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Foreword

This document describes a software designed to experiment Logical Analysis of
Data (LAD). First, while reminding the user what is LAD all about, it gives a
complete description of the possibilities of the software. A second part describes
how to use the different programs. In a third part (to be completed soon) it gives
an insight on the modular structure of this software as well as an understanding
of the semantics of its components, in order to provide the reader the possibility
to modify the existing code, to add new components or to reuse some modules in
different contexts.

The author developed the basis of the code described in this document in 1994-
1995, during a post-doctoral visit at RUTCOR—Rutgers University's Center for
Operations Research, New Jersey. During the last three years, several extensions
and improvements have been achieved at IDIAP and others are still ongoing. The
author is thankful to his colleagues, in particular to Miguel Moreira and Johnny
Mariéthoz for their precious collaboration in this work.

This software has been designed for research purpdgedularity was a pre-
requisite, so that each step of Logical Analysis can easily be suppressed, modi-
fied or replaced in the processing chain. Moreover, in any combinatorial or
logical analysis, there are several mathematical tools that are used constantly. We
tried to identify these tools and to implement them in separate modules of gen-
eral purposes, so that they can be reused easily as often as possible (see for
example classeBlatrix , binMatrix , setCovering ). For the realization of

this project we choose the C++ programming langyagéor its popularity and

its reasonably high level of abstraction.

This software has been designed for research purpose olmyparticular, this

means that at any level of the program, it is always assumed that both, the user of
the executable and the programmer using parts of this software, know what they
are doing. For example, there is no systematic test on erroneous parameters
passed to any functions, and in case of misusage of modules or calls in an inap-



propriate sequence, the result is unpredictable. The only tests that are carried out
are those that can help the user in tracking errors in his code. These are lower
level tests such as checking indices out of range, detecting unexpected null

pointers, and are done systematically.

This document contains three paRart 1 andPart 2 are intended for the user of
this software, whilePart 3 is intended to the developer interested in using, but
also maodifying and extending, some pieces of this software.

» The first partpresents an overview of the method LAD and the different
functionalities of this software.

* The second partocuses of the usage of three executable ties, pat
andthe , which are programs providing a simple access to most of the
components of this software through primitive console-type interfaces.
These programs are however not user-friendly, and are meant for research
purposes only.

» The third part(to be completed soon) presents a description of the main
structural components of this software.

In this text, the following terminology and notations are extensively used. A
database is a set of observations. Aabservation is a point in a multi-
dimensional space. Each dimension of this space is refereed tosasranute.

All the observationsof a particular database are partitioned into several
classes, and the main purpose of this software is the classification of any new
observationinto one of the existing classes. The classes will always be indexed
by c=1,...C, but most of the time this index will be omitted and, instead, it will
be mentioned in the text whether thisservationsve consider are from the same
class or from different classes. Théservationsand the attributes are indexed
byp=1,...Pandi = 1,...] respectively.



PART 1

Functionalities



Introduction

General structure of the software

The complete data processing implemented in this software can be divided into
three phases:

* binarization of data;

» generation of patterns;

» formation of theory;
accessible through three executaliies, pat andthe . A fourth executabl€AD
consists in a sequential call of the first thieigure lillustrates this structure.
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Figure 1. General structure of the software

The generation of positive and negative patterns is produced by two consecutive
calls to a unique pattern generation procedure, after interchanging the roles of
positive and negativebservations

Note The binarization phase is designed to handle multiple classes. On the other hand,
the pattern generation and the theory formation are restricted to problems with
two classes only.

Characteristic of input data

» The complete analysis is implemented in such a way as to handle missing
data. Any missing data is potentially matching any value, with the idea
that the “worse” value for our need will always be chosen. For example,
when we check whether the dataset is consistent (i.e. whether there is no
two identical observationsin two different classes), twobservations
(1,2,?) and (1,?,3) from two different classes are inconsistent.

» Three types oéttributesare distinguished:

- thebinary attributes taking values 0 and 1 or false and true;

- thenominal attributes with a small finite set of possible values;

- thecontinuous attributes with values in a continuous interval.
The different attributes are also divided intoordered attributes and



ordered attributes. Two values of amrdered attributeare comparable,
while values of anunordered attributegre not. Abinary attributeis con-
sidered as ordered, with order 0 < 1 or false < trueNéminal attribute
with more than two possible valuesusordered while a two-valuedom-
inal attributeis assimilated to &inary attributeand thus is considered as
ordered Finally, acontinuous attributés obviouslyordered

» Eachordered attributeof the original database can be specifiechasi-
tive, negative or without monotonicity constraints. If an attribute
is positive (resp. negative), it cannot be usedligcriminatebetween a
positive and a negativebservationif the first one has a smaller (resp.
larger) value than the second one for this attribute.

Protocols of experiments

The original data can be either already split into training set and test set, or it can
be constituted of a single dataset. In the last case, it is often desirable to validate
the learning method through some cross-validation processes. Two popular pro-
tocols of experiments are available.

TheN x K-fold cross-validation consists inN iterations of the follow-
ing procedure. The dataset is split iffoparts (each class is split as evenly as
possible); forkk=1,... K, the training data is composed of every data except those
of the K" part, which are used as test data. It is also possible to do it the other
way around, i.e. using one fold for training, andkhéd remaining folds as test.

In theN-resampling cross-validation protocol, at each of th itera-
tions, the dataset is split at random into two parts according to a given percentage
(each class is split as evenly as possible). The percentage of data used for train-
ing can vary between two bounds. This is useful to highlight the dependence
between the efficiency of the algorithm and the training size.



Binarization

The purpose of the binarization is the transformation of a database of any type
into a Boolean database. This step can be omitted whenever the original database
is already fully Boolean. For simplicity, in the present texbiaary attribute
refers to a two-valued attribute of the original database, whilBoalean
attribute denotes a binary attribute resulting from the binarizatioi3a®lean
attribute either

() isidentical to ondinary attribute

(i) is associated to a specific value of ooeninal attribute

(i)  corresponds to oneut point, i.e. a critical value along oneontinu-

ous attribute

In case {ji), the Boolean attributetakes the value 1 whenever tkentinuous
attribute is greater than the cut point. While in case,(the Boolean attribute
has the value 1 if and only if tm®minal attributehas the associated value.

Note The number otut pointsplaced along the sanmntinuous attributés not lim-
ited: it can be O, or it can be as big as necessary.

Note  With this binarization ohominal attributesif for a test data aominal attribute
takes a value that never occurred in the training dataset, Bawlean attribute
corresponding to theominal attributeis coded as 0.

