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Abstract. After reviewing the basic concept of the Logical Analysis of Data (LAD),
the paper presents a series of discrete optimization models associated to the imple-
mentation of various components of the general methodology of LAD, and concludes
with an outline of applications of LAD to medical problems. The combinatorial opti-
mization models described in the paper represent variations on the general theme of
set covering, including some with nonlinear objective functions. The medical appli-
cations described include the development of diagnostic and prognostic systems in
cancer research and pulmonology, risk assessment among cardiac patients, and the
design of biomaterials.
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1 Introduction

1.1 Medical Data Analysis

A large number of typical data analysis problems appearing in medicine and in numerous
other areas can be formulated in the following way. A “dataset” consisting of two disjoint sets
Ω+ and Ω− of n-dimensional real vectors is given. Typically each of the vectors appearing
in the dataset correspond to a patient, the vectors in Ω+ corresponding to patients having
a specific medical condition (e.g. pneumonia), while those in Ω− (the “controls” in medical
language) do not have that condition. The components of the vectors, called “attributes”, or
“features”, or sometimes “variables”, can represent the results of certain measurements, tests,
the expression levels of genes or proteins in the blood of the patients, or can simply indicate
the presence or absence of certain symptoms (in which case they are usually expressed as
zeros or ones).

Diagnosis is one of the typical questions arising in the analysis of such data. In this case
the problem is simply to extract information (i.e. to “learn”) from a given dataset in order
to recognize whether a “new” patient, i.e. an n-vector not contained in the dataset, does or
does not have the specific condition under analysis.

Prognosis is a similar problem. In this case it is assumed that the vectors in the dataset
are known to have or not to have developed a particular medical condition (e.g. a cardiac
event, cancerous metastases, etc) within a well-defined time period (typically 5 or 10 years).
In this case again the problem is to learn enough from the given data to predict whether a
new patient is prone to develop within that time period the condition under analysis.

Diagnosis and prognosis are two special cases of what is called classification in data
analysis, and considered by many to be its central problem. The basic idea of classification
is to “learn”, i.e. to extract enough information from the dataset to be able to recognize the
positive or negative nature of a new point.

The identification of individualized therapies – on the basis of data analysis and mathe-
matical/computational diagnostic and prognostic systems – is a major challenge of this new
area of “medical bioinformatics” [11].

1.2 Illustrative Examples and Real Life Applications

In the last section we shall present some of the significant medical problems to which LAD
has been actually applied in a series of collaborative studies with biomedical researchers from
Cancer Institute of New Jersey, Cleveland Clinic Foundation, Food and Drug Administration
(FDA), Hôpital Avicenne (Paris), National Institutes of Health (NIH), New Jersey Center
for Biomaterials, Robert Wood Johnson Medical School, University of Grenoble, various
centers and departments of Rutgers University, etc. Additional ongoing collaborative efforts
for applying LAD to the analysis of medical data involve researchers from the NIH Clinical
Center for Radiology and Imaging Sciences, the NIH Clinical Proteomic Applications Center,
the Nephrology Division of Mount Sinai School of Medicine (New York), Semelweiss Medical
University (Budapest), Eötvös Loránd Science University (Budapest), etc.
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These studies include the development of diagnostic and prognostic systems for ovarian
cancer, breast cancer and lymphoma, the differentiation of various types of idiopathic pneu-
monia, risk assessment among cardiac patients, the design of biomaterials, etc. The datasets
used in these examples are very considerably in character and size. The various datasets
include clinical, genomic, proteomic, computer tomography and polymeric data, the sets of
variables considered ranging from a few dozens to 25,000, and the number of patients from
less than a hundred to 10,000.

Since these datasets are of considerable size, in the section outlining the basic ideas of the
methodology of the Logical Analysis of Data (LAD) we shall use four considerably smaller
datasets which are available on the Web, and which have been frequently used in numerous
studies of medical data analysis. The datasets 1 Heart Disease (HD), Pima Indians’ Diabetes
(PID), Breast Cancer Wisconsin (BCW), and BUPA Liver Disease (BLD) will serve as such
illustrative examples.

The basic parameters of these four datasets are the following:

# of Observations # of Attributes
Dataset Positive Negative Numerical Binary

Breast Cancer Wisconsin (BCW) 236 213 9 0
Heart Disease (HD) 137 160 10 3
Pima Indian Diabetes (PID) 130 262 8 0
Bupa Liver Disorders (BLD) 200 145 6 0

Table 1: Parameters of datasets.

Remark: It is known from the literature that BCW is a “clean” dataset on which many
data analysis methods provide highly accurate diagnostic models. HD is somewhat less clean
than BCW, but still reasonably predictable. On the other hand, it is known that for the
problems PID, and especially for BLD it is very hard to find accurate computational models.

1.3 Principles of LAD

The Logical Analysis of Data (LAD) is a combinatorics and optimization based data analysis
method [14, 16, 19]. While LAD has been applied to numerous disciplines, e.g. economics
and business, seismology, oil exploration, etc. (see [14], [18], [21], [22], etc.), in this paper
we shall deal only with its applications to medicine and related disciplines.

The basic idea of LAD is to combine a differentiation/integration approach of a subspace
of Rn containing the given positive observations and negative observations, and the “new”
(i.e. not yet seen) ones. In the “differentiation” step a family of small subsets having strong
positive or negative characteristics is identified. In the “integration” step unions of certain
subsets of such positive (respectively, negative) subsets are proposed as approximations of
the areas of Rn containing the positive (respectively, negative) “new” or “old” observations.
Concretely, the basic components of LAD are the following:

1See http://www.ics.uci.edu/∼mlearn/MLRepository.html.
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(A) (B) (C)

Figure 1: Naive representation of dataset and (A) Nature’s positive (red) and negative (blue)
zones; (B) LAD’s approximation of the two zones; (C) Classification based on LAD’s approx-
imations (Red: +, blue: −, yellow: + or − depending on discriminant, green: unclassified).

(a) In order to eliminate redundant variables in the original dataset we extract from it a
(usually minimal) subset S, capable of distinguishing the positive observations from
the negative ones. In the subsequent steps we work mostly with the projections Ω+

S and
Ω−

S of Ω+ and Ω−, respectively, on this subset of variables. While this so-called “feature
extraction” step is present in most data analysis methods, the specific way in which it is
applied within the LAD methodology emphasizes the interaction of variables, and the
importance of retaining not only those which can influence individually the positive or
negative nature of observations, but also those whose “collective” or “combinatorial”
effect is significant.

