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War and Peace in Veto Voting 1

Vladimir Gurvich

Abstract. Let I = {i1, . . . , in} be a set of voters (players) and A = {a1, . . . , ap}
be a set of candidates (outcomes). Each voter i ∈ I has a preference Pi over the
candidates. We assume that Pi is a complete order on A. The preference profile
P = {Pi, i ∈ I} is called a situation. A situation is called war if the set of all voters
I is partitioned in two coalitions K1 and K2 such that all voters of Ki have the
same preference, i = 1, 2, and these two preferences are opposite. For a simple class
of veto voting schemes we prove that the results of elections in all war situations
uniquely define the results for all other (peace) situations.
Key words: veto, voting scheme, voting by veto, veto power, veto resistance, voter,
candidate, player, outcome, coalition, block, effectivity function, veto function, so-
cial choice function, social choice correspondence
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1 Main Theorem

We follow standard concepts and notation of veto voting theory; see e.g. [6, 8]. Let
I = {i1, . . . , in} be a set of voters (players) and A = {a1, . . . , ap} be a set of candidates
(outcomes). Each voter i ∈ I has a preference (a complete order) Pi over all candidates.
The set of all preferences P = {Pi, i ∈ I} is called a preference profile or a situation. A situ-
ation is called war if the set of voters I is partitioned in two coalitions K1 and K2 such that
all voters of Ki have the same preference, i = 1, 2, and these two preferences are opposite.

Further, each voter i ∈ I has µi veto cards and each candidate a ∈ A has λa counter-veto
cards. Positive integers µi and λa are called the veto power of i ∈ I and veto resistance
of a ∈ A, respectively. The corresponding integral-valued functions. µ : I → ZZ+ and
λ : I → ZZ+ are called veto power and veto resistance distributions.

Let us define the veto order σµ as a word in the alphabet I = {i1, . . . , in} in which every
letter i ∈ I appears exactly µi times and hence each word σµ has the same length

∑
i∈I µi.

The triplet (λ, µ, σµ) is called veto voting scheme (VVS). It is realized as follows. In the
given order σµ the voters put their veto cards against the candidates until all veto cards are
finished. The voters have complete information. It is forbidden to over-veto; that is as soon
as a candidate a has got λa veto cards (s)he is eliminated and no more veto cards can be
used against a. All non-eliminated candidates are elected. Obviously, this set will be empty
unless total veto power is strictly less than total veto resistance; that is

∑

i∈I

µi <
∑

a∈A

λa (1.1)

If we assume further that

∑

a∈A

λa −
∑

i∈I

µi = 1. (1.2)

then exactly one candidate is elected in each situation. However, unlike (1.1), this assumption
is not mandatory.

Let us point out certain similarity between veto voting schemes and the well-known
Colonel Blotto’s games, see e.g. [7], where the divisions play role of the veto cards and
counter-veto cards.

Many interesting examples and applications of veto voting can be found in the books [6],
chapter 6, and [8]. In general, the voters may behave in many different, sometimes rather
sophisticated, ways; see [6, 8].

However, in this paper we consider only the simplest concept of their so-called sincere
behavior. This means that each voter i ∈ I always puts each veto card against the worst
(with respect to the preference Pi) not yet eliminated candidate. Hence, given a VVS
(λ, µ, σµ), a set of elected candidates B = B(P ) ⊆ A is uniquely defined for every situation
P = {Pi, i ∈ I}.

In fact, the voting scheme introduced above is not even implemented by a game. Indeed,
given P , the behaviour of each voter is prescribed uniquely; that is (s)he has only one
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strategy.
In general, a mapping S : P → 2A which assigns a set of candidates to every preference

profile is called a social choice correspondence (SCC), and it is called a social choice function
(SCF) if only one candidate is elected; that is |S(P )| = 1 for each situation P . Thus,
every veto voting scheme (λ, µ, σµ) defines a SCC Sλ,µ,σµ

which is an SCF whenever (1.2)
holds. The SCC or SCF generated by a veto voting scheme are called veto SCC and SCF,
respectively.