The first step of the binarization procedure consists in the generation of a large
set ofBoolean attributegalled thecandidate attributes. The main stage of
the binarization procedure is the extraction of a small subseBaidlean
attributes from the set ofcandidate attributes Since the set oftandidate
attributescan be very large and the extraction procedure is time consuming, a
facultative step can precede the extraction, in whichcthedidate attributegre
ordered according to some criteria, and only a subset of them with high prece-
dence is kept. Finally, the binarization itself takes place, according to the final set
of Boolean attributesbtained. So, the binarization phase consists of four steps:

» generation otandidate attributes

» ordering and selection eaindidate attributesvith highest precedence;

» extraction of a ‘minimal’ subset @findidate attributes

e construction of the binary data.

Generation of candidate attributes

Onecandidate attributés generated for each originbinary attribute There are

V candidate attributegienerated for eaamominal attributetakingV > 2 distinct
values in the training set. Currently, two different methods are implemented for
the generation of the candidatet points The first method, calledne-cut-per-
change, introduces &ut point(t,i) (i.e. of valuet along attribute) if there exist

two observationsa andb belonging to two different classes such tlaak t =
(a+b;)/2 < by and if there is noobservationc with & < ¢; < b;. The second
method introduces eut pointt = (g + b;)/2 if there exists a pair abbservations

a belonging to Class’ andb belonging to Class” > ¢’ so that either is non-



monotonicanda; < by, ori is positiveandg; < b, ori is negativeanda; > by. It
will be refereed to as thene-cut-per-pair method.

The number ofcandidate attributegenerated is usually very large it is
sometimes better to reduce this set in two steps:

» The candidate attributegre sorted and only the best are kept. Different
sorting procedures are discussed in Sec8orting and pre-selection of
the candidate attributes

* A global optimization procedure discussed in Sectotraction of a sub-
set of candidate attributesxtracts a small subset@dndidate attributes

Extraction of a subset of candidate attributes

A candidate attributed discriminates a pair ofobservationga,b), if the val-
ues taken byl for a and forb differ. In other words, @andidate attributel asso-
ciated to abinary attributei discriminates (ab) if and only if gzb;. A
candidate attributed associated to aominal attributel with valuev discrimi-
nates (a,b) if either g =v, or b; = v, but not both. Acandidate attributel associ-
ated to a continuous attribuitevith cut pointvaluet discriminates (a,b) if and
only if t is neither smaller nor bigger than botig,andb;. If i is positive(resp.
negative, (t,i) discriminates betweera belonging to class’ andb belonging
to classc™c’ only if g <t <D (resp.g >t >by).

A good set oftandidate attributeshould be such that any pair atbserva-
tions from two different classes discriminatedby at least one attribute of the
set. The original method proposed for the extraction of a small subset of
attributes from a given s@tdetermines the smallest subset of attributes with this
property by solving the following set covering problem:

Min 24577
S.t. 2407 SdabZ = 10 (a,b) from different classes
zg0{0,1} 0dOT (1)

wheresyy, = 1 if d discriminatesbetweera andb, andsy,, = 0 otherwise.

In the current form of the software, this problem can be solved by various
heuristics. This is satisfactory since, in this application, it is not critical to obtain
the minimum subset of attributes. Experiment even showed that some larger sub-
sets than the ones provided by our heuristics often led to better final results.
Therefore, the current version of this procedure for the extraction of a subset of
attributes provides the liberty to specify any positive integer value as the right-
hand-side of the constraints in (1).

The measure of pair discrimination ondidate attribute@ssociated to
continuous attributecan be refined if one considers that the larger the gap
betweert anda, andb; the better. For any paird(),(t,i)), thediscriminating
power of d = (t,i) betweera andb is defined as



min{|t —aj| , k- b} / (maxy & — min, &) (2)

if (t,i) discriminateshetweera andb, and is 0 otherwise. The choice of the nor-
malization (denominator of expressi®) )is arbitrary and it could be replaced
for example by the standard deviation along attribudith this definition, the
maximaldiscriminating poweis 0.5, and tha&liscriminating powenf candidate
attributes associated tomominal or binary attributesis arbitrarily set to 0.5,
whenevediscriminationoccurs.

In the current procedure for the extraction of a small subsetibpoints
an alternative is proposed, based on thecriminating powerinstead of the
binary discrimination. The integer linear program expressing the previous set-
covering problem irequation (1)is replaced by a linear program whexg, is
the discriminating powerof d betweena andb, and the right-hand-side is an
arbitrary value representing the required minimal discrimination between two
observationdrom different classes. So, we have currently two methods for the
extraction of a small subset ofit points the first one is based ontdnary-dis-
crimination, while the second one is based om@tinuous-discrimina-
tion.

For both methods, it can happen that the problem has no solution for a
specific right-hand-side. In such cases, for each i) (eading to a non satis-
fiable constraint, all they corresponding tey,, > Gre set to 1 and the constraint
is removed for the system of inequalities.

Sorting and pre-selection of the candidate
attributes

Three different ordering criteria are now available. In each of these methods, a
weight is associated to eadandidate attribute which are then sorted in a
weight decreasing sequence. The first method, callettring-by-entropy,
assumes that a goadindidate attributecontains by itself a lot of information for

the global classification. A weight given by

max{ z(: pc:L In( pcl) , Zc pco In( pco) } 3)

is associated to eandidate attributewherep,® is the conditional probability that
anobservatiorais in classc given that thecandidate attributéakes valuesona.
These weights are clearly non positive, and smgpcl =2 pc0 =1, aweightis
0 if and only ifp;> = 1 for onec=1,....C and ones= 0,1.

The second methodyrdering-by-minimal-discrimination, associ-
ates to acandidate attributed a weight proportional to its smallest non-zelis-
criminating powerover all possible pairs obbservationsfrom two different
classes. This weighting measures the robustness of an attribute and it clearly
favors the ones associated to nomindlioary attributes

The motivation for therdering-by-minimal-discriminatiomethod is that
acut pointwith low discriminating poweffor some pairs obbservationshould



be avoided. Instead of the minimdiscriminating power the third method,
ordering-by-total-discrimination, associates to each attribute the sum of
the discriminating powerfor all possible pairs obbservationsrom different
classes. This third weighting method has also some similarity with the first one.
For example, an attribute associated to an oridiirary attributehas adiscrim-
inating powerof either 0 or 0.5 for each pair abservationstherefore its weight
depends on the number of pairdigcriminates

Binarization and confidence interval

In the final stage of the binarization procedure, the original database is replaced
by a new one with onBoolean attributdfor each remainingandidate attribute

In the case the extracting method is basedtontinuous-discrimination
we do care about thaiscriminating powelof a cut pointfor each pair obbser-
vations However, it may happen thatcat pointwhich has been selected for its
high discriminating powebetween some pairs, has a pd@criminating power
between some other pairs, and we would like to avoid relying orctitipointto
distinguish the latter pairs afbservationsA natural way to model this is to
define a confidence intervalfor all the cut points(t,i), and to define the bina-
rized coefficient as being 1af > t+6, 0 if g <t-8 andunknown if |t—g] < 6.