(b) We cover Ω+
S with a family of (possibly overlapping) homogeneous subsets of the re-

duced real space, each of these subsets having a significant intersection with Ω+
S , but

being disjoint from Ω−
S . The only subsets considered by LAD are intervals of Ω+

S with
parallel faces to the axis; these intervals are called “positive patterns”.

(b’) A similar construction is applied to Ω−
S for finding “negative patterns”.

(c) A subset of the positive (respectively, negative) patterns, the union of which covers
every observation in Ω+

S (respectively, Ω−
S ) is identified. The collection of these two

subsets of intervals is called a “model”.

(d) A classification method is developed which defines the positive or negative character
of any observation covered by the union of the two subsets of intervals of the model,
leaving as “unclassified” only those observations which are not covered by this union.

(e) One of the typical validation methods is applied to verify the accuracy of the resulting
classification system.
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Figure 1 illustrates part of the steps described above. Details of the LAD components
will be briefly outlined in section 2. It is interesting to know that many of the mathematical
problems needed in handling these components require the solution of different variations of
the well-known set covering problem.

1.4 Why LAD?

Although the origins of LAD go back to 1986, its practical applications to medical problems
was only started in 2002-2003, with the publication [9, 26] of the conclusions of a collaborative
study with medical researchers at the Cleveland Clinic Foundation on risk assessment among
cardiac patients. In the last two decades numerous other data analysis methods have been
elaborated and very successfully applied to the analysis of medical data. Among other
frequently applied methods, we mention Neural Networks, Nearest Neighbors, Decision Trees,
Support Vector Machines, etc. The reasons for which LAD has been applied to the problems
described in this paper are multiple, and we shall only mention some.

The most specific feature of LAD which has substantial implications on its applicability
is that instead of just asking the question whether a new observation is positive or negative,
it tries to approximate the subspace of Rn containing the positive and that containing the
negative observations. Among the most important practical consequences of this approach we
mention the possibility of providing explanations for each diagnostic or prognostic conclusion
of LAD, the possibility of identifying new classes of observations and of analyzing the role and
nature (e.g. blocking or promoting) of features [6], the possibility of developing individualized
therapies for patients [11], the development of catalogs of research hypothesis for medical
researchers, etc.

Dataset SVM C4.5 Nearest Neighbors Neural Networks LAD 2

BCW 95.3% 93.5% 94.1% 93.7% 95.0%
HD 83.4% 82.7% 75.7% 80.5% 83.4%
PID 77.9% 77.7% 72.6% 74.5% 77.2%
BLD 70.8% 66.2% 62.2% 69.1% 74.9%

Table 2: Diagnosis accuracy of some frequently used data analysis methods.

(a) The first question which has to be answered about the choice of methodologies con-
cerns the accuracy of diagnosis and prognosis, i.e. the proportion of correctly classified points
in randomly generated sets of “new” points.

In order to present some information about the diagnostic accuracy of various data anal-
ysis methods, we present in Table 2 the results obtained by using the methods of Support
Vector Machines (SVM), Decision Trees (C4.5), Nearest Neighbors, Neural Networks (Mul-
tilayer Perceptron), and the Logical Analysis of Data (LAD). For the first four methods we

2Using approximately maximum patterns, obtained by solving L2 best linear approximation of polynomial
set covering problem.
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used the software included in the Weka package [30], while for LAD we used RUTCOR’s
software. All results have been validated through 20 10-folding experiments.

It can be seen that the accuracy of LAD is very comparable with that of the best methods
used in data analysis, providing usually closely resembling results with the four most fre-
quently used methods. The value of LAD was reconfirmed and considerably strengthened in
the real life medical applications to be described in section 3, in which we have obtained ac-
curacies substantially exceeding those using other methods, as reported by other researchers
in the literature.

(b) One of the specific features of Logical Analysis of Data (LAD) is that, in contrast to
different “black box”-type methods, which provide the classification of new points without
any explanations, LAD provides for each classification an justification of the reasons for
which a patient is viewed by LAD as being positive or negative. Each explanation of the
specific reasons for which a particular patient is classified by LAD as, say positive, has two
components: (i) the LAD classification presents the list of positive patterns displayed by
the patient, which is, of course, displayed by large proportions of the positive cases in the
dataset, but by none of the negative ones, and (ii) evidence for the fact that the patient
in question does not satisfy the defining conditions of any of the negative patterns in the
model. The utility of such explanations in arriving to a medical decision is obvious for
doctors, patients, hospitals, insurance companies, the pharmaceutical industry, and various
government agencies involved in health care.

(c) Although diagnosis and prognosis are essential components of the analysis of med-
ical data, numerous other information can be learned from datasets [6]. Among the most
interesting conclusions reported in the literature we mention the discovery of “biomarkers”
(i.e. highly influential variables), “combinatorial biomarkers” (i.e. highly influential combi-
nations of pairs or triplets of variables), “blockers” or “promoters” (i.e. variables favoring or
inhibiting a certain medical condition), new classes of patients and new classes of variables
having highly similar properties, etc.

(d) Another interesting result of the mathematical analysis of datasets is the formal
identification of numerous specific patterns distinguishing patients from controls. The need
to understand and explain the biomedical mechanisms at the basis of a pattern’s function
associate in a natural way research hypotheses to each of them and can be of major assistance
to medical researchers.

(e) The global perspective offered by LAD on the subspace of positive and negative
observations allows non-usual applications ranging from the design of biomaterials or drugs
to the development of individualized therapies which takes into account the specifics of each
patient. As examples of these possibilities we mention the predictive model developed in [2]
concerning the correlation of the chemical composition of a biomaterial with the biological
response of cells, and the method proposed in [11] for identifying breast cancer therapies
consisting in the inhibition of specific small, patient-dependent, subsets of kinases.
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2 Logical Analysis of Data

We shall present below several basic techniques of LAD applicable to binary datasets, in-
cluding techniques for eliminating redundant attributes (“support set selection”), identifying
large homogeneous subcubes of the unit cube (i.e. subcubes containing only, say positive,
observations), constructing “models” (i.e. two families of such subcubes such that Ω+ is
contained in the union of one of them, and Ω− is contained in the union of the other).
Before presenting these techniques we shall first show in subsection 2.1 a natural way of
transforming a numerical problem to a binary one.

2.1 Binarization

The Logical Analysis of Data was originally developed for the analysis of datasets whose
attributes take only binary (0-1) values [19, 16, 14]. Since it turned out later that most of
the real-life applications include attributes taking real values, a “binarization” method was
proposed in [13].

