e. number of experiments
the way the dataset is split between training and test) has to be selected
questions Q6 to Q10.

Q6 Size K of the K-folding (enter 1 for resampling) :

For regularN×K-fold cross-validation, set A6 toK ≥ 2 and A10 toN. If A6 ≤ −2,

ne
n

7 to
ent-

t in

lida-
be

ed in
per-

)

ther

f one
the
sin-

n be
12

ear
airs

he
the protocol is aN×K-fold cross validation, except that for each experiment, o
fold is used as training, and theK−1 others are used for test. This is useful whe
very large dataset are available.

If A6 = 1, N-resampling cross-validation is used. In that case, questions Q
Q9 allows specifying the lower bound, upper bound and interval of the perc
age of training data.

Q7 Training set's size (in %) from (default 50) :

Q8 Training set's size (in %) to :

Q9 Interval in training set's size (in %) :

Q10 #iterations of each experimentation :

The seed of the random generator

Fixing the seed of the random generator allows replaying an experimen
exactly the same setting. This can be done with Q11.

Q11 Seed:

However, when many experiments are iterated in the same run for cross-va
tion purposes, it may happen that only one particular experiment has to
replayed. Therefore, in this program, the seed of the random generator is us
two different ways, depending whether there is only one or more than one ex
iment. In the first case, i.e. when

A3 = yes or (A6 = 1 and A10 = 1 and A7 + A9 > A8) , (9

the seed is fixed to A11 before any call to the random generator. On the o
hand, whenequation (9)does not hold, there is sayM > 1 experiments (M =NK
or M = N⋅ floor((A8− Α7) / A9)). In this case, the seed is fixed to A11 and thenM
random numbers are drawn and stored in a table. At the beginning of themth

experiment,m= 1,…,M, the seed is fixed to themth element before any call to the
random generator. Moreover, these seeds are printed in the log file. Thus, i
particular experiment has to be replayed, it suffices to get from the log file
seed effectively used for the experiment and to rerun the program requiring a
gle experiment and specifying this seed to A11.

Steps of the binarization method

As far as continuous attributes are concerned, the binarization method ca
based either on binary-discrimination, or on continuous-discrimination. Q
allows choosing among these two possibilities.

Q12 Binarization method {1=binary, 2=continuous} (default 2) :

The complexity of the heuristic used to solve the set-covering problem is lin
in the number of pairs of different classes. It is possible to reduce this list of p
by the simple following rule. Ifa and b are twoobservationsfrom different
classes, and if there is a pointe included in the hyper-box delimited bya andb,
then the separation of (a, b) will be at least as good as the separation either of t
pair (a, e) or of the pair (b, e). Thus, the pair (a, b) can be dropped from the list
of pairs to be separated.

Q13 Apply point-in-a-box to reduce the # of pairs of pts {y,n} :

sup-
up-
r of
new

-
set

e
ers, a

tes

much

ugh

ion

19

s

y is
hen
d in

mall
In practice, it turned out that for some databases, this technique allows the
pression of up to 40% of the rows, while for others very few rows are s
pressed. Since this operation is quite costly, especially when the numbe
attributes is large, it is worse doing some preliminary experiments on each
database in order to decide whether this optimization is worth it or not.

The parameterθ discussed in SectionBinarization and confidence intervalis set
in question Q14. To have a uniqueθ for all continuous attributes, these are con
sidered as normalized such that their minimum and maximum on the training
are 0 and 1. Therefore,θ is usually very small, typically around 0.01. In som
databases, the ideal value for this parameter was around 0.008, while in oth
confidence interval up to 0.05 seemed more adequate.

Q14 Confidence interval around each cut point [0 , 0.1] :

Question Q15 allows the choice of the method for generating the candidatecut
points : A15 =0 corresponds to one-cut-per-change, while A15 = 1 indica
one-cut-per-pair.

Q15 Cut points generation method {0=each change, 1=each pair} :

The user should be aware that the second method generates in general
more pairs and thus it is recommended to sort thecandidate attributesand keep
only the first ones, before extracting a minimal subset. This is feasible thro
the questions Q17 and Q18, when answering yes to Q16.

Q16 Filter cut points according to a specific order {y,n} :

Q17 Ordering method {1=entropy, 2=min-discr, 3=total-discr} :

of A12 = 1
Q18 Minimal # of CA separating each pair of pts (filter) :

else if A12 = 2
Q19 Minimal separability of each pair of pts (filter) :

The ordering methods ordering-by-entropy, ordering-by-minimal discriminat
and ordering-by-total-discrimination, discussed in SectionSorting and pre-selec-
tion of the candidate attributes, are selected through Q17. Question Q18 or Q
allows determining the amount ofcandidate attributeskept according to this
order. When some filter is used, thecandidate attributesare ordered according to
the ordering criterion specified, and then, the firstk are selected and the other
are suppressed, wherek is the minimal number so that thek first candidates are
sufficient to achieve the required global separability. If this global separabilit
too high, this requirement is readjusted to the maximal global separability (w
all the cut-points are present) and this modification of requirement is notifie
the log file.