In the current implementation, we have the possibility to set up this confi-
dence parameted, which is used through the whole binarization procedure. If
this confidence is non-zero, the notionsdascriminationand ofdiscriminating
poweras well as the weighting methods for thet pointsused in the previous
steps are modified as expected.

Goodness of the binarization

In most utilization of this software, the whole database available is first split into
two parts (see Sectidarotocols of experimenysthe training set is used for

the construction of the classifier, and thesting set is used to measure the
guality of the classifier. This quality depends on each stage of the analysis, and at
the end of the binarization procedure it is possible to measure what will be the
best result that could ever be achieved, given this binarization.

Indeed, after a binarization of the training set and the validation set
according to the same rule, it might happen thabhgervationof one class in
the training set is identical to asbservationof another class in the validation
set. Assuming that the classifier elaborated in the next stages classifies correctly
eachobservationof the training set, we can determine a listatfservationsn
the validation set that will be surely incorrectly classified. Another source of
unavoidable wrong classification is due to non-coherent binarized validation set,
i.e. containing identicabbservationsn different classes. A procedure is avail-
able to count the total number of unavoidable wrong classifications on the vali-
dation set, assuming that the classifier commits no mistakes on the training set.



Pattern generation

The second phase of logical analysis consists in the generation of patterns. A
pattern is a term covering at least one positigbservationand none of the
negative ones. In contrast with the binarization phase, the pattern generation is
designed for databases with two classes only. As illustratedseneral struc-

ture of the softwargthe same pattern generation procedure is called twice: once
when theobservationsof class 1 play the role of positivebservationswhile

those of class 2 are the negative ones, and once when these roles are reversed.

For simplicity, we will describe this procedure only for the case where
positive observationshave to be covered by patterns; the case where negative
observationsre covered is similar, when positive and negatiiservationgre
exchanged. Another difference between the two cases occurs when monotonicity
is involved. A positive (resp. negative) Boolean variable can not appear as a neg-
ative (resp. positive) literal in patternin the first situation, while it is the other
way around in the second situation.

We first generate a large set péhtternsof small degree, then some addi-
tional patternsare produced to cover the positie®servationsnot covered by
any smallpatterns finally different strategies are proposed to reduce the number
of patternswhile keeping the most interesting ones.

Prime patterns of small degree

The present procedure for the generation of patterns of small degree is a breadth-
first-search that explores the whole set of terms up to a given maximal degree. A
breadth-first-search is slower and more space consuming than a depth-first-
search, but is has the advantage to yield the exhaustive lgattérnsup to a
certain degred.

Beside the maximal degree of terms, several other parameters can control
this generation of patterns. The minimal number of positisservationsov-
ered by each interestingtterncan be set to higher values than 1.

The satisfactory coverage of each positieservatiorcan be any positive
integer. Setting this parameter to a low value will allow the procedure reducing
the number of positive@bservationsalong the way, by suppressing those that
have been sufficiently covered, and this can sensitively improve the computa-
tional time. Note that this suppressionaifservationss done after the comple-
tion of the exploration of each new depth in the tree of terms. Therefore, the only
patternsthat will be omitted due to this optimization apatternscovering only
observationslready heavily covered Ipatternsof smaller degree.

By definition, apatternis prime if none of its literals can be dropped
without violating this property. Consequently,paime patternhas a minimal
Hamming distance of exactly 1from the set of negatiservationsin some
occasions, it might be interesting to rely patternsof higher degree but more
distant from the negativebservationsA positive integral parameter allows us



specifying this minimal distance which is 1 by default.

On the other hand, in some other cases we may want to relax the property that
none of the negativebservationss covered, since a term covering a large num-
ber of positiveobservationsand just one or two negative ones may contain a lot
of information about our classification problem. The paraméteas been intro-
duced for that purpose with the meaning that a term coveripgsitiveobserva-
tionsis allowed to cover

EPNT/NT 4)

negativeobservationswhereN ~andN * denote the number of positive and neg-
ative observations

Patterns covering specific observations

The previous procedure has the advantage to enumerate plithe patternsof
small degree. However, it suffers from a combinatorial explosion and if the num-
ber of Boolean attributess large, this breadth-first-search can not be carried out
beyond a very small degree. It may thus happen that sdieervationsare cov-
ered by too fevpatternsor nopatternat all.

In this case, it can be desirable to find patiternsfocusing on the cover-
age of each of thesgbservationsThus, the pattern generation module incorpo-
rate a second procedure, optional, for the coverage of uncaeset/ations

Suppression of subsumed patterns

Even if all thepatternsgenerated by the procedure described in the previous sec-
tion are incomparable on the whole hypercube (as they amgriade), it might
happen that the set observationgrom the training set covered bypatternP,

is a subset of the set observationsovered by anothgratternP,. In this case,
patternP, is said tosubsume P;. An optional procedure is provided to rule out
the subsumed patterngiowever, in the present implementationpattern sub-
sumedonly by patternsof larger degree is not suppressed. Moreover, when two
patternscover the same set afbservationsthe one of larger degree is sup-
pressed, and if the two degrees are identical, both are kept.



Theory formation

The previous stage produces two setpafterns one for the positivebserva-

tions, and the other for the negatiadservationsin the last stage of this analy-

sis, to eaclpatternis associated a weight, and the classifier will be represented
by a combination of the two pseudo-Boolean functions corresponding to the pos-
itive and negativeobservations However, even after the suppressionsoib-
sumed patternsthe set of remainingpatternsis still quite big. For practical
reasons, it was convenient to include at the beginning of this last stage (instead of
at the end of the previous stage), another possibility to extract a smaller subset of
interestingpatterns

Extraction of small subsets of patterns

The suppression a(fubsumed patternsrned out to erase a large numbepat-
ternsin many applications. Nevertheless, one of the main advantages of LAD
versus other approaches, is that the interpretation of the results of the analysis is
simple and clearly understandable for any expert in the field the classification
problem comes from. To make this interpretation feasible, it is important to have
a very small number opatterns even if the prediction accuracy may slightly
drop. For that purpose, a second facultative procedure is provided for the extrac-
tion of a small number opatterns The minimal subset gbatternscovering the
same set of positivebservationds given in a natural way by a set-covering
problem. As for the binarization (see Sectiotraction of a subset of candidate
attributeg, the right-hand-side (minimal coverage) can be set to any value and
different heuristics are available for the resolution of this NP-Hard problem.

Patterns weighting

When any trainingobservationis covered by at least orgattern each of these

two pseudo-Boolean functions is Oon one seblogervationsand positive on the
other. Therefore, a simple way to combine the two pseudo-Boolean functions is
by amajority vote, i.e. for each newbservationthe guessed class is given by
the pseudo-Boolean function with higher value.