The basic idea of binarization is very simple. It consists in the introduction of sev-
eral binary attributes associated to each of the numerical attributes; each of these binary
attributes is supposed to take the value 1 (respectively, 0) if the numerical attribute to
which it is associated takes values above (respectively, below) a certain threshold. Obvi-
ously the computational problem associated to binarization is to find a minimum number of
such threshold values (cutpoints) which preserve the essential information contained in the
dataset, i.e. the disjointness of the sets of (binarized) positive and negative observations.
For illustration, Figure 2 shows two binarizations of the same dataset, using respectively 8
and 4 threshold values.

Figure 2: Arbitrary and optimal binarization of same dataset.

It has been shown in [13] that the solution of this minimization problem is NP-hard, even
in apparently simple cases (e.g. for 2-dimensional problems). We shall present below a model
for this problem for which various heuristics have been developed and are currently used in
the solution of practical problems. First, let us remark that if we order the patients according
to non-decreasing values of a particular attribute X, and if this attribute takes the values
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X1 ≤ X2 ≤ · · · ≤ X|Ω|, then in order to maintain the disjointness of the sets of binarized
images of the points in Ω+

S and Ω−
S , (i) it is sufficient to consider only those threshold values

t which belong to intervals (Xi, Xi+1), where Xi and Xi+1 are the X-coordinate values of
two patients having different “signs” (one being positive and the other one negative), (ii)
it is sufficient to consider at most one threshold value (say, Xi+Xi+1

2
) in each of the above

described intervals (Xi, Xi+1).

Based on these remarks we can form a collection consisting of one cutpoint for each
relevant interval corresponding to each numerical attribute. For a typical problem in medical
applications (especially in proteomics and genomics), the number of numerical attributes is
in the tens of thousands, and the number of such potential cutpoints for each of them is in
the hundreds. If we associate a 0-1 variable to each potential cutpoint, in order to solve the
minimization problem of the number of cutpoints needed for binarization, we have to solve
a combinatorial optimization problem with millions of binary variables. Because of obvious
computation limitations, the consideration of such a problem must be preceded by the use
of simple heuristic techniques to eliminate from consideration the vast majority of potential
cutpoints.

A number of simple statistical, information-theoretical, and combinatorial pre-processing
techniques have been developed [7] for the solution of this problem. The simplest statistical
technique consists in evaluating the correlation of each of the binary vectors corresponding
to the cutpoints with the binary vector of “outcomes” (which are usually defined as being
1 for the positive vectors and 0 for negative ones); the binary features whose correlation
with the outcome is sufficiently low are simply eliminated from consideration. The simplest
combinatorial technique for “feature elimination” associates simply to each binary vector
the number of those pairs consisting of a positive and a negative observation which differ in
that binary feature; binary vectors which distinguish in this way small numbers of pairs of
positive and negative observations are eliminated from consideration. Usually several such
simple heuristics are applied iteratively until the number of features remaining is reduced to
a manageable size (hundreds or at most thousands).

After all these simplifications, the remaining binary problem is treated with the usual
LAD techniques, including – among others – feature elimination through the identification of
a minimum size support set. This and several other typical LAD techniques will be described
below.

In order to illustrate the binarization of medical datasets, let us consider the examples
presented in Table 1. A very simple binarization procedure introduces for each numerical
variable x a fixed number (in our example, 3) of cutpoints ψ1, ψ2, ψ3. The cutpoints are
introduced in such a way that the 4 subsets of observations for which x ≤ ψ1, ψ1 < x ≤ ψ2,
ψ2 < x ≤ ψ3 and ψ3 ≤ x should have approximately the same cardinality. If in the
resulting binarized problem the images of a positive and a negative observation coincide
then the chosen binarization is infeasible, and the number of cutpoints used for some of the
variables has to be increased. This process is continued until the images of Ω+ and Ω− in the
binarized space become disjoint. We present in Table 3 the number of variables appearing
in the binarized versions of the datasets BCW, PID, HD and BLD binarized as above.
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# of Attributes # of Binarized
Dataset Numerical Binary Attributes

BCW 9 0 60
HD 10 3 63
PID 8 0 64
BLD 6 0 43

Table 3: Binarization of datasets.

2.2 Support Sets and Biomarkers

Whether a binary dataset is obtained by binarizing a numerical dataset or is generated
naturally, it is very likely to contain a number of redundant attributes. We shall describe
below a simple combinatorial optimization model for eliminating sets of redundant variables.

A set S of attributes is called a support set if the projection Ω+
S of Ω+ on S is disjoint

from the projection Ω−
S of Ω− on S. The complete set N = 1, . . . , n is a support set, since we

have assumed Ω+ and Ω− to be disjoint. A support set is called minimal or irredundant if by
eliminating any one of its variables the remaining dataset will contain a positive observation
and a negative observation which coincide.

In order to identify a minimal support set, let us associate now to every attribute xi,
i = 1, . . . , t in the binary dataset, a new binary variable yi equal to 1 if variable xi belongs to
the support set, and equal to 0 if it does not. Let further U = (u1, u2, . . . , ut) be the binary
vector associated to a positive patient and V = (v1, v2, . . . , vt) be the binary vector associated
to a negative patient. Let us further associate to this pair consisting of a positive and a
negative observation the vector (w1(U, V ), . . . , wt(U, V )), where wi(U, V ) = ui ⊕ vi(mod 2),
i.e. wi(U, V ) = 1 if ui 6= vi, and wi(U, V ) = 0 otherwise. Obviously, the condition that
the projections of binarized images Ω+

BS and Ω−
BS of Ω+

S and Ω−
S on S should be disjoint, is

equivalent to requiring that for any U ∈ Ω+
BS and V ∈ Ω−

BS,

∑
wi(U, V )yi ≥ 1. (1)

The minimum size support sets can be simply obtained by solving the set covering prob-
lem

min

t∑
j=1

yj

s. t.
∑

wi(U, V )yi ≥ 1, for all U ∈ Ω+
BS and V ∈ Ω−

BS

y ∈ {0, 1}t.

We present in Table 4 the cardinalities of the minimum support sets of the datasets
BCW, HD, BL, PID binarized by solving this set covering problem.
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# of Attributes # of Binarized Size of Minimum
Dataset Numerical Binary Attributes Support Set

BCW 9 0 60 11
HD 10 3 63 14
PID 8 0 64 16
BLD 6 0 43 18

Table 4: Size of minimum support sets.

Two important variations of this problem play a special role in finding support sets. First,
because of small variations in the measurements obtained by using different instruments in
different laboratories, it is important that a support set should be as “stable” or “robust” as
possible. In order to achieve this goal, in many applications we replace the usual set covering
constraint (1) by the stronger requirement

∑
wi(U, V )yi ≥ d, (2)

where d is a positive integer chosen so as to assure the robustness of the outcome. We shall
call this problem the d-covering or multiple covering problem. In many applications d is
taken equal to 3, 5, 10 or even 20, depending on the number of variables in the original
formulation of the problem.