The last group of questions Q20 to Q23 concerns the final extraction of a s
subset ofcandidate attributes(see SectionExtraction of a subset of candidate
attributes).

Q20 Minimize # of cut points {y,n} :

if A12 = 1,
Q21 Minimal # of CA separating each pair of pts (optim) :

else if A12 = 2,
Q22 Minimal separability of each pair of points (optim) :

ted
era-

may

ata

ngle

-
gen-
tion

arch
Q39
Again, if the required minimal separability cannot be achieved it is readjus
and this is noticed in the log file. For the sack of efficiency of the pattern gen
tion process, it may be important to bound the number ofcandidate attributes
finally produced. This is possible with Q23.

Q23 Maximal number of cut points {0=unbounded} :

However, the user must be aware that a too small bound introduced in Q23
result into a set ofcandidate attributeswhich does not fulfil the criterion speci-
fied in Q21 or Q22.

Pattern generation

Input-output file names and sub-sampling

The first questions have the same purpose than those in thebin module.
Q24 Trace level {1=normal, 2=debug} :

Q25 Prefix for the output files :

Q26 Prefix X of the files (X.tra) containing the training data :

Q27 Training set's size (in %) from :

Q28 Training set's size (in %) to :

Q29 Interval in training set's size (in %) :

Q30 #iterations of each experimentation :

Note that the files resulting from experiments withN×K-fold cross-validation are
named the same way as those ofN- resampling. For example, if a 4-fold was
used in the binarization module, the names will be similar than if 75% of the d
was used as training. To use these with thepat module, just answer 75% and
75% to Q27 and Q28.

In case one would like to run (or rerun) the pattern generation module on a si
problem out of many that have been binarized. Say that this problem is the 6th of
the ones with 66% training, answer 6 to Q31.

Q31 Index of the single iteration to do :

The seed of the random generator works in the same way than inbin .
Q32 Seed :

As discussed inthis Paragraphof SectionCombination of pseudo-Boolean func
tions, it is sometimes desirable to sub-sample the training set for the pattern
eration module, in order to keep some unseen data for the theory forma
module. For this purpose, A33 should be set to less than 100%.

Q33 Percentage of training sample used for pattern generation :

Depth-first-search

In the current implementation, there is no procedure for the depth-first-se
generation of patterns, so Q34 should be answered negatively and Q36 to
will not be asked.

Q34 Generate patterns by depth-first-search {y,n} :

Q35 Satisfactory coverage of each positive point in DFS :

.

ion,
e
first

first-

tage

num-
e

vides
this
ov-

m a

re,
g that
Q36 Satisfactory coverage of each negative point in DFS :

Q37 Literal evaluation method for positive patterns :

Q38 Literal evaluation method for negative patterns :

Breadth-first-search

The main module for pattern generation proceeds by a breadth-first-search
Q39 Generate patterns by Breadth-First-Search {y,n} :

It consists (when A39 is yes) into two consecutive calls to the same funct
once with the positive and negativeobservationstaken as such, and another tim
when their roles are reversed. This is why every parameter is doubled. The
one concerns the maximal depth (i.e. degree of the terms) of the breadth-
search exploration.

Q40 Generate positive patterns of degree up to :

Q41 Generate negative patterns of degree up to :

To avoid the generation of too manypatterns, it is often desirable to focus on
patterns covering sufficiently manyobservations.

Q42 Minimal coverage of each positive pattern {neg number -> %} :

Q43 Minimal coverage of each negative pattern {neg number -> %} :

When A42 (resp. A43) is negative, the given value is considered as a percen
of the total number of positive (resp. negative)observationsto be covered by
positive (resp. negative)patterns. For example, if there are 40 positiveobserva-
tions, answering−5 or +2 to A42 is equivalent and implies that only positivepat-
terns covering at least 2 positiveobservations will be considered.

The processing time of the breadth-first-search procedure depends on the
ber of positive and negativeobservations. If this number can be reduced on th
way, the processing time can decrease significantly. When some positiveobser-
vationshave already been covered by manypatterns, they can safely be sup-
pressed from the list. The next parameter to be entered at Q44 and Q45 pro
the threshold coverage value for a point to be suppressed from the list. If
value is 10, for example, it does not mean that every positive point will be c
ered by 10patterns, but that whenever a point is covered by 10patterns, we do
not consider it any more for the generation of furtherpatterns. In practice, this
suppression of widely coveredpatternsis done only after the completion of the
exploration of each new depth of the search.