Several methods for weighting tipatternshave been implemented in the
current version. The simplest one associates a constant value to each of them.
For several others, the weight is function of the numbeshifervationcovered
by thepattern(linear, quadratic, cubic or exponential are available). Since small
patternsmight be more desirable than large ones, another weighting method
associates a weight®to apatternof degreed.

The next weighting method is a combination of two previous ones. In this
case, it is assumed that the weight opattern should be proportional to the
probability that one of the truebservationf the patternis in the list of our
observationsTherefore, gatternof degreead coveringp observationwill have
a weightp2'd.



Finally, a fifth weighting method tends to determine the weightpaif
ternsin order to increase the minimal non-zero value of each pseudo-Boolean
function in the set of trainingbservationsTwo different cases are considered.

In the first one, the weights of each of the two setpatternsare set indepen-
dently by solving the following linear program:

max k
s.t.  Axzk
quqz 1
X2 0, (5)

wherex, is the weight of they" patternandA is a 0-1 matrix with one column
per patternand one row pepbservationin the class covered by thegatterns
a,q = If and only if theqth patterncovers tha™ observation By opposition, in
the second case, the weightandy for the patternsof the two pseudo-Boolean
functions are fixed simultaneously by the solution of:

max k
s.t.  Axak
By=k
quq 2y =1
Xp ¥r20, (6)

whereA andB are two 0-1 matrices associated to the two setsbservations
and ofpatterns

Combination of pseudo-Boolean functions

For many applications, there is no reason to believe that a majority vote is the
best combination of the two pseudo-Boolean functibfindf ~ (for the posi-

tive class and the negative class respectively). For example, if the sets of positive
and negativeobservationsare very unbalanced and so are the two setgaif

terns it would be reasonable to apply the majority rule after a normalization of
the weights. The present version provides an option where each weight of posi-
tive patternis divided by the sum of the weights of the positpegtternsand sim-

ilarly for the negativgatterns

Beside a normalization of the pseudo-Boolean functions, we might also consider
a shift (addition of a constant value) of one of them, before applying the majority
rule. The present version of the software also proposes a procedure that adjusts
two parametersa for the normalization an@ for the shift:af * # will be com-
pared tof ~. For a better result, sonm@bservationshould be excluded from the
training set for thdattern generatiophase, and reintroduced for the adjustment
of a and3. The two parameters are presently chosen as follows. Each positive
and negativ@bservatiora of the training set is represented by the p#i(d), f~

(a)). Thus, they correspond to points in the plane, and the goal is to find the half-
plane of the equation x™ 48>x" containing as many points representing positive
observationsand as few points corresponding to negatservations|f the

two sets of points in the plane are linearly separable, we will pigiad3 from



the solutions of

max k
st. aff(@ #-f(a=k O positie observatiora
af*(@ B-f (a)<-k O neativeobservatiora.  (7)

When the two sets of points in the plane are not linearly separatdadf3 are
chosen to minimize the following non-negative piece-wise linear expression:

Zalat*@ B-f (@)@ a, ), (8)

wherec(a, a, B) is 1 if ais a positive (resp. negativepservatiorandaf*(a) -
f7(a) is negative (resp. positive), otherwiga, a, ) = 0.
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User Guide



Introduction

The current version of the executable fitéis , pat andthe , or LAD, enable the
user to apply the complete chain of transformations and analyses of data pictured
in. General structure of the software

The main input of this program is a file containing the database in a format spec-
ified in Sectioninput data file The basic output of this program is the table of
results of a sequence of experiments, for which several information are reported,
as well as some statistics (means and standard deviations) for each element of
information. However, when a single problem is solved in a session of the pro-
gram, many additional outputs are possible, providing much more details on this
particular run. Each of these possible outputs will be discussed in Sé€titput

files

The next section enumerates the sequence of questions asked by the program at
the beginning of each session, and describes their meanings and effects.



How to run the program

In this section, the sequence of questions asked to the user at each step of the
program is detailed. This is subdivided into three subsections, one for each of the
three modulesin , pat andthe . The executableADis essentially a concatena-

tion of the former three programs and it takes entries into a file where each
parameter can be preceded on the same line by the text of the corresponding
guestion.

As already mentioned, the program has two slightly different behaviors, accord-
ing to the fact that a single problem is executeth@le-run), or a sequence of
problems are executedh(ultiple-runs). A multiple-run is characterized either

by the execution of many problems for one particular size of training set, or by
the experimentation of different sizes of training set in the same session. The
sequence of questions varies slightly in the single-run mode or in the multiple-
run mode, and this will be mentioned along the way.

Binarization

In each of the three programs, the first question allows selecting the debug mode.
Q1 Trace level {1=normal, 2=debug} (default 1) :

In fact, a third level of debug extremely verbose is also available. It is not recom-

mended to use some information level 2or 3for a session with multiple experi-

ments, since the amount of information displayed might be gigantic.

Input / output file names

All the files generated by the binarization module will have a common prefix
entered at the following question.

Q2 Prefix for the output files :

The split between training and test data can either be generated at random from a
common database by setting A3 to ‘no’ (A3 denotes the answer to Question Q3),
or two data files are available as input (A3 = yes).

Q3 Read separate training and testing data files {y,n} :

Then the input file name is expected. Only its prefix must by entered in Q4 (if
A3 = yes) or in Q5 (if A3= no).

Q4 Prefix X of the files (X.tra X.tes) with original data :

Q5 Prefix X of the file (X.all) with original data :

Sequencing the experiments

If A3 =yes, there will be clearly only one experiment with the given training
dataset. Otherwise, the protocol of experiments (i.e. number of experiments and
the way the dataset is split between training and test) has to be selected using
guestions Q6 to Q10.

Q6 Size K of the K-folding (enter 1 for resampling) :
For regulamMxK-fold cross-validation, set A6 ti > 2 and A10 taN. If A6 < -2,



the protocol is &xK-fold cross validation, except that for each experiment, one
fold is used as training, and tlixe-1 others are used for test. This is useful when
very large dataset are available.

If A6 =1, N-resampling cross-validation is used. In that case, questions Q7 to
Q9 allows specifying the lower bound, upper bound and interval of the percent-
age of training data.

Q7 Training set's size (in %) from (default 50) :

Q8 Training set's size (in %) to:

Q9 Interval in training set's size (in %) :

Q10 #iterations of each experimentation :

The seed of the random generator

Fixing the seed of the random generator allows replaying an experiment in
exactly the same setting. This can be done with Q11.