A second variation which is frequently important to be added to the formulation of the
above set covering problem translates the requirement that certain pairs of binary variables
cannot be simultaneously present in a support set. For example, in the case of binarized
problems it is important that the cutpoints which define any pair of binarized variables
associated to the same numerical variable should be at a sufficiently large distance to com-
pensate for possible imprecisions in measurement. Therefore, if c′ and c′′ are two cutpoints
for the binarization of the same numerical variable, and if y′ and y′′ are the decision variables
associated to the binarized variables x′ and x′′ corresponding to those cutpoints, then it is
natural to require that for sufficiently small δ values,

if |c′ − c′′| ≤ δ then y′ + y′′ ≤ 1.

A frequently occurring concept in the biomedical literature is that of “biomarkers”, i.e.
variables with a great influence on the outcome of a phenomenon. It is not unreasonable to
designate the variables appearing in irredundant support sets as biomarkers. The selection of
these variables takes into account not only their individual interaction with the outcome, but
also the interactive role of groups of these selected variables. The next subsection will deal
with the identification of minimum interactive sets of variables (patterns or combinatorial
biomarkers) capable of indicating the positive or negative nature of an observation.
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2.3 Patterns and Maximum Patterns

A basic concept in the analysis of data is that of a pattern. A positive pattern is simply a
subcube of the unit cube which intersects Ω+

BS and is disjoint from Ω−
BS. Negative patterns

have a similar definition.

Because patterns play a central role in LAD, various types of patterns (e.g. prime,
spanned, maximum) have been studied, algorithms have been developed for their enumera-
tion [10, 3, 12, 17], and their relative efficiency has been analyzed [20]. We shall present in
this paper one of these pattern types which proved to be particularly useful for LAD.

A positive ω-pattern for ω ∈ {0, 1}t, is a pattern covering (i.e., containing) ω. A maximum
positive ω-pattern P is a positive ω-pattern, the coverage of which (i.e., the cardinality of
|P ∩ Ω+

BS|) is maximum. A maximum negative ω-pattern is defined in a similar way.

Because of the usefulness of this concept in data analysis we shall describe below a
combinatorial optimization formulation of the problem of finding a maximum ω-pattern for
each observation ω in the dataset. For this purpose, let us first associate to the binary vector
ω = (ω1, . . . , ωt) ∈ Ω+

BS an “elementary” conjunction C, i.e. a product of some complemented
and some uncomplemented variables. Let us define the binary decision variables yi (i =
1, . . . , t) in the following way: (i) if ωi = yi = 1 then xi is included in C, (ii) if ωi = 0, yi = 1
then xi is included in C, (iii) if yi = 0 then both xi and xi are absent from C. For example, the
decision variables (0, 0, 1, 1, 0) associate the elementary conjunction x3x4 to the observation
ω = (1, 0, 0, 1, 1).

The condition that the ω-pattern should not cover any observation from Ω−
BS requires

that for every point ρ of Ω−
BS, the variable yj should take the value 1 for at least one of those

j’s for which ρj 6= ωj, i.e.

t∑
j=1

ρj 6= ωj

yj ≥ 1, for every ρ ∈ Ω−
BS.

On the other hand, a positive observation σ will be covered by the ω-pattern if and only
if yj = 0, for all those indices j for which σj 6= ωj. Therefore, the number of positive points
covered by the ω-pattern will be given by

∑

σ∈Ω+
BS

t∏
j=1

σj 6= ωj

yj.

In conclusion, the maximum ω-pattern problem can be formulated as the following polynomial
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set covering problem

max
∑

σ∈Ω+
BS

t∏
j=1

σj 6= ωj

yj

s. t.

t∑
j=1

ρj 6=ωj

yj ≥ 1, for every ρ ∈ Ω−
BS

yj ∈ {0, 1}, for every j = 1, . . . , t,

or a strengthened version of it, similar to (2), where in the right hand sides of the set covering
inequalities we replace 1 by a positive integer d.

One way of attacking this problem is to linearize it, by introducing a new 0-1 variable for
each term of the objective function, and an additional set of linear constraints to guarantee
the equality between the values of terms and those of the associated artificial variables.
The drawback of this approach is that the large number of artificial variables increases
substantially the size, and therefore the difficulties of solving the resulting integer program.

We have proposed in [12] the use of an approximate linearized version of the problem
by associating to the objective function the best L2-norm linear approximation of it, as
defined in [23]. It was shown in [23] that the best linear approximation in the norm L2 of
an elementary conjunction

∏
j∈T zj of binary variables xj is given by the formula

−|T | − 1

2|T |
+

1

2|T |−1

∑
j∈T

zj.

Applying this formula to each term of the objective function of the polynomial set covering
problem described above, associates to it a regular set covering problem.

Average Prevalences of Maximum Patterns
Dataset Maximum Patterns Approx. Max. Patterns 3 Approx./Exact

BCW 54.2% 46.7% 84.9%
HD 25.6% 23.8% 93.0%
PID 16.3% 14.1% 85.6%
BLD 10.3% 8.8% 85.3%

Table 5: Prevalences of maximum patterns and approximate maximum patterns.

In order to measure the quality of the approximate solutions obtained using the linear
approximation of the objective function, we shall use the concept of prevalence of a pattern.
The prevalence of a positive (negative) pattern is simply the proportion of positive (nega-
tive) points in the dataset which are covered by that pattern. Table 5 shows the average

3Using L2-best linear approximation of polynomial optimization model.
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prevalences of the maximum patterns in the 4 datasets used for illustration. The table also
shows the average prevalences of the approximately maximum patterns obtained by solving
the linear approximation of the polynomial set covering problem described above. It can be
seen that the approximately maximum patterns are of high quality, since their prevalences
represent almost 90% of those of the maximum patterns.

2.4 Models: Diagnosis and Prognosis

Diagnosis and prognosis are frequently viewed as the most important applications of data
analysis in medicine. Clearly, the knowledge of patterns can be used for deriving conclusions
concerning diagnosis and prognosis of yet unseen patients. Indeed, the fact that the measure-
ments of a new patient satisfy the defining conditions of a, say positive, pattern, and at the
same time they do not satisfy the defining conditions of any known negative pattern, gives
an indication that the patient belongs to the positive group. At the same time it is clear that
each pattern, taken in isolation, can be viewed as representing a sufficient condition for a
new observation to be positive or negative. Continuing this reasoning, one could expect that
the knowledge of the family of all patterns could completely define the positive or negative
nature of a new observation, and therefore one can expect to be able to derive from this
set necessary and sufficient conditions to specify the sign of a new patient. Because of the
exponential number of all possible patterns, this reasoning can only be applied by using a
crude approximation of the family of patterns used. In previous successful practical appli-
cations we have used for this purpose different kinds of pattern families (prime, spanned,
maximum). Since in a model it is always sufficient to consider for each given observation
only one of the maximum patterns covering it, the size of the family of all maximum patterns
to be involved in a model can be limited to |Ω+ ∪ Ω−|. This remark motivates the use of
models containing only maximum patterns. We shall show below how to further restrict the
number of patterns used in such a model.