Q44 Satisfactory coverage of each positive point :

Q45 Satisfactory coverage of each negative point :

The purpose of Questions Q46 and Q47 is to get the minimal distance fro
term to the set of negativeobservations, so that this term is considered aspattern
(see SectionPrime patterns of small degree, Paragraph).

Q46 Minimal distance from a positive pattern to an opposite point :

Q47 Minimal distance from a negative pattern to an opposite point :

For aprime pattern, this distance is 1. It can however be increased to 2 (or mo
but the experience has shown that this parameter is very sensitive), meanin
only patterns at distance at least 2 from any negative point are considered.

pro-

he
The next questions are related to the relaxation of the concept ofpatterns, allow-
ing some conjunctions covering many positiveobservationsand very few nega-
tive ones to be also considered aspatterns(see SectionPrime patterns of small
degree, Paragraph). The parameterξ in equation (4) is entered as A48 and A49.

Q48 * A conjunction covering C+ (resp. C-) points among the N+ (N-)
 total positive (negative) points
is a positive pattern if (C-/C+)(N+/N-) is at most :

Q49 is a negative pattern if (C+/C-)(N-/N+) is at most :

Patching

The next two questions allow choosing whether a second pattern generation
cedure must be activated in order to cover theobservationsuncovered by thepat-
terns generated so far.

Q50 Generate extra patterns to cover uncovered pos. points {y,n} :

Q51 Generate extra patterns to cover uncovered neg. points {y,n} :

Cleaning the sets of patterns

Finally, at the end of thepat module, the user has the choice to reduce t
potentially large set ofpatternsgenerated by suppressing thesubsumed patterns
(SectionSuppression of subsumed patterns), before thepatternsfound are stored
on files.

Q52 Suppress subsumed patterns {y,n} :

Theory formation

Input-output file names

The first questions have the same purpose than those in thebin and thepat
modules (see SectionInput-output file names and sub-sampling).

Q53 Trace level {1=normal, 2=debug} :

Q54 Prefix for the output files :

Q55 Testing theory(ies) on test data {y,n} :

Q56 Prefix X of the files (X.tra) with the training data :

Q57 Prefix X of the files (X.pos, X.neg) with the patterns :

Q58 Training set's size (in %) from :

Q59 Training set's size (in %) to :

Q60 Interval in training set's size (in %) :

Q61 #iterations of each experimentation :

Q62 Index of the single iteration to do :

Q63 Seed : 12345

Weighting the patterns

Before associating weights to thepatterns, one still have the option to extract a
subset of them chosen so that each point is covered by at least A64patterns(see
SectionExtraction of small subsets of patterns).

t
unc-

-
of
ci-
the
-

is

ish
olean
f
r
n is

s
are
Q64 Extract a subset of patterns with minimal point coverage of
{0 = keep all patterns} :

If someobservationsare covered by lesspatterns(when allpatternsare consid-
ered) than the specified number, all thepatternscovering theseobservationsare
necessarily placed in the subset and this fact is mentioned in the log file.

The selection of some of the weighting techniques discussed in SectionPatterns
weighting is done through Q65

Q65 Weighting method (0>cst, 1>Cov, 2>Cov/FSize, 3>FSize, 6>Cov^2,
7>Cov^3, 8>1.2^Cov:

whereCov stands for coverage (number ofobservationscovered) andFsize is
proportional to the size of the face of the hypercube represented by thepattern
(Fsize = 2−d for a patternof degreed). Methods 6, 7 and 8 correspond to weigh
growing respectively as a quadratic, a cubic or an exponential (basis 1.2) f
tion of the coverage. The last two methods discussed in SectionPatterns weight-
ing are not yet implemented.

As mentioned at the beginning of SectionCombination of pseudo-Boolean func
tions, it is often interesting to balance the total contribution of positive and
negativepatterns. This is the purpose of Q66. If Q66 = yes,the weights asso
ated to thepatternsaccording to the chosen method are normalized, so that
sum of the weights of negativepatternsis equal to the sum of the weights of pos
itive patterns and is equal to 1.

Q66 Normalize weights so that sum of neg = sum of pos = 1 {y,n} :

A finer normalization as well as a shift of the threshold for the final decision
obtained by learning the two parametersα and β described in
SectionCombination of pseudo-Boolean functions.

Q67 Readjust threshold and proportion between pos/neg {y,n} :

In the evaluation of a classification system, it is often interesting to distingu
between a wrong answer and no answer. Using the sign of the pseudo-Bo
function f + − f − (or α f + +β− f −) for the final decision, whenever the result o
this function is close to 0, it is wise not to take a decision. The parameteε
entered as A68 means that whenever the result of the decision functio
between−ε andε, the answer of the classifier is “I don’t know”.