A veto order σµ is called simple if the voters do not alternate, or more precisely, if there
exists a permutation τ of I such that first the voter τ−1(i1) put all veto cards, followed by
τ−1(i2), etc. Obviously, a simple veto order σµ is uniquely determined by µ and τ . The
corresponding veto voting scheme and SCC we will call simple and denote by (λ, µ, τ) and
Sλ,µ,τ , respectively.

In this paper we prove that each simple veto SCC is uniquely defined by the values it
takes in the war situations. More precisely, the following statement holds.

Theorem 1. Given two simple veto voting schemes V V S ′ = (λ′, µ′, τ) and V V S ′′ = (λ′′, µ′′, τ)
that generate social choice correspondences S ′ = Sλ′,µ′,τ(P ) and S ′′ = Sλ′′,µ′′,τ (P ), respec-
tively, if S ′(P ) = S ′′(P ) for each war situation P then S ′(P ) = S ′′(P ) for all P .

Note, however, that we do not promote Theorem 1 to the rank of a general law of
diplomacy. For example, it is not general enough just because it only holds when the two
involved veto orders coincide, moreover, it must be a simple order; otherwise the claim may
fail, see Example 1 below.

Further, let us remark that in a war situation the veto order (simple or not) does not
matter at all. In this case all candidates are uniquely ordered and all voters are split in
two coalitions that veto candidates from two opposite ends of this order. Some moderate
(centrist) candidates will be elected and the set of these candidates does not depend on the
order in which the voters act. More accurately these arguments are summarized as follows.

Lemma 1. Given distributions λ, µ and two veto orders σ′
µ, σ′′

µ, the equality Sλ,µ,σ′

µ
(P ) =

Sλ,µ,σ′′

µ
(P ) holds for each war situation P .

Yet, for other (peace) situations the result can depend on the veto order.

Example 1. Let us consider two voters of veto power 3 and 1 and three candidates of veto
resistance 1,2, and 2; that is I = {i1, i2}, A = {a1, a2, a3}, µ1 = 3, µ2 = 1, λ1 = 1, λ2 = λ3 =
2. Note that (1.2) holds and hence this voting scheme generates an SCF. Let the preferences
be a1 > a2 > a3 and a2 > a1 > a3 for i1 and i2 respectively. This profile defines a peace
situation P .

First, let us consider two simple veto orders i1, i1, i1, i2 and i2, i1, i1, i1. If i1 votes first then
(s)he eliminates a3 and puts one remaining veto card against a2. Still a2 is not eliminated,
yet. Moreover, a2 will be elected, since i2 vetoes a1. If i2 votes first (s)he puts the veto card
against a3. This allows i1 to eliminate both a3 and a2. Hence, in this case a1 is elected.

Now let us consider two veto orders i1, i1, i2, i1 and i1, i2, i1, i1. These orders are not simple
and they have similar pattern: first i1, then i2, then i1 again. However, these two orders
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result in electing different candidates. In the first case i1 eliminates a3, then i2 eliminates a1,
and a2 is elected. In the second case i1 puts just one veto card against a3, then i2 eliminates
a3, and now i1 can eliminate a2 by the two remaining veto cards, hence, a1 is elected.

Finally, let us remark that, according to Lemma 1, all four veto orders considered above
would give the same result in each war situation.

2 An equivalent statement

The theorem can be equivalently reformulated as follows.
The veto function is defined as a mapping V : 2I × 2A → {0, 1}; that is V has two

arguments: a coalition of voters K ⊆ I and a block of candidates B ⊆ A. The equalities
V (K, B) = 1 and V (K, B) = 0 mean that K can, and respectively cannot, veto B. The
complementary function E(K, B) = V (K, A \ B) is called the effectivity function; see [6, 8].