Let M be the family of all maximum patterns in a binary dataset, and let M+
1 , . . . , M+

p

and M−
1 , . . . , M−

q be respectively the sets of positive and negative maximum patterns in M.
The following simple classification rules have been seen in numerous examples to provide a
diagnostic/prognostic system the accuracy of which compares favorably with that of other
bioinformatic systems: (i) if an observation satisfies the defining conditions of some positive
patterns, but does not satisfy the defining conditions of any of the negative patterns, then the
observation is classified as positive; (ii) if an observation satisfies the defining conditions of
some negative pattern, but does not satisfy the defining conditions of any one of the positive
patterns, then the observation is classified as negative; (iii) if the observation satisfies the
defining conditions of p′ of the p positive patterns in M, as well as those of q′ of the q
negative patterns in M, then the observation is predicted to have the sign of (p′

p
)− ( q′

q
); (iv)

in the (highly unlikely) event that a new observation does not satisfy the defining conditions
of any of the positive or negative patterns in M, the observation is left unclassified.

The above defined classification rules have been verified experimentally to hold on numer-
ous datasets, and are considered by many as a useful instrument of biomedical informatics.
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It is natural, however, to ask whether there is any redundancy in the number of patterns
used for classification. One way of determining a model, i.e. a subset of patterns capable of
providing classifications for the same set of points which can be classified by the complete
system M, is based again on the solution of set covering type problems. In order to formu-
late these problems we shall associate 0-1 variables rj (j = 1, . . . , p) and sh (h = 1, . . . , q) to
each of the positive and negative patterns in M, with the interpretation that a pattern is
included in the model to be constructed, if and only if the corresponding variable takes the
value 1.

Obviously, a necessary and sufficient condition for a family of patterns to represent a
model is that each point in Ω+

BS should be covered by at least one of the patterns in the set
{M+

1 , . . . , M+
p }, and each point in Ω−

BS should be covered by at least one pattern in the set
{M−

1 , . . . , M−
q }. If we denote by ω ∈ M , for a positive or negative pattern M , the fact that

a given observation ω is covered by M , then the conditions above translate to the constraints:

If ω ∈ Ω+
BS then

p∑
j=1

ω∈M+
j

rj ≥ 1, and

if ω ∈ Ω−
BS then

q∑

h=1
ω∈M−

h

sh ≥ 1.

Obviously, the replacement of 1 in the right hand side of the above inequalities by a positive
integer d, as in (2), can lead to an increase of the robustness of resulting model.

There are several ways of defining an appropriate objective function. The simplest defi-
nition would require only the minimization of the number of patterns used, i.e.

minimize

p∑
j=1

rj +

q∑

h=1

sh. (3)

An alternative point of view may require the identification of a family of patterns in
which the overlap between positive and negative patterns is minimized. It is clear from the
definition of patterns that there are no points in ΩBS, which can belong at the same time to
a positive and a negative pattern. It may happen, however, that a new point may be covered
simultaneously by a positive and a negative pattern.

For each pair consisting of a positive and a negative pattern it is easy to calculate the
number of points covered by their intersection. Indeed, if the definition of a positive and
a negative pattern “conflicts”, i.e. there is a variable x appearing uncomplemented in the
definition of one of the two patterns, and appearing complemented in the definition of the
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other one, then the subcubes defined by the two patterns are disjoint. If, however, the
definitions of the two patterns do not conflict, and if the number of variables appearing in
the two patterns is respectively α and β, with γ variables common to both patterns, then
clearly the number of points in the intersection of the subcubes generated by these two
patterns is 2t−α−β+γ. If we define

δj,h =

{
2t−α−β+γ if patterns M+

j and M−
h do not conflict;

0 otherwise,

then the quadratic objective defining this problem is to

minimize

p∑
j=1

q∑

h=1

δj,h rj sh. (4)

Table 6 presents data concerning the comparative advantages and disadvantages of using
the complete model (consisting of all the maximum patterns), a model using the minimum
number of maximum patterns (obtained by solving exactly the set covering problem whose
objective function is (3)), and the overlap minimizing quadratic set covering problem (solved
by using the L2-best linear approximation of its quadratic objective function (4)). Comparing
the number of patterns used in the three models, it can be seen that the second and third
models use about half of the number of patterns used by the first one, and do not differ
significantly. It is very interesting to note that on the average the second model performs
almost as well as the first one (the average difference being of about 2%), while the third
model’s accuracy is only 1% below that of the second one. It seems clear from these results
that the use of the first model is much less advantageous than that of the second and third.
When deciding about the use of the second or third model, perhaps the major factor is the
number of unclassified observations, which turned out to be slightly smaller in the quadratic
model.

Number of Patterns Accuracy
Complete Min. Size Approx. Min. Complete Min. Size Approx. Min.

Dataset Model Model Overlap Model4 Model Model Overlap Model4

BCW 55.0 25.2 25.5 95.0% 92.0% 92.6%
HD 82.0 42.5 43.7 83.4% 80.9% 80.2%
PID 129.1 53.2 55.4 77.2% 77.3% 73.7%
BLD 140.9 60.0 61.5 74.9% 72.5% 72.2%
Average 101.8 45.2 46.5 82.6% 80.7% 79.7%

Table 6: Comparison between the three approaches for model formation.

4Using L2-best linear approximation of the quadratic model.
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2.5 Accuracy and Validation

A typical component of the analysis of medical data is the validation or cross-validation
of conclusions. When the original dataset is sufficiently large to allow the partition of the
observations into a “training” and a “test set”, the first one is used to derive a mathematical
model and draw conclusions from it, while the second one is used to test the validity of
the conclusions derived in this way. Because of the difficulty in working with large sets of
patients displaying certain conditions, the medical datasets consist frequently of relatively
small sets of observations. In view of this fact, cross-validation techniques are frequently
used for evaluating the quality of conclusions derived from the analysis of medical data.