Q68 Half size of the range around threshold leading to unknown :

In the output statistics of thethe module, the rates of errors and of unknown
are first distinguished and then, in the total error rates, all the unknowns
counted as errors.

:

,
yn-

must
Input and output files

Input data file

The formalism used to describe the syntax is the EBNF, which is as follows

Formal description

In what follows, EOF, EOL, TAB and SPACErepresent the end-of-file, end-of-line
tabular and space respectively. The input data file must fulfil the following s
tax.

InputDataFile→ HeaderOrInclude DataEOF

HeaderOrInclude→ (Header | Include)

Include→ include FileNameEOL

FileNameis sequence of characters satisfying the file name's syntax. There
exist a file with this name containing aHeader .

Header→ [Identifier EOL]
Attribute{ ; { Comment} { EOL } Attribute } .

{ Comment } { EOL }

Comment→ // { any character exceptEOL } EOL

Attribute→ Identifier : AttributeDescr

Identifier→ (A | ... |Z | a | ... |z)
{ any character except. , : ; () / SPACETAB EOL }

AttributeDescr→ (RegularAttribute | SpecialAttribute)

RegularAttribute→ (NonOrderedAttribute | OrderedAttribute)

NonOrderedAttribute→ Identifier , Identifier , Identifier { , Identifier } [(target)]

OrderedAttribute→ (continuous | (Identifier , Identifier))
[Monotonicity | (target)]

Monotonicity→ (+) | (-)

SpecialAttribute→ (multiplicity | label | ignored)

Data → OneDatum { DataSeparator OneDatum }

OneDatum→ (Numerical | Identifier | ?)

DataSeparator→ { SPACE } (SPACE | TAB | EOL | , | ;) { SPACE }

MetaSymbol Meaning
→ is defined to be

(X) 1 instance X
[X] 0 or 1 instance X

{X} 0 or more instance X
X Y X followed by Y

X | Y Either X or Y
x Non-terminal symbol
x Terminal symbol

In
n of

a

ess-
for-

el
bel
e

e
the
s
to

is
Simple example of input data

This syntax is illsutrate throughExample 1.

Constraints and semantic

TheHeader(which can be in a separate file, usinginclude) contains a description
of each attribute of the dataset. The total number ofOneDatumin Data must be a
multiple of the number ofAttribute in theHeader.

As discussed in SectionCharacteristic of input data, nominal attributesare
eithernonOrderedAttributes or two-valuedorderedAattributes. In the data, the values of
a nominal attributecan be given either by their names or in a numerical form.
the latter case, the order will be the one of the list of values in the descriptio
the attribute, starting at 0.

OneregularAttributemust be specified astarget . If more than oneAttribute is speci-
fied as target, the first one will be the effective target.

Whenever anorderedAttributeis the target, otherorderedAttributes can havemonoto-
nicity constraints. Monotonicity constraints will be ignored when the target is
nonOrderedAttribute.

The label attribute is used to give a name to each data. After some preproc
ing, it may occur that some data correspond to several original data. This in
mation is very important, especially when counting the coverage of thepatterns.
The attributemultiplicity is used on this purpose. If there is more than one lab
(resp. multiplicity) attribute, the first one will be considered as the effective la
(resp. multiplicity) and the other label (resp. multiplicity) attributes will b
ignored. The data corresponding to a label attribute can be either aNumerical

value or anIdentifier. The data corresponding to a multiplicity attribute must b
Numerical. If there is no label attribute, then each data is labeled by its order in
file (starting with 1). If there is no multiplicity attribute, then each multiplicity i
set to 1. If one value of the multiplicity (resp. the label) attribute is set
“unknown” (i.e. ?), then the multiplicity is arbitrarily set to 1 (resp. the label
set to the character “?”).

Mushrooms

name: label;
toxicity: eatable, poisonous (target);
density: continuous;
pH: continuous (+); // means that if pH increases,
 // toxicity cannot decrease
cap-color: n, b, c, g, r, p, u, e, w, y;
bruises: yes, no; // note that here, yes=0 and no=1!
veil: absent, present (-).

lepiote eatable 2.352 7.4 3 0 1
chanterelle 0 4.01 6.7 2 1 0
amanite-panthere poisonous 3.5 6.2 3 1 1

Example 1

rm

nt

ith
is

e
s
g of
ffix
ce-
file.

e

s

ced
Output files

Outputs of the binarization

The binarization module take as input a file with the dataset in the fo
described in SectionFormal description. It generates several files named

(Prefix -bin. Suffix0 | Prefix - Perc - Iter . Suffix1 | Prefix . Suffix2)

Files of the last form are generated only in case of asingle run, i.e. when the
number of iterations is 1.