Each pair of distributions µ : I → ZZ+ and λ : I → ZZ+, generates a veto function
V = Vµ,λ

V (K, B) = 1 iff
∑

i∈K

µi ≥
∑

a∈B

λa. (2.3)

In other words, K can veto B if the voters from K have sufficiently many veto-cards to
eliminate all candidates from B. Now we can reformulate Theorem 1 in terms of veto
functions as follows.

Theorem 2. Let V V S ′ = (λ′, µ′, τ) and V V S ′′ = (λ′′, µ′′, τ) be two simple veto voting
schemes such that they have the same simple veto order τ and their veto functions V ′ = Vµ′,λ′

and V ′′ = Vµ′′,λ′′ are equal; that is V ′(K, B) = V ′′(K, B) for all K ⊆ I, B ⊆ A. Then the
SCCs S ′ = Sµ′,λ′,τ and S ′′ = Sµ′′,λ′′,τ are equal, too; that is S ′(P ) = S ′′(P ) for every situation
P .

To prove that Theorems 1 and 2 are equivalent we only need to show that Theorem 2
becomes trivial if we restrict ourselves to the war situations only. In other words, given a
veto function, the results of elections in all war situations are uniquely defined, and vice
versa. Due to Lemma 1, this is true for all (not only simple) veto orders.

Lemma 2. Given two veto voting schemes V V S ′ = (λ′, µ′, σ′
µ′) and V V S ′′ = (λ′′, µ′′, σ′′

µ′′)
that generate veto functions V ′ = Vλ′,µ′,σ′

µ′
, V ′′ = Vλ′′,µ′′,σ′′

µ′′
and SCCs S ′ = Sλ′,µ′,σ′

µ′
, S ′′ =

Sλ′′,µ′′,σ′′

µ′′
, the following claims are equivalent:

(i) V ′ = V ′′; that is V ′(K, B) = V ′′(K, B) for all K ⊆ I, B ⊆ A,
(ii) S ′(P ) = S ′′(P ) for every war situation P .

Proof. . Suppose that V ′ 6= V ′′, say 1 = V ′(K, B) 6= V ′′(K, B) = 0 for some K ⊆ I, B ⊆ A;
that is in V V S ′ coalition K can veto block B but in V V S ′′ it cannot. Consider a complete
order P0 over A such that each candidate from A \ B is preferred to each candidate from
B. Let a0 be the best candidate from B in this order. Define a war situation P as follows.
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All voters from K prefer candidates according to P0 (that is for them A \ B is better than
B) and all voters from I \ K have the opposite preference. Then obviously, a0 6∈ S ′(P ),
since V ′(K, B) = 1 and in V V S ′ coalition K can veto the whole block B including a0. Yet,
a0 ∈ S ′′(P ), since V ′′(K, B) = 0; that is in V V S ′′ coalition K does not have enough veto
power to eliminate B and hence a0 will remain unvetoed. Thus S ′(P ) 6= S ′′(P ).

Vice versa, suppose that S ′(P ) 6= S ′′(P ) for a war situation P defined by a complete
order P0 over A and a partition K, I \ K. Without loss of generality, we can assume that
a0 ∈ S ′′(P )\S ′(P ); that is a0 6∈ S ′(P ) and a0 ∈ S ′′(P ). Let B consist of a0 and all candidates
preceding a0 in order P0. Then obviously, V ′(K, B) = 1, otherwise a0 would be elected in
V V S ′, and V ′′(K, B) = 0, otherwise a0 would be vetoed in V V S ′′.

Let us underline again that all above arguments are based on Lemma 1.

3 Proof of Theorem 2

In this section we will consider only simple veto orders. Then, without any loss of generality,
we can assume that permutation τ is identical; that is first i1 distributes all veto cards, then
i2, etc. In this case argument τ becomes irrelevant and we will omit it in all formulas. In
particular, pair (λ, µ) already defines a voting scheme.