Q11 Seed:
However, when many experiments are iterated in the same run for cross-valida-
tion purposes, it may happen that only one particular experiment has to be
replayed. Therefore, in this program, the seed of the random generator is used in
two different ways, depending whether there is only one or more than one exper-
iment. In the first case, i.e. when

A3=yes or (A6 =1land A10= 1and A7+A9 >A8), (9)

the seed is fixed to A1l before any call to the random generator. On the other
hand, wherequation (9)does not hold, there is s&y > 1 experimentsNl =NK

or M = Nloor((A8- A7) / A9)). In this case, the seed is fixed to A11 and thven
random numbers are drawn and stored in a table. At the beginning ofthe
experimentye= 1,...M, the seed is fixed to thel" element before any call to the
random generator. Moreover, these seeds are printed in the log file. Thus, if one
particular experiment has to be replayed, it suffices to get from the log file the
seed effectively used for the experiment and to rerun the program requiring a sin-
gle experiment and specifying this seed to A11.

Steps of the binarization method

As far as continuous attributes are concerned, the binarization method can be
based either on binary-discrimination, or on continuous-discrimination. Q12
allows choosing among these two possibilities.

Q12 Binarization method {1=binary, 2=continuous} (default 2) :

The complexity of the heuristic used to solve the set-covering problem is linear
in the number of pairs of different classes. It is possible to reduce this list of pairs
by the simple following rule. Ifa and b are two observationsfrom different
classes, and if there is a pomincluded in the hyper-box delimited teyandb,

then the separation of(b) will be at least as good as the separation either of the
pair (a, €) or of the pair b, €). Thus, the pairg, b) can be dropped from the list

of pairs to be separated.

Q13 Apply point-in-a-box to reduce the # of pairs of pts {y,n} :



In practice, it turned out that for some databases, this technique allows the sup-
pression of up to 40% of the rows, while for others very few rows are sup-
pressed. Since this operation is quite costly, especially when the number of
attributes is large, it is worse doing some preliminary experiments on each new
database in order to decide whether this optimization is worth it or not.

The paramete® discussed in SectioBinarization and confidence intervis set

in question Q14. To have a unig@dor all continuous attributes, these are con-
sidered as normalized such that their minimum and maximum on the training set
are 0 and 1. Therefor®, is usually very small, typically around 0.01. In some
databases, the ideal value for this parameter was around 0.008, while in others, a
confidence interval up to 0.05 seemed more adequate.

Q14 Confidence interval around each cut point [0, 0.1] :

Question Q15 allows the choice of the method for generating the candidate
points : A15 =0 corresponds to one-cut-per-change, while A15 = lindicates
one-cut-per-pair.

Q15 Cut points generation method {O=each change, 1=each pair} :
The user should be aware that the second method generates in general much
more pairs and thus it is recommended to sortdhiedidate attributesind keep
only the first ones, before extracting a minimal subset. This is feasible through
the questions Q17 and Q18, when answering yes to Q16.

Q16 Filter cut points according to a specific order {y,n} :

Q17 Ordering method {1=entropy, 2=min-discr, 3=total-discr} :

of Al2=1
Q18 Minimal # of CA separating each pair of pts (filter) :
elseif A12=2

Q19 Minimal separability of each pair of pts (filter) :
The ordering methods ordering-by-entropy, ordering-by-minimal discrimination
and ordering-by-total-discrimination, discussed in Se&mting and pre-selec-
tion of the candidate attributeare selected through Q17. Question Q18 or Q19
allows determining the amount afandidate attributekept according to this
order. When some filter is used, tbendidate attributeare ordered according to
the ordering criterion specified, and then, the fikstre selected and the others
are suppressed, whekas the minimal humber so that thefirst candidates are
sufficient to achieve the required global separability. If this global separability is
too high, this requirement is readjusted to the maximal global separability (when
all the cut-points are present) and this modification of requirement is notified in
the log file.

The last group of questions Q20 to Q23 concerns the final extraction of a small
subset ofcandidate attributegsee SectiofExtraction of a subset of candidate
attributeg.

Q20 Minimize # of cut points {y,n} :

ifAl2 =1,
Q21 Minimal # of CA separating each pair of pts (optim) :
else if A12 =2,

Q22 Minimal separability of each pair of points (optim) :



Again, if the required minimal separability cannot be achieved it is readjusted
and this is noticed in the log file. For the sack of efficiency of the pattern genera-
tion process, it may be important to bound the numbecasfdidate attributes
finally produced. This is possible with Q23.

Q23 Maximal number of cut points {O=unbounded} :
However, the user must be aware that a too small bound introduced in Q23 may
result into a set o€andidate attributesvhich does not fulfil the criterion speci-
fied in Q21 or Q22.

Pattern generation

Input-output file names and sub-sampling

The first questions have the same purpose than thosekim thmodule.

Q24 Trace level {1=normal, 2=debug} :

Q25 Prefix for the output files :

Q26 Prefix X of the files (X.tra) containing the training data :

Q27 Training set's size (in %) from :

Q28 Training set's size (in %) to :

Q29 Interval in training set's size (in %) :

Q30 #iterations of each experimentation :
Note that the files resulting from experiments WikK-fold cross-validation are
named the same way as thoseNsfresampling. For example, if a 4-fold was
used in the binarization module, the names will be similar than if 75% of the data
was used as training. To use these with pae module, just answer 75% and
75% to Q27 and Q28.

In case one would like to run (or rerun) the pattern generation module on a single
problem out of many that have been binarized. Say that this problem itk 6
the ones with 66% training, answer 6 to Q31.

Q31 Index of the single iteration to do :

The seed of the random generator works in the same way thian.in
Q32 Seed:

As discussed itthis Paragraphof SectionCombination of pseudo-Boolean func-
tions it is sometimes desirable to sub-sample the training set for the pattern gen-
eration module, in order to keep some unseen data for the theory formation
module. For this purpose, A33 should be set to less than 100%.

Q33 Percentage of training sample used for pattern generation :

Depth-first-search

In the current implementation, there is no procedure for the depth-first-search
generation of patterns, so Q34 should be answered negatively and Q36 to Q39
will not be asked.

Q34 Generate patterns by depth-first-search {y,n} :

Q35 Satisfactory coverage of each positive point in DFS :



Q36 Satisfactory coverage of each negative point in DFS :
Q37 Literal evaluation method for positive patterns :
Q38 Literal evaluation method for negative patterns :

Breadth-first-search

The main module for pattern generation proceeds by a breadth-first-search.

Q39 Generate patterns by Breadth-First-Search {y,n} :
It consists (when A39 is yes) into two consecutive calls to the same function,
once with the positive and negatiebservationgaken as such, and another time
when their roles are reversed. This is why every parameter is doubled. The first
one concerns the maximal depth (i.e. degree of the terms) of the breadth-first-
search exploration.