Prefix → any sequence of alphanumeric (given as parameter)

Suffix0 → (out | log | tmp)

Perc → one 2 digits number (except for 100) specifying the
 percentage of the whole data used for training

Iter → one 2 digits number, giving the iteration (when an experime
with the same percentage is repeated several times)

Suffix1 → (tra | tes)

Suffix2 → b_a

Example of output of the binarization

A single run ofbin on the database ‘Heart Disease’ of the Irvine repository, w
50% data for training will produce the following files, when the given prefix
HD:

The file with suffixout contains all the statistical results of the binarization. Th
file with suffix log is the log file and contains information related to problem
occurred during the binarization as well as the seeds used at the beginnin
each experiment (useful to rerun one particular experiment). The file with su
tmp is a temporary file. It is used to follow the progress of the binarization pro
dure, or in case the program is interrupted, partial results are stored in this
The files with suffix tra and tes contain the training and testing data in th
binary form and according to the syntax described in SectionFormal descrip-
tion.

The file with suffixb_a is created only if the number of iterations is 1. It contain
the list of Boolean attributesand thus is useful to associate eachBoolean
attribute to the original attributes. For example, the file presented in is produ

HD-bin.out
HD-bin.log
HD-bin.tmp
HD-50%001.tra
HD-50%001.tes
HD.b_a

Example 2

lue
at a
e

t-

nt

-

ra-
by the previous run ofbin .

The first two lines recall the total number of original andBoolean attributes.
Then, every original attribute associated to at least oneBoolean attributeis
listed. Each original attribute start with a new line and they are indexedv1 , v2 ,
etc. (starting from 1). After this index and a column,s=N indicates the ‘span’
used for this original attribute, which was just the max value minus the min va
found on the training set, but this is for internal use and can be ignored
macro level. Then, theBoolean attributesassociated to the original attribute ar
listed, with their index (starting from 1), a column and the value of thecut point.

Outputs of the pattern generation

The pattern generation module uses essentially only the files

Prefix - Perc - Iter .tra

containing the binarized training data. It creates the files

(Prefix -pat. Suffix0 | Prefix - Perc - Iter . Suffix1)

Prefix → any sequence of alphanumeric, given as parameter,

Suffix0 → (out | log)

Perc → one 2 digits number (except for 100) specifying the percen
age of the whole data used for training

Iter → one 2 digits number, giving the iteration (when an experime
with the same percentage is repeated several times)

Suffix1 → (pos | neg)

Example of outputs of the pattern generation module

A single run ofpat on data ‘Heart Disease’ with 50% data for training will pro
duce the files listed inExample 4 when the given prefix is HD:

The file with suffixout contains all the statistical results of the pattern gene

total_nb_of_original_attributes 15
nb_of_cut_points 21
v 1: s= 47.00 1: 54.5 2: 55.5 3: 56.5
v 2: s= 1.00 4: 0.5
v 3: s= 3.00 5: 1.5 6: 2.5
v 4: s= 80.00 7: 133.0
v 5: s=251.00 8: 242.0 9: 243.5 10: 255.5 11: 280.0
v 6: s= 1.00 12: 0.5
v 8: s= 1.00 13: 0.5
v 9: s=131.00 14: 154.5 15: 170.5
v10: s= 1.00 16: 0.5
v11: s= 44.00 17: 10.5
v12: s= 2.00 18: 1.5
v13: s= 4.00 19: 0.5 20: 1.5
v14: s= 2.00 21: 0.5

Example 3

HD-pat.out
HD-log.log
HD-50%001.pos
HD-50%001.neg

Example 4

o

e

bove

ative

the
tion. The file with suffixlog is the log file and contains information related t
problems occurred during the pattern generation. The files with suffixpos and
neg contain the lists of positive and negativepatterns. An example of such a file
is presented inExample 5:

The first three lines recall the total number ofbinary attributes, the total number
of patternsas well as the degree of the longestpattern. Then eachpattern is
listed on one line according to the syntax OnePattern:

OnePattern → c: Coverage [w: Weight] | Literal { Literal } EOL

Coverage is an integer representing the number ofobservationsin the training
data covered by thispattern.Weight is a the weight of thepatterngiven as a real
number. If this is not present, all thepatternsare supposed to be of the sam
weight 1.0. Literal specifies one literal of thepatternand is given as an integer
whose absolute value is the index (starting from 1) of thebinary attributeand
whose sign specifies whether the literal occurs as such or negated. In the a
example, the thirdpattern

c: 3 | 1 -2

is the Boolean conjunction (x1 and not(x2)) and covers threeobservationsin the
training data.

Outputs of the theory formation

The third module uses the four files

Prefix- Perc - Iter (.tra | .tes | .pos | .neg)

Based on the training data, it eventually prunes the lists of positive and neg
patterns, then it associates weights to each remainingpatternsand finally, it tests
the obtained theory on the testing dataset.

