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Eötvös Lóránd University of Budapest, H-1088 Budapest, Pázmány Péter
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Abstract.In this paper the move of a robot arm is optimized via Benders decom-
position.



Page 2 RRR 43-2005

1 Introduction

The problem of this paper has been motivated by printed circuit assembly. A good survey
on this topic is [Crama et al. 2002]. The results of the present paper can be applied at all
of the cases where a robot assemblies a product and the objective is the minimize the length
of the arm of the robot.

2 Technological arrangement

The task being assembled by the robot is in a fixed position. The components are in a
sequence of cells. Each cell contains a different type of component. Each component has a
well-defined position on the task where to be assembled. The duration of the assembly of a
component is an a priori given fixed value. The only possibility to save some time, i.e. to
accelerate the production, is to minimize the total move of the arm of the robot.

When the assembly of a component is finished then the arm goes for the next component
to the appropriate cell and from there it goes to the position of the next component on the
task. Hence it follows that the total move of the arm depends on both (i) the assignment of
the components to cells, and (ii) the order of the components in which they are assembled.
Therefore the whole problem is the ”direct product” of the assignment problem of (i), and
the TSP of (ii). The distances among cells and positions are supposed to be symmetric.

In this paper we shall suppose that the following two assumption are valid:

The number of cells is equal to the number of components. (A1)

Each component is used on the part only ones. (A2)

These assumption are simplifying the problem which still remains difficult enough to be
solved.

3 Problem formulation

To describe the problem mathematically the following notation are introduced:

n the number of cells and components
i the index of cells
j, k, l indices of components and positions
dik the symmetric distance of cell i and position k
xij is 1 if component j is assigned to cell i, otherwise is 0
ykl is 1 if component l is assembled immediately after component k

The system of x’s and y’s are the decision variables. They must satisfy the following sets
of constraints.
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Each component is assigned to exactly one cell and vice versa:

n∑
j=1

xij = 1, i = 1, ..., n, (1)

and

n∑
i=1

xij = 1, j = 1, ..., n. (2)

Each component is assembled exactly ones, i.e. the order of the components is a Hamiltonian
circuit:

n∑
k=1

ykl = 1, l = 1, ..., n, (3)

and

n∑
l=1

ykl = 1, k = 1, ..., n, (4)

and

∀H ⊂ {1, 2, ..., n}, n >| H |≥ 2 :
∑
k∈H

∑
l∈H

ykl ≥ 1. (5)

Formally we repeat that all variables are binary:

xij, ykl ∈ { 0, 1 }, i, j, k, l = 1, 2, ..., n. (6)

The arm moves from position k of the task to cell i only if cell i contains the component
of the immediate successor position. Assume that the index of it is l. Then until the
next position the length of the move is dik + dil. These terms of the distance function can
be selected by the decision variables and the total distance of the move of the arm to be
minimized is:

min
n∑

k=1

n∑
l=1

n∑
i=1

dikyklxil +
n∑

i=1

n∑
l=1

dilxil. (7)

Thus the mathematical problem to be solved is to optimize (7) under the conditions
(1-6). This problem formulation has two drawbacks. At first there are exponential many
constraints in (5). We shall see that only those of them will be used, which are violated.
Secondly the objective function (7) is nonlinear. It can be linearized with the usual method.
New variables, say wikl’s, are introduced as follows:

wikl = xilykl i, k, l = 1, 2, ..., n. (8)
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If both xil and ykl are zero-one variables then wikl is zero-one as well. It is well-known that
equation (8) is equivalent to the inequalities

wikl ≥ xil + ykl − 1 i, k, l = 1, 2, ..., n (9)

and

2wikl ≤ xil + ykl i, k, l = 1, 2, ..., n (10)

assuming that

wikl ∈ { 0, 1 }, i, k, l = 1, 2, ..., n. (11)

Thus the new form of the objective function when it is multiplied by (-1) is

max
n∑

i=1

n∑
l=1

(−dil)xil +
n∑

k=1

n∑
l=1

n∑
i=1

(−dik)wikl. (12)