Q40 Generate positive patterns of degree up to :

Q41 Generate negative patterns of degree up to :

To avoid the generation of too mampatterns it is often desirable to focus on
patternscovering sufficiently mangbservations

Q42 Minimal coverage of each positive pattern {neg number -> %} :

Q43 Minimal coverage of each negative pattern {neg number -> %} :
When A42 (resp. A43) is negative, the given value is considered as a percentage
of the total number of positive (resp. negativi)servationgo be covered by
positive (resp. negativgjatterns For example, if there are 40 positiebserva-
tions answering-5 or +2 to A42 is equivalent and implies that only positag-
ternscovering at least 2 positiveservationwill be considered.

The processing time of the breadth-first-search procedure depends on the num-
ber of positive and negativebservationsl|f this number can be reduced on the
way, the processing time can decrease significantly. When some paditee-
vationshave already been covered by mamtterns they can safely be sup-
pressed from the list. The next parameter to be entered at Q44 and Q45 provides
the threshold coverage value for a point to be suppressed from the list. If this
value is 10, for example, it does not mean that every positive point will be cov-
ered by 1Qpatterns but that whenever a point is covered by fd#tterns we do
not consider it any more for the generation of furtpatterns In practice, this
suppression of widely covergghtternsis done only after the completion of the
exploration of each new depth of the search.

Q44 Satisfactory coverage of each positive point :

Q45 Satisfactory coverage of each negative point :

The purpose of Questions Q46 and Q47 is to get the minimal distance from a
term to the set of negativ@servationsso that this term is considered @attern
(see SectiofPrime patterns of small degreearagraph).

Q46 Minimal distance from a positive pattern to an opposite point :

Q47 Minimal distance from a negative pattern to an opposite point :
For aprime patternthis distance is 1. It can however be increased to 2 (or more,
but the experience has shown that this parameter is very sensitive), meaning that
only patternsat distance at least 2 from any negative point are considered.



The next questions are related to the relaxation of the conceyattterns allow-

ing some conjunctions covering many positdaservationsand very few nega-
tive ones to be also consideredsterns(see SectiofPrime patterns of small
degreeg Paragraph). The parametef in equation (4)is entered as A48 and A49.

Q48 * A conjunction covering C+ (resp. C-) points among the N+ (N-)
total positive (negative) points
is a positive pattern if (C-/C+)(N+/N-) is at most :

Q49 is a negative pattern if (C+/C-)(N-/N+) is at most :

Patching

The next two questions allow choosing whether a second pattern generation pro-
cedure must be activated in order to coverabservationsincovered by thepat-
ternsgenerated so far.

Q50 Generate extra patterns to cover uncovered pos. points {y,n} :

Q51 Generate extra patterns to cover uncovered neg. points {y,n} :

Cleaning the sets of patterns

Finally, at the end of thepat module, the user has the choice to reduce the
potentially large set gpatternsgenerated by suppressing the&bsumed patterns
(SectionSuppression of subsumed pattgriefore thegpatternsfound are stored

on files.

Q52 Suppress subsumed patterns {y,n} :

Theory formation

Input-output file names

The first questions have the same purpose than those ihirthend thepat
modules (see Sectibwput-output file names and sub-samp)ing

Q53 Trace level {1=normal, 2=debug} :

Q54 Prefix for the output files :

Q55 Testing theory(ies) on test data {y,n} :

Q56 Prefix X of the files (X.tra) with the training data :

Q57 Prefix X of the files (X.pos, X.neg) with the patterns :

Q58 Training set's size (in %) from :

Q59 Training set's size (in %) to :

Q60 Interval in training set's size (in %) :

Q61 #iterations of each experimentation :

Q62 Index of the single iteration to do :

Q63 Seed: 12345

Weighting the patterns

Before associating weights to tipatterns one still have the option to extract a
subset of them chosen so that each point is covered by at leagigi@tns(see
Sectiorextraction of small subsets of patteyns



Q64 Extract a subset of patterns with minimal point coverage of
{0 =keep all patterns} :
If someobservationsre covered by legsatterns(when allpatternsare consid-
ered) than the specified number, all fretternscovering thesebservationsare
necessarily placed in the subset and this fact is mentioned in the log file.

The selection of some of the weighting techniques discussed in S&gtitarns
weightingis done through Q65

Q65 Weighting method (0>cst, 1>Cov, 2>Cov/FSize, 3>FSize, 6>Cov"2,

7>Cov"3, 8>1.2"Cov.

whereCov stands for coverage (number afservationsovered) andrsize is
proportional to the size of the face of the hypercube represented lpattern
(Fsize = 2 for apatternof degreed). Methods 6, 7 and 8 correspond to weight
growing respectively as a quadratic, a cubic or an exponential (basis 1.2) func-
tion of the coverage. The last two methods discussed in Seetitiarns weight-
ing are not yet implemented.

As mentioned at the beginning of SectiGombination of pseudo-Boolean func-
tions it is often interesting to balance the total contribution of positive and of
negativepatterns This is the purpose of Q66. If Q66 = yes,the weights associ-
ated to thepatternsaccording to the chosen method are normalized, so that the
sum of the weights of negatiymatternsis equal to the sum of the weights of pos-
itive patternsand is equal to 1.

Q66 Normalize weights so that sum of neg = sum of pos = 1 {y,n}
A finer normalization as well as a shift of the threshold for the final decision is
obtained by learning the two parameters and 3 described in
SectionCombination of pseudo-Boolean functions

Q67 Readjust threshold and proportion between pos/neg {y,n} :

In the evaluation of a classification system, it is often interesting to distinguish
between a wrong answer and no answer. Using the sign of the pseudo-Boolean
functionf * —f ~ (or o f ¥ +B— f 7) for the final decision, whenever the result of
this function is close to O, it is wise not to take a decision. The paranseter
entered as A68 means that whenever the result of the decision function is
between-¢ ande, the answer of the classifier is “I don’t know”.

Q68 Half size of the range around threshold leading to unknown :
In the output statistics of thine module, the rates of errors and of unknowns
are first distinguished and then, in the total error rates, all the unknowns are
counted as errors.



Input and output files

Input data file

The formalism used to describe the syntax is the EBNF, which is as follows:

MetaSymbol Meaning
- is defined to be
X) 1 instance X
[X] 0 or 1 instance X
{X} 0 or more instance X
XY X followed by Y
X|Y Either X or Y
X Non-terminal symbol

X Terminal symbol

Formal description

In what follows, EoF EoL, TAB and spacerepresent the end-of-file, end-of-line,

tabular and space respectively. The input data file must fulfil the following syn-
tax.

InputDataFile —
HeaderOrinclude—

Include —

Header —

Comment—
Attribute —

Identifier —

AttributeDescr —
RegularAttribute —
NonOrderedAttribute—
OrderedAttribute —

Monotonicity —
SpecialAttribute—
Data —
OneDatum—

DataSeparator—

HeaderOrinclude Dat&OF
( Header| Include)

include  FileNameEOL

FileNameis sequence of characters satisfying the file name's syntax. There must
exist a file with this name containingiaader.