The most frequently used cross-validation technique is the usual k-folding method of
statistics. This method consists in the random partitioning of the set of observations into k
(approximately) equally sized subsets; one of these subsets is designated as the “test set”, a
model is built on the union of the remaining k − 1 subsets (which form the “training set”)
and then tested on the k-th subset. This process is repeated k times by changing the subset
taken as test set, and the average accuracy is then reported as a quality measure of the
proposed method. In the results presented in this paper we have usually taken k to be 10,
and reported as accuracy the average of 10 to 20 k-folding experiments.

A special case of k-folding is the so-called “jackknifing”, or “leave-one-out” technique, in
which k is taken to be equal to the number of observations in the dataset, i.e. the test sets
consist always of a single patient.

The classification of a new patient by LAD can either lead to the prediction of he or
she being positive, or negative, or “unclassified” (although the last category is usually very
small). We shall define the accuracy of predictions to be simply the proportion of correctly
classified patients in the test set.

Two other concepts which are frequently used in medicine are those of sensitivity and
specificity. Sensitivity is simply the proportion of correctly classified positive observations
within the set of positive observations in the test set. Similarly, specificity is simply the
proportion of correctly classified negative observations within the set of negative observations
in the test set.

Finally, the hazard ratio of a set Σ of observations, another frequently used quality mea-
sure in medicine is the proportion of two proportions: the proportion of positive observations
in the set Σ, and the proportion of positive observations in the complement of Σ. Usually,
Σ is taken to be the set of observations in the test set which are predicted to be positive by
LAD or other data analysis method.

3 Applications to Medicine

We shall present in this section several results obtained by applying LAD to different typical
problems arising in medicine.
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3.1 Differential IIP Diagnosis Using Radiological Data5

Idiopathic interstitial pneumonias (IIPs) are a group of disorders resulting from damage
to the lung parenchyma by varying patterns of inflammation and fibrosis. Various forms
of IIP differ both in their prognoses and their therapies, but are not easily distinguishable
using clinical, biological and radiological data, and therefore frequently requiring pulmonary
biopsies to establish the diagnosis.

In order to avoid the difficulties related to biopsy, we have applied LAD to computed
tomography (CT) data, to distinguish between 3 types of IIPs: Idiopathic Pulmonary Fi-
brosis (IPF), Non Specific Interstitial Pneumonia (NSIP), and Desquamative Interstitial
Pneumonia (DIP).

One of the characteristics of this dataset was its extremely small size: it consisted only
of 56 patients, and included 13 attributes. In spite of the very small size of the dataset,
some surprisingly strong patterns, with prevalences ranging between 40% and 86% have
been identified in it.

In a first step, LAD identified 2 outliers, this finding having been confirmed later by the
medical records of those 2 patients; one of them turned actually out to have been exposed to
asbestos, while the other one’s lung pathology data was found to be atypical in all features.

In contrast to the difficulties encountered by experienced medical researchers to distin-
guish between the 3 types of interstitial pneumonia, the LAD study allowed the precise
diagnosis of 44 of the 54 remaining patients, made errors in 6 cases, and left unclassified the
other 4 patients.

The diagnosis accuracy of over 80% obtained by LAD is far superior to those reported
recently [24, 25] in the medical literature (correct diagnoses in 32% to 70% of IPF cases,
60% of DIP, and only 9% of NSIP).

Beside diagnosis the study identified several variables as having a blocking or a promoting
effect on some forms of interstitial pneumonia.

The encouraging results of this investigation form the basis of a forthcoming study of
a broader population of IIPs, which will include not only CT data, but also clinical and
biological ones.

3.2 Ovarian Cancer Diagnosis Using a Large Proteomic Dataset6

Petricoin et al. published in 2002 [27] the results of a successful experiment in the diagnosis
of ovarian cancer based on the analysis of mass spectroscopy generated data containing
expression profiles of 15,154 peptides defined by their mass per charge (m/z) ratios in serum
of 162 ovarian cancer and 91 control cases. The high level of interest of this investigation
was demonstrated by the New York Times’ prompt release [1] of an announcement of the
essential findings of this study.

5Based on a collaborative study with researchers from Hôpital Avicenne (Paris), University of Grenoble,
and RUTCOR, reported in [15].

6Based on a collaborative study with researchers from the National Institutes of Health, the Food and
Drug Administration (FDA), the Cancer Institute of New Jersey, and RUTCOR, reported in [8].
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Using LAD we have re-examined the Petricoin-Liotta dataset7, and its subsequently
revised versions, and identified in them 3 subsets consisting respectively of 7, 8 and 9 peptides
chosen from the 15,154 peptides in the dataset. The 9 peptides found by LAD have relatively
low correlation coefficients with the outcome, in marked contrast with the widely accepted
idea of basing the selection of biomarkers on their individual distinguishing power.

An interesting finding of the study is the existence of very simple “combinatorial biomark-
ers”. For example, in 97% of the positive cases the expression of the intensity level of the
peptide with the m/z value 235.8296 is low (i.e. below a certain prescribed threshold) while
the expression of the intensity level of the peptide with m/z value 435.46452 is high (i.e.
above a certain prescribed threshold). Moreover, this combination of intensity levels does
not occur in any of the negative cases. Thus, each of the patterns can be viewed as a logically
synthesized combinatorial biomarker.

Three different diagnostic models consisting of such powerful patterns (combinatorial
biomarkers) have been built on these support sets, and shown by systematic cross-validation
experiments to have sensitivities ranging between 96.7% and 100%, and specificities ranging
from 95.1% to 100%. Both the sensitivity and the specificity of the proposed “complete
model”, which involves all the 9 peptides (selected from the 15,154), are of 100% each.

The high accuracy of these diagnostic models indicates clearly the presence of distinctive
differences in the proteomic serum spectra from patients with ovarian cancer compared to
unaffected patients, and it fully reconfirms the essence of the conclusions of [27].

One of the most important problems in ovarian cancer is its detection in stage I, when
the possibility of treating it by surgery alone, without the need of chemotherapy, provides
superior survival rates. Using again the LAD approach, we have detected a support set of
6 peptides on which we have built several diagnostic models for recognizing stage I ovarian
cancer. Both the average sensitivity and specificity of the “complete model” built on this
support set turned out in 120 cross-validation experiments to be of 100%.

Another interesting conclusion of this study is that using only peptides with relatively
high m/z values does not allow the construction of accurate diagnostic models. It is not
clear at this stage whether this phenomenon is due to imprecisions in measurements, or to
biological reasons.

An additional result of the study is the identification of several large and coherent groups
of cases with strikingly similar combinatorial characteristics, raising significant questions
about their possible biological similitudes.