Given a scheme (λ, µ), a voter i ∈ I, and a candidate a ∈ A, we say that a is eliminated
or completely vetoed by i if a is not elected and the last veto card put against a belongs to
i; we say that a is partially vetoed by i if i puts at least one veto card against a but i does
not eliminate a; that is either a is elected or a is eliminated later by some other voter.

Lemma 3. At most one candidate can be partially vetoed by a voter.

Proof. . Indeed, if i votes against a then (s)he cannot switch to another candidate a′ before
a is eliminated. This follows from our two basic assumptions: (i) the veto order is simple
and (ii) the voting is sincere.

Let us remark that both assumptions are important. For example, if veto order is not
simple then i can partially veto a, then another voter can eliminate a, and then i can vote
again and partially veto some other candidate a′.

Let us also remark that more than one candidate can be eliminated by a voter.

Given a VVS (λ, µ) and situation P , let us assign to each candidate a a set W (a) of all
voters who put at least one veto card against a. We would like to prove (by induction on
n = |I|) that W (a) depends only on P and the veto function V (λ, µ). However, problems
appear already for n = 1. Given two schemes V V S ′ = (λ′, µ′), V V S ′′ = (λ′′, µ′′), and P , let
us assume for example that a5, a3, and a4 are the last 3 candidates in the preference order of
voter i1. Further, let us assume that in V V S ′ i1 eliminates a5 and a3 using up all veto cards,
while in V V S ′′ i1 eliminates a5 and a3 and still has more veto cards to veto a4 partially but
not completely; that is

µ′
i1

= λ′
a3

+ λ′
a5

and λ′′
a3

+ λ′′
a5

< µ′′
i1

< λ′′
a3

+ λ′′
a4

+ λ′′
a5
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.
Then W ′(a4) = ∅, while W ′′(a4) = {i1} and yet we get no contradiction, since veto

functions V ′ and V ′′ may be equal. It is not difficult to understand that the reason for this
is the equality µ′

i1
= λ′

a3
+ λ′

a5
. However, it is possible to get rid of all such equalities.

For simplicity let us denote
∑

i∈K µi by µ(K) and
∑

a∈B λa by λ(B) for all K ⊆ I, B ⊆ A.
(Now we can rewrite equations (1.1), (1.2), and (2.3) as

µ(I) < λ(A), λ(A) − µ(I) = 1, and V (K, B) = 1 iff µ(K) ≥ λ(B),

respectively.) Let us call scheme (λ, µ) degenerate if µ(K) = λ(B) for some pair K ⊆ I, B ⊆
A and non-degenerate otherwise.

Lemma 4. Given a scheme (λ, µ) and situation P , if some voter i eliminates a candidate a

by the last veto card then (λ, µ) is degenerate.

Proof. . Let K0 = {i} and B0 = {a}. Furthermore, let K1 be the set of all voters who
vetoed a partially. According to Lemma 3, they cannot veto partially any other candidate,
yet they could eliminate some candidates. Let B1 be the set of all such candidates and let
K2 be the set of all voters who vetoed B1 partially. Again, they cannot veto partially any
other candidate, yet they could eliminate some candidates. Let B2 be the set of all such
candidates, etc. Finally, let K = ∪∞

j=0Kj and B = ∪∞
j=0Bj . (Obviously, Kj and Bj become

empty when j is large enough.)
By the above construction, the voters of K vote only against candidates of B and all

other voters do not vote against B. Hence µ(K) = λ(B) and (λ, µ) is degenerate.
Schemes (λ′, µ′) and (λ′′, µ′′) are called equivalent if they define the same SCC; that is two

sets of elected candidates Sλ′,µ′(P ) and Sλ′′,µ′′(P ) coincide for each situation P . In particular,
they coincide in all war situations and hence equivalent schemes must define the same veto
function, Vλ′,µ′(K, B) = Vλ′′,µ′′(K, B) for all pairs K, B

Lemma 5. For each scheme (λ, µ) there exists an equivalent non-degenerate scheme (λ′, µ′).