[ IdentifiereoL ]
Attribute{ ; { Comment { EOL} Attribute } .
{ Comment; { EoL}

/I { any character excegbL} EoL
Identifier: AttributeDescr

(al..lzlal...l2)

( RegularAttribute| SpecialAttribute)

(' NonOrderedAttributd OrderedAttribute)

Identifier, Identifier, Identifier{, Identifier} [ (target) ]
(continuous | (Identifier, Identifier) )

[ Monotonicity| (target) ]

GRCH

( multiplicity | 1abel
OneDatum{ DataSeparator OneDaturh

( Numerical| Identifier | 2 )

| ignored )




Simple example of input data

This syntax is illsutrate througexample 1

Mushrooms

name: label;

toxicity: eatable, poisonous (target);

density: continuous;

pH: continuous (+); // means that if pH increases,
/I toxicity cannot decrease

cap-color: n,b,c,g,r,p,u, e, w,y;

bruises: yes, no; // note that here, yes=0 and no=1!

veil: absent, present (-).

lepiote eatable 2.352 7.4 3 0 1

chanterelle 0 4.01 6.7 2 1 0

amanite-panthere poisonous 35 6.2 3 1 1
Example 1

Constraints and semantic

TheHeader(which can be in a separate file, usingude ) contains a description
of each attribute of the dataset. The total numbepm@iDatumin Data must be a
multiple of the number ofitribute in theHeader

As discussed in SectidBharacteristic of input datanominal attributesare
eithernonOrderedAttribute or two-valuedrderedAattributs. In the data, the values of
anominal attributecan be given either by their names or in a numerical form. In
the latter case, the order will be the one of the list of values in the description of
the attribute, starting at O.

OneregularAttributemust be specified agget . If more than onettribute is speci-
fied as target, the first one will be the effective target.

Whenever anrderedAttributeis the target, othesrderedAttributé can havenonoto-
nicity constraints Monotonicity constraints will be ignored when the target is a
nonOrderedAttribute

Thelabel attribute is used to give a name to each data. After some preprocess-
ing, it may occur that some data correspond to several original data. This infor-
mation is very important, especially when counting the coverage gidtterns

The attributenuttiplicity is used on this purpose. If there is more than one label
(resp. multiplicity) attribute, the first one will be considered as the effective label
(resp. multiplicity) and the other label (resp. multiplicity) attributes will be
ignored. The data corresponding to a label attribute can be eithemearical
value or anidentifier The data corresponding to a multiplicity attribute must be
Numerical If there is no label attribute, then each data is labeled by its order in the
file (starting with 1). If there is no multiplicity attribute, then each multiplicity is
set to 1. If one value of the multiplicity (resp. the label) attribute is set to
“unknown” (i.e. ?), then the multiplicity is arbitrarily set to 1 (resp. the label is
set to the character “?7).



Output files

Outputs of the binarization

The binarization module take as input a file with the dataset in the form

described in SectioRormal descriptionlt generates several files named
(Prefix-bin.  Suffix0 | Prefix- Perc- Iter . Suffix1 | Prefix. Suffix2)

Files of the last form are generated only in case sfrale run i.e. when the
number of iterations is 1.

Prefix — any sequence of alphanumeric (given as parameter)
Suffix0—  (out |log | tmp)

Perc — one 2 digits number (except for 100) specifying the
percentage of the whole data used for training
lter — one 2 digits number, giving the iteration (when an experiment

with the same percentage is repeated several times)
Suffix1—»  (ta_ | tes )
Sufix2—»  b_a

Example of output of the binarization

A single run ofbin on the database ‘Heart Disease’ of the Irvine repository, with
50% data for training will produce the following files, when the given prefix is
HD:

HD-bin.out
HD-bin.log
HD-bin.tmp
HD-50%001.tra
HD-50%001.tes
HD.b_a

Example 2

The file with suffixout contains all the statistical results of the binarization. The
file with suffix log is the log file and contains information related to problems
occurred during the binarization as well as the seeds used at the beginning of
each experiment (useful to rerun one particular experiment). The file with suffix
tmp iS a temporary file. It is used to follow the progress of the binarization proce-
dure, or in case the program is interrupted, partial results are stored in this file.
The files with suffixira andtes contain the training and testing data in the
binary form and according to the syntax described in Sed¢twmal descrip-

tion.

The file with suffixo_a is created only if the number of iterations is 1. It contains
the list of Boolean attributesand thus is useful to associate eaBbolean
attributeto the original attributes. For example, the file presented in is produced



by the previous run dfin .

total_nb_of_original_attributes 15
nb_of_cut_points 21

v 1:s=47.00 1:54.5 2:55.5 3:56.5

v2:s=1.00 4:0.5

v3:5=3.00 5:1.5 6:25

v 4:s=80.00 7:133.0

v 5:5=251.00 8:242.0 9:243.510: 255.5 11: 280.0
v 6:s5=1.0012: 0.5

v 8:s5=1.0013: 0.5

v 9:5=131.00 14: 154.5 15: 170.5

v10: s=1.00 16: 0.5

v11:s=44.00 17: 10.5

v12:s=2.0018: 1.5

v13:s=4.0019:0.520: 1.5

v14:s=2.00 21: 0.5

Example 3

The first two lines recall the total number of original aBdolean attributes
Then, every original attribute associated to at least Boelean attributeis
listed. Each original attribute start with a new line and they are indexe@,

etc. (starting from 1). After this index and a columaN indicates the ‘span’
used for this original attribute, which was just the max value minus the min value
found on the training set, but this is for internal use and can be ignored at a
macro level. Then, thBoolean attributegssociated to the original attribute are
listed, with their index (starting from 1), a column and the value afuhgoint

Outputs of the pattern generation

The pattern generation module uses essentially only the files
Prefix- Perc- lter tra
containing the binarized training data. It creates the files
( Prefix-pat. _ Suffix0| Prefix- Perc- Iter . Suffix1)
Prefix — any sequence of alphanumeric, given as parameter,
Suffix0 — (out |log )

Perc — one 2 digits number (except for 100) specifying the percent-
age of the whole data used for training
lter — one 2 digits number, giving the iteration (when an experiment

with the same percentage is repeated several times)
Suffix1 - (pos |neg )

Example of outputs of the pattern generation module

A single run ofpat on data ‘Heart Disease’ with 50% data for training will pro-
duce the files listed iBxample 4vhen the given prefix is HD:

HD-pat.out
HD-log.log
HD-50%001.pos
HD-50%001.neg

Example 4

The file with suffixout contains all the statistical results of the pattern genera-



tion. The file with suffixiog is the log file and contains information related to
problems occurred during the pattern generation. The files with suffiand
neg contain the lists of positive and negatipatterns An example of such a file
is presented iExample 5

total_nb_of_attributes = 21
nb_of_patterns = 14
max_degree = 6

c:25 |16 21

c:10 |16 20

1-2

ARPNWOORFRWNNNW

c:
C:
C:
c:
C:
C:
c:
C:
C:
c:
C:
C:

Example 5

The first three lines recall the total numberaihary attributes the total number
of patternsas well as the degree of the longgstitern Then eactpatternis
listed on one line according to the syntax OnePattern:

OnePattern— c: Coverage[ w: Weight] | Literal { Literal } EOL

Coverage is an integer representing the numbeaybsrvationsn the training
data covered by thigattern.Weight is a the weight of thpatterngiven as a real
number. If this is not present, all thmatternsare supposed to be of the same
weight 1.0. Literal specifies one literal of tipatternand is given as an integer
whose absolute value is the index (starting from 1) of lthreary attributeand
whose sign specifies whether the literal occurs as such or negated. In the above
example, the thirgattern

c:3|1-2
is the Boolean conjunction; and notk,) ) and covers threebservationsn the
training data.