3.3 Genomic Data-based Breast Cancer Prognosis8

In a recent study [29] van’t Veer et al. proposed to predict the clinical outcome of breast
cancer (i.e. to identify the cases which will develop metastases within 5 years) based on the
analysis of gene expression signatures. The importance of this problem is due to the fact

7See http://clinicalproteomics.steem.com.
8Based on a collaborative study with researchers from the Robert Wood Johnson Medical School, Rutgers

University’s Department of Biology, and RUTCOR, reported in [4].
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that the available adjuvant (chemo or hormone) therapy, which reduces by about one third
the risk of distant metastases is not really necessary for three quarters of the patients who
currently receive it, and can even have serious side effects.

The attributes in the van’t Veer study9 correspond to more than 25,000 human genes,
while the number of patients is only 97. The attributes are measured by the fluorescence in-
tensities of RNA hybridized to microarrays of oligonucleotides. The 97 lymph-node-negative
breast cancer patients are grouped into a training set of 78 and a test set of 19 cases. The
training set includes 34 positive cases (having a “poor prognosis” signature, i.e. having less
than 5 years of metastasis-free survival), and 44 negative cases (having a “good prognosis”
signature, i.e. having more than 5 years metastasis-free survival). The test set includes 12
positive and 7 negative cases. The van’t Veer study identified 231 biomarkers of metastasis
(all having large correlations with the outcome), and an optimal prognosis classifier based
on 70 genes, and having an accuracy of 83.3% on the training set, and 89.5% on the test set.

By applying LAD to the van’t Veer data, we have identified a support set of 16 genes,
which includes only 2 of the genes appearing in the van’t Veer study. On this support set
of 16 genes we have identified 39 positive and 93 negative patterns. On the training set the
accuracy of the proposed prognostic system consisting of these 142 patterns is of 100%, while
on the test set it classifies correctly 18 of the 19 cases (accuracy of 94.7%).

One of the genes appearing in almost 40% of the significant patterns was shown to be a
highly significant biomarker. Along with this gene, 6 promoters and 10 blockers have been
identified in the support set. It is interesting that each of the genes in the support set is
either a contributor or a blocker, which is a very unusual situation, since most datasets
contain very few attributes with a consistent (monotone) behavior.

A new subclass of positive patients, containing 13 cases has also been discovered. The
patients in this group have a fully predictable behavior (the sensitivity in this group is 100%,
compared to 81% over the entire set of positive cases), have distinctive gene expression ranges,
and several other special characteristics.

An interesting conclusion of the study is that the patients included in the training set
and the test set turned out to have differing characteristics. Surprisingly, the accuracy in
the test set (94.7%) turned out to be even higher than that estimated by cross-validation on
the training set (85.9%). Several patterns have been identified, each of which including only
one or two genes, and providing a 100% distinction between the training and the test sets.
Moreover, the genes in the support set define an interval in the 16-dimensional real space,
which includes all the 19 test cases and none of the training cases, providing thus a complete
separation of the training and the test sets.

3.4 Logical Analysis of Diffuse Large B-Cell Lymphomas10

Diffuse large B-cell lymphoma (DLBCL) is one of the most common subtypes of non-Hodgkin
lymphoma (NHL), accounting for 31% of NHL cases. Using modern chemotherapy, 50%

9See http://www.rii.com/publications/2002/vantveer.html.
10Based on a collaborative study with researchers from the Robert Wood Johnson Medical School, Rutgers

University’s Department of Biology, and RUTCOR, reported in [5].
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of patients achieve a long-term, disease-free survival. Recently Shipp and coworkers [28]
described the use of a correlation-based, supervised learning technique (i) to distinguish
DLBCLs from follicular lymphomas (FL), and (ii) to predict the clinical course of cases of
DLBCL (i.e. to distinguish between poor and good prognosis cases).

The goal of this study was to reexamine the same two problems with the help of LAD,
using the microarray dataset of Shipp et al.11, which contains the intensity levels of 6,817
genes of 58 patients with diffuse large B-cell lymphoma (DLBCL) and 19 with follicular
lymphoma (FL). Out of the 58 patients with DLBCL in the lymphoma dataset [w4] 26 had
poor prognoses, and 32 had good prognoses.

Results for problem (i): For the differential diagnosis of DLBCL vs. FL, a model based on
8 significant genes was constructed and shown to have a sensitivity of 94.7% and a specificity
of 100% on the test set. It is interesting to remark that in spite of the fact that the correlation
of the expression levels of none of the 6,817 genes in the dataset with the DLBCL vs. FL
outcome exceeded 62% in absolute value, 37 extremely powerful patterns have been found,
each involving the expression levels of only 2 of the genes in a support set of 20 genes; what
makes this collection remarkable is that each of these patterns had prevalence in excess of
90%, either in the DLBCL or the FL class, and 0% in the other class.

Among the biological conclusions derived from the analysis of the most powerful patterns,
it is worth mentioning that more than 75% of the patterns with large prevalences included a
gene belonging to the “cell surface proteins and receptors” class, while half of the significant
patterns included a gene belonging to the “DNA replication, combination and repair” class.
Most importantly, every single pattern included at least one gene belonging to one of these
two classes.

The existence of such powerful patterns has made the construction of extremely accurate
classification models possible. A model built on a support set of only 8 genes, and using only
13 of the patterns identified in this dataset, had a sensitivity of 94.7% and a specificity of
100% on the test set, while on the training set both the sensitivity and the specificity were
of 100%.

Results for problem (ii): Similarly to problem (i), 75 very powerful patterns, having
prevalences in excess of 72% and 86% respectively have been identified in the poor, respec-
tively good, prognosis classes. A classification model consisting of 16 patterns was built on a
support set of 8 genes; the sensitivity and specificity of this model on test sets were of 87.5%
and of 90% respectively, while on the training set both the sensitivity and the specificity
were of 100%.

One of the most important conclusions of this study concerns the interactions among
genes, illustrated by the presence of powerful combinatorial biomarkers (patterns), and re-
quiring biological explanation. Beside the identification of several genes of prominent impor-
tance in the two problems, e.g. butyrophilin(BTF1)mRNA, whose expression level appears
in more than two thirds of the patterns in problem (ii), several other genes with clear strongly
monotonic (i.e. promoting or blocking) properties have been discovered.

Consideration of the function and location of the butyrophilin product, and of several

11See http://www.genome.wi.mit.du/MPR/lymphoma.
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other support set gene products that appear with it in the various patterns, suggests a
possible hypothesis for their relationship in a transduction pathway, in which an extracellular
ligand interacts with a membrane receptor, transduces a signal via a cascade to the nucleus,
and influences DNA replication. The biological confirmation of this, and of many other
hypotheses which can be derived from this study, represent examples of challenging open
biomedical research problems, inspired by the mathematical/computatioal analysis of data.