The files generated by the theory formation module are the following

(Prefix -the. Suffix0 | Prefix . Suffix1)

Files of the last form are generated only in case of a single run, i.e. when
number of iterations is 1.

Prefix = any sequence of alphanumeric, given as parameter

Suffix0 = (out | log)

total_nb_of_attributes = 21
nb_of_patterns = 14
max_degree = 6
c: 25 | 16 21
c: 10 | 16 20
c: 3 | 1 -2
c: 25 | 1 -6 16
c: 23 | -6 16 19
c: 22 | 9 16 -18
c: 3 | -5 8 17
c: 1 | 14 -4 -18 -21
c: 9 | -7 -13 -14 -18 -20
c: 6 | 19 -4 -9 -12 -21
c: 3 | 11 -4 -13 -15 -21
c: 2 | 18 -4 -14 -17 -21
c: 1 | 5 11 13 18 -19
c: 4 | -4 -5 -10 -15 -18 -20

Example 5

es

of
d

and

false,
hird
do-

the
or-
ry

fied
Suffix1 = (pat | tr | te | tre | tee)

A single run of bin on data ‘Heart Disease’ with 50% data for training produc
the following files when the given prefix is HD:

The file with suffixout contains all the statistical results of the performances
the theory. The file with suffixlog is the log file and contains information relate
to problems occurred during the theory formation. The files with suffixtr andte

contain information related to the performances of the theory on the training
testing data and their format is illustrated inExample 7.

Results related to each data is on one line. The first number is the class (0=
1=true). The second number is the label identifying the data point. The t
number is the multiplicity. The next two numbers are the results of the pseu
Boolean functionsf + andf − discussed in SectionCombination of pseudo-Bool-
ean functions. If the observationis of class 1, the forth column isf + and the fifth
is f −, the order is reversed if the point belongs to class 0. The last column is
difference of the previous two. If this last value is positive, then the point is c
rectly classified, if it is negative, is it wrongly classified, and if it is 0 or ve
close to 0, then it is not classified.

The files with suffixtre and tee give more details about the errors.Example 8
illustrates the information that can be found in the file for each misclassi

HD-the.out
HD-the.log
HD.tr
HD.te
HD.tre
HD.tee
HD.pat

Example 6

1 137 1 0.14694 0.13845 0.00849
1 179 1 0.38571 0.00712 0.37859
1 270 1 0.00000 0.04747 -0.04747
1 185 1 0.05714 0.10680 -0.04966
1 102 1 0.28367 0.01820 0.26548
0 42 2 0.17722 0.00408 0.17313
0 287 1 0.04035 0.16939 -0.12904
0 111 1 0.13687 0.08980 0.04707
0 178 1 0.00000 0.00000 0.00000
0 246 1 0.47389 0.00000 0.47389

Example 7

ed

xten-

y

of
observation.

The first line recalls information about the observation: label and class follow
by the result of the pseudo-Boolean functionsf + andf − (or f − andf +) and the
difference of these two values. Then all positive and negativepatterncovering
this observation are listed according to the same syntax as in the files with e
sionspos andneg (seeExample 5 in SectionOutputs of the pattern generation).

Finally, the file with suffixpat gives a information of the behavior of the theor
detailed by patterns instead of by observations in a form illustrated by
Example 9.

The file is split into two parts, one for the positivepatternsand the other for the
negativepatterns. At the beginning of each part, a header gives the legends

point 301, from class 1 0.01633 0.17484 -0.15852
Positive firing patterns
c: 6 w: 0.012 | 19 -4 -9 -12 -21
c: 2 w: 0.004 | 18 -4 -14 -17 -21
Negative firing patterns
c: 26 w: 0.021 | -5 -11 -21
c: 22 w: 0.017 | -1 -5 -21
c: 22 w: 0.017 | -2 -5 -21
c: 22 w: 0.017 | -3 -5 -21
c: 17 w: 0.013 | -1 -5 18
c: 17 w: 0.013 | -2 -5 18
c: 17 w: 0.013 | -3 -5 18
c: 15 w: 0.012 | -5 -7 -21
c: 11 w: 0.009 | -5 13 -21
c: 9 w: 0.007 | -1 -5 13
c: 9 w: 0.007 | -3 -5 13
c: 9 w: 0.007 | -2 -5 13
c: 7 w: 0.006 | -5 19 -21
c: 3 w: 0.002 | -1 18 20
c: 3 w: 0.002 | -3 -17 20
c: 3 w: 0.002 | -3 18 20
c: 3 w: 0.002 | -2 -17 20
c: 3 w: 0.002 | -2 18 20
c: 3 w: 0.002 | -1 -17 20

Example 8

 Training data | Test data | positive patterns

 +/+ +/? +/- -/- -/? -/+ | +/+ +/? +/- -/- -/? -/+ |
 69 0 0 82 0 0 | 55 0 14 58 4 21 | <-- total