Outputs of the theory formation

The third module uses the four files
Prefix- Perc- Iter (tra |.tes |.pos |.neg )
Based on the training data, it eventually prunes the lists of positive and negative

patterns then it associates weights to each remaimatiernsand finally, it tests
the obtained theory on the testing dataset.

The files generated by the theory formation module are the following
( Prefix-the.  Suffix0| Prefix. Suffix1)

Files of the last form are generated only in case of a single run, i.e. when the
number of iterations is 1.

Prefix= any sequence of alphanumeric, given as parameter
Suffix0= (out_|log )



A single run of bin on data ‘Heart Disease’ with 50% data for training produces
the following files when the given prefix is HD:

HD-the.out
HD-the.log
HD.tr
HD.te
HD.tre
HD.tee
HD.pat

Example 6

The file with suffixout contains all the statistical results of the performances of
the theory. The file with suffixg is the log file and contains information related

to problems occurred during the theory formation. The files with suffiandte
contain information related to the performances of the theory on the training and
testing data and their format is illustratedexample 7

1137 10.14694 0.13845 0.00849
11791 0.385710.00712 0.37859
1270 1 0.00000 0.04747 -0.04747
11851 0.05714 0.10680 -0.04966
11021 0.28367 0.01820 0.26548
04220.17722 0.00408 0.17313

0287 1 0.04035 0.16939 -0.12904
01111 0.13687 0.08980 0.04707
0178 1 0.00000 0.00000 0.00000
02461 0.47389 0.00000 0.47389

Example 7

Results related to each data is on one line. The first number is the class (O=false,
1=true). The second number is the label identifying the data point. The third
number is the multiplicity. The next two numbers are the results of the pseudo-
Boolean functiong * andf ~ discussed in SectioBombination of pseudo-Bool-

ean functionslf the observatioris of class 1, the forth column fs" and the fifth

isf~, the order is reversed if the point belongs to class 0. The last column is the
difference of the previous two. If this last value is positive, then the point is cor-
rectly classified, if it is negative, is it wrongly classified, and if it is O or very
close to 0, then it is not classified.

The files with suffixre andtee give more details about the erroisxample 8
illustrates the information that can be found in the file for each misclassified



observation.

Positive firing patterns

Negative firing patterns

c:26w: 0.021 |-5-11-21
122w:0.017 |-1
122 w:0.017 | -2
122 w:0.017 |-3
117 w:0.013 | -1
117 w: 0.013 | -2
117 w: 0.013 | -3
:15w:0.012 | -5
:11w:0.009 |-513-21
: 9w:0.007 [-1-513

[ -5-21
c
c
c
c
c
c
c
c
c: 9w: 0.007 |-3-513
c
c
c
c
c
c
c
c

-5-21
-5-21
-518
-518
-518
-7-21

: 9w:0.007 |-2-513
: 7w:0.006 |-519-21
1 3w:0.002 |-11820
: 3w:0.002 |-3-17 20
: 3w: 0.002 |-31820
: 3w:0.002 |-2-17 20
: 3w:0.002 |-21820
: 3w: 0.002 |-1-17 20

c:6w:0.012 [19-4-9-12-21
c:2w:0.004 |18 -4-14-17 -21

point 301, from class 1 0.01633 0.17484 -0.15852

Example 8

The first line recalls information about the observation: label and class followed
by the result of the pseudo-Boolean functidrisandf ~ (or f ~ andf ) and the
difference of these two values. Then all positive and negatatésrn covering

this observation are listed according to the same syntax as in the files with exten-
sionspos andneg (seeExample Sn SectionOutputs of the pattern generatjon

Finally, the file with suffixpat gives a information of the behavior of the theory
detailed by patterns instead of byobservations in a form illustrated by

Example 9
Training data | Test data | positive patterns
2 - -2 -+ | A AR A2
69 0 08 0 0| 55 014 58 4 21 | <--total
25 000 00| 270110 5]c25 w0051 | 16 21
10 0000 0O| 14 0 0 0 0 0] c:10 w:0.020 | 16 20
300000|200300|c3w0006 1 -2
25 000 00| 25 00 00 7]c25 w:0051 | 1 -6 16
23000 00| 25 0000 2]|c:23 w:0.047 | -6 16 19
22 00000] 17 00 00 1]|c22 w:0.045 | 9 16 -18
19 00000| 130000 0]c:19 w:0039 | 8 16 17
Training data | Test data | negative patterns
2 - -2 -+ | A AR A2
69 0 08 0 0| 55 0 14 58 4 21 | <--total
00023 00| 20015 0 0] c:23 w:0.018 | -1 4
000300|] 10110 2]|c 3 w:0.002 6 16
000300|] 10020 1]|c 3 w:0.002 12 15
000200|] 101200]c 2 w:0.002 15 16
00035 00| 0033 00]|c3 w0028 | -1 14 -21
000335 00] 0033 00]|c3 w0028 | -2 14 -21
00035 00| 0033 00]|c:3 w0028 | -3 14 -21
Example 9

The file is split into two parts, one for the positipatternsand the other for the
negativepatterns At the beginning of each part, a header gives the legends of



each columns as well as one special row denoted as "total". The set of columns is
split into three parts, one for training data, one for testing data and one specify-
ing thepatternaccording to the same syntax as in Sectiartputs of the pattern
generation Example $for the files with suffixegos andneg. The first two parts

are made of 6 columns of integers. These columns are labeled T/E, where T is
the target output ‘+' or+" and E is the effective output ‘+’,=' or *?’ (in case of

no classification). The value in column T/R and in the row ‘total’ gives the total
number ofobservation®f the (training/testing) dataset, of class T and classified
as E. The value in column T/R and a row correspondingatternP gives the
number ofobservationf the (training/testing) dataset, of class T, classified as
E and for which theatternP is firing.
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