Proof. . Let us multiply vectors λ and µ by a positive integer c and then for each pair
(K, B) such that µ(K) = λ(B) choose a voter i ∈ K and add 1 to the corresponding veto
power. Obviously, if c is large enough, say c > 2|I|+|A|, then the obtained scheme (λ′, µ′) is
degenerate and equivalent to (λ, µ).

Proof. of Theorem 2. Let V V S ′ = (λ′, µ′) and V V S ′′ = (λ′′, µ′′) be two schemes whose veto
functions V ′ = Vλ′,µ′ and V ′′ = Vλ′′,µ′′ are equal, V ′ = V ′′ = V . We will prove that their
SCCs S ′ = Sλ′,µ′ and S ′′ = Sλ′′,µ′′ are equal too. Due to Lemma 5, we may assume without
loss of generality that both schemes are non-degenerate. For an arbitrary situation P and
candidate a we will prove that W ′(a) = W ′′(a).

Let us truncate the list of all voters i1, i2, . . . by the first n voters and proceed by induction
on n. Let n = 1 and W ′(a) = ∅, while W ′′(a) = {i1}. Let B denote the set of all candidates
worse than a in the preference order Pi1 . Then i1 can veto B in V V S ′′ but not in V V S ′

and, hence, 0 = V ′({i1}, B) 6= V ′′({i1}, B) = 1, this is a contradiction. (Let us remark that
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for degenerate V V S ′ it would be possible that i1 can veto B using up all veto cards; see
example in the beginning of this section.)

Now let us assume that W ′
n−1 ≡ W ′′

n−1 but W ′
n(a) 6= W ′′

n (a), say in ∈ W ′′
n (a)\W ′

n(a); that
is voter in eliminates candidate a in V V S ′′ but not in V V S ′. Perhaps, in V V S ′ in did not
even vote against a. Yet, since V V S ′ is non-degenerate, there exists a candidate a′ who is
completely vetoed in V V S ′′ and only partially vetoed in V V S ′ by in.

Now we can just repeat, with minor modifications, the proof of Lemma 4. Let K0 = {in}
and B0 = {a′}. Furthermore, let K1 be the set of all voters who partially vetoed a′. According
to Lemma 3, they cannot partially veto any other candidate, yet they could eliminate some
candidates. Let B1 be the set of all such candidates and let K2 be the set of all voters
who vetoed B1 partially. Again, they cannot veto partially any other candidate, yet they
could eliminate some candidates. Let B2 be the set of all such candidates, etc. Finally, let
K = ∪∞

j=0Kj and B = ∪∞
j=0Bj . (Again, Kj and Bj are empty when j is large enough.) Let

us also note that all sets Kj and Bj defined above are the same for both schemes V V S ′ and
V V S ′′ by the induction hypothesis. By the above construction all voters of K, except in,
vote only against candidates of B and all other voters do not vote against B. Hence, K

cannot veto B in V V S ′ but can do it in V V S ′′; that is 0 = V ′(K, B) 6= V ′′(K, B) = 1. This
contradiction proves the Theorem.

4 On properties of game structures and graphs that

depend only on the corresponding veto functions.

The main result of this paper states that the SCC of a simple veto voting scheme is uniquely
defined by its effectivity (or equivalently, veto) function. The following two results are
similar:

(i) Nash solvability of a two-person game form g depends only on its effectivity function
Eg.

(ii) The core of a normal form game (g, u) depends only on its utility function u and
effectivity function Eg.

The definitions follow. Let standardly I and A be a set of voters (players) and candidates
(outcomes) respectively. Let us recall that an effectivity function (EFF) is a mapping E :
2I × 2A → {0, 1}; that is E has two arguments: a coalition of voters K ⊆ I and a block of
candidates B ⊆ A. Further, E(K, B) = 1 (respectively, E(K, B) = 0) means that K can
(respectively, can not) guarantee that a candidate of B will be elected. An EFF E is called
maximal (or selfdual) if E(K, B) = 1 if and only if E(I \ K, A \ B) = 0.