 25 0 0 0 0 0 | 27 0 1 1 0 5 | c: 25 w: 0.051 | 16 21
 10 0 0 0 0 0 | 14 0 0 0 0 0 | c: 10 w: 0.020 | 16 20
 3 0 0 0 0 0 | 2 0 0 3 0 0 | c: 3 w: 0.006 | 1 -2
 25 0 0 0 0 0 | 25 0 0 0 0 7 | c: 25 w: 0.051 | 1 -6 16
 23 0 0 0 0 0 | 25 0 0 0 0 2 | c: 23 w: 0.047 | -6 16 19
 22 0 0 0 0 0 | 17 0 0 0 0 1 | c: 22 w: 0.045 | 9 16 -18
 19 0 0 0 0 0 | 13 0 0 0 0 0 | c: 19 w: 0.039 | 8 16 17
...
 Training data | Test data | negative patterns
 +/+ +/? +/- -/- -/? -/+ | +/+ +/? +/- -/- -/? -/+ |
 69 0 0 82 0 0 | 55 0 14 58 4 21 | <-- total

 0 0 0 23 0 0 | 2 0 0 15 0 0 | c: 23 w: 0.018 | -1 4
 0 0 0 3 0 0 | 1 0 1 1 0 2 | c: 3 w: 0.002 | 6 16
 0 0 0 3 0 0 | 1 0 0 2 0 1 | c: 3 w: 0.002 | 12 15
 0 0 0 2 0 0 | 1 0 1 2 0 0 | c: 2 w: 0.002 | 15 16
 0 0 0 35 0 0 | 0 0 3 31 0 0 | c: 35 w: 0.028 | -1 14 -21
 0 0 0 35 0 0 | 0 0 3 34 0 0 | c: 35 w: 0.028 | -2 14 -21
 0 0 0 35 0 0 | 0 0 3 36 0 0 | c: 35 w: 0.028 | -3 14 -21
...

Example 9

ns is
cify-

T is

tal
ed

as
each columns as well as one special row denoted as "total". The set of colum
split into three parts, one for training data, one for testing data and one spe
ing thepatternaccording to the same syntax as in SectionOutputs of the pattern
generation, Example 5, for the files with suffixespos andneg . The first two parts
are made of 6 columns of integers. These columns are labeled T/E, where
the target output ‘+’ or ‘−’ and E is the effective output ‘+’, ‘−’ or ‘?’ (in case of
no classification). The value in column T/R and in the row ‘total’ gives the to
number ofobservationsof the (training/testing) dataset, of class T and classifi
as E. The value in column T/R and a row corresponding topatternP gives the
number ofobservationsof the (training/testing) dataset, of class T, classified
E and for which thepattern P is firing.

Bibliography

[1] Bjarne STROUSTRUP,The C++ Programming Language, Third Edition,
Addison-Wesley, 1997.

	Table of content
	PART 1 : Functionalities 3
	Introduction 4
	Binarization 7
	Pattern generation 11
	Theory formation 13

	PART 2 : User Guide 16
	Introduction 17
	How to run the program 18
	Input and output files 25

	Abstract
	Acknowledgement
	Foreword
	PART 1 Functionalities

	Introduction
	General structure of the software
	Figure 1 . General structure of the software

	Note
	Characteristic of input data
	Protocols of experiments

	Binarization
	(i) is identical to one binary attribute,
	(ii) is associated to a specific value of one nominal attribute,
	(iii) corresponds to one cut point, i.e. a critical value along one continuous attribute.
	Note
	Note
	Generation of candidate attributes
	Extraction of a subset of candidate attributes
	Min Sd Œ T zd s.t. Sd Œ T s d ab × zd ³ 1 " (a,b) from different classes zd Œ {0,1} " d Œ T (1)
	min{|t - ai| , |t - bi|} / (maxa ai - mina ai) (2)

	Sorting and pre-selection of the candidate attributes
	max{ Sc pc1 ln(pc1) , Sc pc0 ln(pc0) } (3)

	Binarization and confidence interval
	Goodness of the binarization

	Pattern generation
	Prime patterns of small degree
	x p N -/N + (4)

	Patterns covering specific observations
	Suppression of subsumed patterns

	Theory formation
	Extraction of small subsets of patterns
	Patterns weighting
	max k s.t. Ax ³ k Sq xq = 1 xq ³ 0 , (5)
	max k s.t. Ax ³ k By ³ k Sq xq + Sr yr = 1 xq, yr ³ 0 , (6)

	Combination of pseudo-Boolean functions
	max k s.t. a f +(a) + b - f -(a) ³ k " positive observation a a f +(a) + b - f -(a) ...
	Sa |a f +(a) + b - f -(a)| c(a, a, b) , (8)