3.5 Coronary Risk Prediction12

The objective of this collaborative risk stratification study carried out with a team of medical
researchers at the Cleveland Clinic Foundation was to distinguish within a population of
patients with known or suspected coronary artery disease, groups of patients at high or low
mortality rates. The study was based on Cleveland Clinic Foundation’s data, which includes
9,454 patients, of whom 312 died during an observation period of 9 years. For each of the
patients 21 variables were recorded, including general data (age, gender), health history
(chest pain, hypertension, diabetes, coronary artery disease), medication (beta blockers,
verapamil, lipid lowering drugs, aspirin), and specific measurements (resting abnormal ECG,
resting heart rate, change in heart rate, chronotropic index, Duke treadmill score), as well
as an indication of whether the patient died during the observation period.

In most applications of LAD and of other data analysis techniques the representation
of the analyzed datasets in real space admitted a more or less “crispy” separation into
homogeneous zones, containing only positive or only negative points. The disproportionate
sizes of the two groups of patients in the study, and the “inseparable” character of the
dataset, have prompted a new definition of the positive and negative classes (see Figure 3).

Figure 3: An inseparable dataset.

A group of patients was defined as “positive” or “high risk” if its mortality rate exceeded
at least five times the average mortality rate of the entire population (3.3%), i.e. if it was
at least 16.5%. Similarly, a group of patients was defined as “negative” or “low risk” if its
mortality rate was less than one fifth of the average mortality rate of the entire population,
i.e. if it was less than 0.66%. A patient was defined to be at high risk (respectively, low

12Based on a collaborative study with researchers from the Cleveland Clinic Foundation, and RUTCOR,
reported in [9] and [26].
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LAD Index
High Low

Cox Score High 3.99× µ 0.92× µ
Low 1.47× µ 0.39× µ

Table 7: LAD Index vs. Cox Score (Average mortality: µ = 3.3%).

risk) if its measurements satisfied some positive (respectively, negative) patterns, but none
of the negative (respectively, positive) ones. Patients satisfying both positive and negative
patterns were classified on the basis of the corresponding signs of a discriminant. The value
associated by this discriminant to a patient was called the patient’s Prognostic Index.

In the cardiovascular literature, risk stratification schemes are typically based on stan-
dard statistical models, such as logistic regression or Cox proportional hazards. A common
problem with these approaches is that, although high risk patients can be easily identified,
they account usually only for a minority of subsequent clinical events. Conversely, other risk
markers may identify the majority of patients at high risk, but they also include in the same
group sizeable numbers of other patients. The ideal risk stratification scheme has to identify
a small subset of patients who will in fact account for the vast majority of deaths.

Using the Prognostic Index, the number of patients classified into the high risk and low
risk categories were respectively of 20% and 77%. Moreover, 75% of the patients who died
during the observation period belonged to the high risk category defined by LAD.

Figure 4: Survival dynamics of high and low risk patients.

In comparing the LAD-based Prognostic Index to the Cox Score, widely used by cardi-
ologists, it was shown first that the classifications given by both indicators agree in three
out of four cases, and that the Prognostic Index outperforms the Cox Score slightly but
consistently (see Table 7). It should also be noted that the correlation of the Prognostic
Index with the mortality rate of patients is of 84%.

The dynamics of survival of patients classified by LAD as being at high risk (respectively,
low risk) is illustrated in Figure 4.
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3.6 Cell Growth Prediction for Polymeric Biomaterial Design13

Since extremely large combinatorial biomaterial libraries are being developed in many labo-
ratories, and since the experimental evaluation of the qualities of various polymers in these
libraries is both expensive and time-consuming, the need for the development of analytic pro-
cedures for the pre-selection of those polymers that should actually be tested is becoming
more and more important. In particular, computational models that can predict the cellular
response to implanted biomaterials (e.g. artificial bones) can play an invaluable role in the
design of medical devices whose functions depend on controlling cell-material interaction at
the device surface.

As a step in this direction we have examined the properties of a library of 112 polymers on
growth of two different cell types: rat lung fibroblasts (RLF) and normal foreskin fibroblasts
(NFF, human cells). LAD was trained on a subset of 62 polymers and was then used to
predict cell growth on some of 50 untested polymers taken from that library.

LAD found patterns of structural and physical parameters, which led to the classification
of each polymer as high, medium or low cell growth substratum, and provided specific
correlations between cell growth on the one hand, and chemical composition, bulk properties,
surface chemistry on the other.

One of the most interesting outcomes of this study was that a group of 6 “superior”
polymers within the training set was found to satisfy not just one or two, but all patterns
of polymer properties associated to high NFF cell growth. From the 6 superior polymers
a single new pattern was established which describes completely and exclusively these 6
materials; this special pattern is expressed in terms of restrictions imposed on the pendant
chain used, backbone, glass transition, contact angle, and flexibility index. In this way the
LAD model gave rise to surprising explicit design criteria for the development of polymers
that will support the growth of RLF cells.

A similar approach was used to identify the “inferior” polymers, i.e. those with low cell
growth within the training set. One specific pattern was constructed which is capable of
identifying all low cell growth polymers for RLF cells. Again, LAD resulted in remarkably
precise design criteria for polymeric substrata that could be used in applications where cell
growth is undesirable.

The growth behavior of NFF cells was more complex than that of the RLF cell line, and
therefore the LAD-derived criteria for polymeric substrata for NFF cells where less definite.
We expect that the refinement of the present study by the inclusion of additional input
parameters will allow us to address this point in more detail.

The models were tested experimentally by using them to predict cell growth on the
remaining 50 previously untested polymers in the library, some of which were actually syn-
thesized for experimental validation. The cell culture results showed that the LAD model
found optimal ranges for polymer chemical composition, surface chemistry, and bulk prop-
erties. Moreover, it classified correctly the approximate range of cell growth for 83% of the

13Based on a collaborative study with researchers from the New Jersey Center for Biomaterials, Rutgers
University’s Department of Chemistry and Chemical Biology, and RUTCOR, reported in [2].
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polymers tested in the case of RLF cells, and 73% for the NFF cells. Particular notewor-
thy is that LAD correctly identified high performing polymer surfaces, identifying promising
“lead” polymers for applications that require high or low cell growth.

To our knowledge this research represents the first time a computer model based on
the recognition of patterns of polymer composition and properties has been used to predict
cell growth outcomes on previously untested biomaterials. It is expected that the patterns
identified by LAD will be of substantial assistance in (i) eliminating the need of synthesizing
polymers of low expected value, and (ii) directing the experimental stage of design towards
the synthesis of the most promising biomedical polymers.
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