Let Xi be a set of strategies of a voter i ∈ I. A game form is a mapping g : X → A, where
X =

∏
i∈I Xi. Every game form g defines an EFF Eg as follows: for a coalition K ⊆ I and

block B ⊆ A the EFF Eg(K, B) = 1 if and only if K has a strategy xK = {xi ∈ Xi, i ∈ K}
such that g(xK , xI\K) ∈ B for every strategy xI\K = {xi ∈ Xi, i 6∈ K} of the complementary
coalition I \ K.

Obviously, the implication Eg(I \ K, A \ B) = 0 whenever Eg(K, B) = 1 holds for every
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g.
The game form g is called tight if the inverse implication, Eg(I \K, A \B) = 1 whenever

Eg(K, B) = 0, holds too. In other words, g is tight if and only if its EFF Eg is selfdual.
A utility function is a mapping u : I ×A → IR, where u(i, a) is interpreted as a profit of

the voter i ∈ I in case the candidate a ∈ A is elected. A normal form game is a pair (g, u),
where g : X → A and u : I × A → IR, are a utility function and game form, respectively.

A game form g is called Nash-solvable if for every utility function u the corresponding
normal form game (g, u) has at least one Nash equilibrium in pure strategies.

An old theorem claims that a two-person game form is Nash-solvable if and only if its
effectivity function is maximal, [3, 4]. However, this theorem does not generalize the case
of n-person game forms for any n ≥ 3, [4]. Two such game forms may have the same EFF,
while one is Nash-solvable and the other one is not.

Another well-known observation, [5], claims that the core of a normal form game (g, u)
depends only on its utility function u and EFF Eg.

Given a candidate a0 ∈ A, a coalition of voters K ⊆ I, and a utility function u : I ×A →
IR, let PR(K, a0, u) = {a ∈ A | u(i, a) > u(i, a0)∀i ∈ K} denote the set of all candidates
strictly and unanimously preferred by the coalition K to the candidate a0. Further, given
an EFF E : 2I × 2A → {0, 1}, obviously, K rejects a0 whenever E(K, PR(K, a0, u)) = 1,
since in this case the coalition K can guarantee to all its members that a candidate strictly
better than a0 will be elected.

Given a normal form game (g, u), its core C(g, u) is defined as the set of all candidates
that are not rejected by any coalition K ⊆ I; that is

C(g, u) = {a ∈ A | Eg(K, PR(K, a, u)) = 0 ∀ K ⊆ I}.

Thus, by definition, the core C(g, u) depends only on u and Eg.

It is an interesting general question: which properties of game structures depend only on
their effectivity (or equivalently, veto) function.

Somewhat surprisingly, a similar situation may hold not only for game structures or
voting schemes but for quite different objects, e.g. for graphs. It was shown in [1] that some
important properties of graphs are uniquely determined by the corresponding effectivity
functions.

Given a graph G = (V, E), we define its EFF EG as follows. Let us assign a voter i ∈ I

to each maximal clique of G and a candidate a ∈ A to each maximal independent set of G.
By this, a coalition Kv ⊆ I and a block Bv ⊆ A is assigned to every vertex v ∈ V . Namely,
Kv and respectively Bv consist of all maximal cliques and respectively independent sets of
G that contain v. Then the EFF EG is defined as follows: EG(K, B) = 1 if Kv ⊆ K and
Bv ⊆ B for some vertex v ∈ V and EG(K, B) = 0 otherwise. It is proven in [1] that

(i) Graph G is perfect if and only if its EFF EG is balanced and
(ii) Graph G is kernel-solvable if and only if its EFF EG is stable.
We refer to [1] for the definitions. In is known in cooperative game theory that balanced

EFFs are stable. Hence, perfect graphs are kernel-solvable. This was conjectured by Claude
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Berge and Pierre Duchet in 1983. The inverse implication follows from the Strong Berge
Perfect Graph Conjecture that was recently proved by Chudnovsky, Robertson, Seymour,
and Thomas [2].
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