	PART 2 User Guide

	Introduction
	How to run the program
	Binarization
	Q1 Trace level {1=normal, 2=debug} (default 1) :
	Q2 Prefix for the output files :
	Q3 Read separate training and testing data files {y,n} :
	Q4 Prefix X of the files (X.tra X.tes) with original data :
	Q5 Prefix X of the file (X.all) with original data :
	Q6 Size K of the K-folding (enter 1 for resampling) :
	Q7 Training set's size (in %) from (default 50) :
	Q8 Training set's size (in %) to :
	Q9 Interval in training set's size (in %) :
	Q10 #iterations of each experimentation :
	Q11 Seed:
	A3 �=� yes ��or�� (A6� =� 1 �and� A10 �=� 1 �and� A7�+�A9� >� A8) , (9)
	Q12 Binarization method {1=binary, 2=continuous} (default 2) :
	Q13 Apply point-in-a-box to reduce the # of pairs of pts {y,n} :
	Q14 Confidence interval around each cut point [0 , 0.1] :
	Q15 Cut points generation method {0=each change, 1=each pair} :
	Q16 Filter cut points according to a specific order {y,n} :
	Q17 Ordering method {1=entropy, 2=min-discr, 3=total-discr} :
	Q18 Minimal # of CA separating each pair of pts (filter) :
	Q19 Minimal separability of each pair of pts (filter) :
	Q20 Minimize # of cut points {y,n} :
	Q21 Minimal # of CA separating each pair of pts (optim) :
	Q22 Minimal separability of each pair of points (optim) :
	Q23 Maximal number of cut points {0=unbounded} :

	Pattern generation
	Q24 Trace level {1=normal, 2=debug} :
	Q25 Prefix for the output files :
	Q26 Prefix X of the files (X.tra) containing the training data :
	Q27 Training set's size (in %) from :
	Q28 Training set's size (in %) to :
	Q29 Interval in training set's size (in %) :
	Q30 #iterations of each experimentation :
	Q31 Index of the single iteration to do :
	Q32 Seed :
	Q33 Percentage of training sample used for pattern generation :
	Q34 Generate patterns by depth-first-search {y,n} :
	Q35 Satisfactory coverage of each positive point in DFS :
	Q36 Satisfactory coverage of each negative point in DFS :
	Q37 Literal evaluation method for positive patterns :
	Q38 Literal evaluation method for negative patterns :
	Q39 Generate patterns by Breadth-First-Search {y,n} :
	Q40 Generate positive patterns of degree up to :
	Q41 Generate negative patterns of degree up to :
	Q42 Minimal coverage of each positive pattern {neg number -> %} :
	Q43 Minimal coverage of each negative pattern {neg number -> %} :
	Q44 Satisfactory coverage of each positive point :
	Q45 Satisfactory coverage of each negative point :
	Q46 Minimal distance from a positive pattern to an opposite point :
	Q47 Minimal distance from a negative pattern to an opposite point :
	Q48 * A conjunction covering C+ (resp. C-) points among the N+ (N-) total positive (negative) poi...
	Q49 is a negative pattern if (C+/C-)(N-/N+) is at most :
	Q50 Generate extra patterns to cover uncovered pos. points {y,n} :
	Q51 Generate extra patterns to cover uncovered neg. points {y,n} :
	Q52 Suppress subsumed patterns {y,n} :

	Theory formation
	Q53 Trace level {1=normal, 2=debug} :
	Q54 Prefix for the output files :
	Q55 Testing theory(ies) on test data {y,n} :
	Q56 Prefix X of the files (X.tra) with the training data :
	Q57 Prefix X of the files (X.pos, X.neg) with the patterns :
	Q58 Training set's size (in %) from :
	Q59 Training set's size (in %) to :
	Q60 Interval in training set's size (in %) :
	Q61 #iterations of each experimentation :
	Q62 Index of the single iteration to do :
	Q63 Seed : 12345
	Q64 Extract a subset of patterns with minimal point coverage of {0 = keep all patterns} :
	Q65 Weighting method (0>cst, 1>Cov, 2>Cov/FSize, 3>FSize, 6>Cov^2, 7>Cov^3, 8>1.2^Cov:
	Q66 Normalize weights so that sum of neg = sum of pos = 1 {y,n} :
	Q67 Readjust threshold and proportion between pos/neg {y,n} :
	Q68 Half size of the range around threshold leading to unknown :

	Input and output files
	Input data file
	Example�1

	Output files
	Example�2
	Example�3
	Example�4
	Example�5
	Example�6
	Example�7
	Example�8
	Example�9

	Bibliography
	[1] Bjarne STROUSTRUP, The C++ Programming Language, Third Edition, Addison-Wesley, 1997.