Thus the final form is to optimize (12) under the conditions (1)-(6), and (10)-(11).
For the sake of convenience we need a compact form of the constraints, too. Inequalities

(1)-(2) and (3)-(5), respectively, contain only the variables x and y, respectively. Thus
these sets can be written separately. If it is necessary the inequalities are multiplied by (-1).
Finally the form

max cTx + 0Ty + fTw
A1x + Oy + Ow = e2n

Ox + B2y + Ow = (≤) b2

A3x + B3y + C3w ≤ b3

x,y ∈ { 0, 1 }n2
, w ∈ { 0, 1 }n3

,

(13)

where the vectors c, and f are formed from the distances according to (12) and all components
of the 2n-dimensional vector e2n are 1and finally O is a zero matrix of appropriate size.

4 The Benders decomposition in the general case

The Benders decomposition [Benders 1962] is summarized in this section as it is the main
tool to develop our algorithm and it is referred very rarely in the literature. The section
does not contain new results.

The Benders decomposition is actually the dual of the Dantzig-Wolfe decomposition.
Here not the constraints but the variables are divided into two parts. The first one represents
a linear programming part while the second one is arbitrary. The problem to solve is

max cTp + f(r)
Ap + F(r) ≤ b
p ≥ 0, r ∈ S,

(14)
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where c, and p are s-dimensional vectors, A is a real matrix of size m× s, f : Rt → R, and
F : Rt → Rm are arbitrary functions, S is an arbitrary subset of Rt and r is a t-dimensional
vector.

For a fixed r̂ the problem (14) becomes the linear programming problem

max cTp + f(r̂)
Ap ≤ b− F(r̂)
p ≥ 0,

(15)

where the term f(r̂) in the objective function is only an additive constant. The dual of (15)
is

min (b− F(r̂))Tu
ATu ≥ c

u ≥ 0.
(16)

If Problem (16) has no feasible solution then Problem (15) is either unbounded or has no
feasible solution for each particular r̂. Hence the original problem has no optimal solution.
Therefore in the rest of the paper it is assumed that Problem (16) has at least one feasible
solution.

An equivalent form of (14) can be obtained by introducing an objective function variable,
say z, and slack variables, say v0 and v, to obtain equations instead of the inequalities. The
new form of (14) is

max 0Tp + 0T r + z + 0v0 + 0Tv
−cTp − f(r) + z + v0 + 0Tv = 0

Ap + F(r) + 0z + 0v0 + v = b
p ≥ 0, r ∈ S, v0 ≥ 0, v ≥ 0.

(17)

The following theorem is an immediate consequence of the Farkas theorem taking into
account that the variables in Problem (17) with the possible exception of r are nonnegatives.

Theorem 4.1 For a given pair (r̂, ẑ), where r̂ ∈ S and ẑ ∈ IR there exist a vectors p̂, and
v̂ and a number v̂0 such that the 5-tuple (p̂, r̂, ẑ, v̂0, v̂) is a feasible solution of Problem (17)
if and only if the inequality

u0(f(r̂)− ẑ) + uT (b− F(r̂)) ≥ 0 (18)

holds for every real number u0 and vector u ∈ IRm such that

ATu ≥ cu0, u0 ≥ 0, u ≥ 0. (19)

The set of the m + 1-dimensional vectors (u0,u
T )T satisfying (19) is obviously a pointed

and polyhedral cone denoted by C. It is well-known that it is spanned by the finite set of
its extremal directions, say Q. If inequality (18) holds for all elements of Q then it holds
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for all of the elements of C. The problem is from computational point of view that the set
Q may have too many elements to explore all of them as an initial step of the algorithm.
Therefore a ”column generation” type algorithm should be developed, which uses only those
elements of Q, which are really required. As it will be seen this type of algorithm is of ”row
generation” in the case of Benders decomposition.

Furthermore if (û0, û) ∈ Q and û0 6= 0 then without loss of generality we may assume
that û0 = 1. Hence one can conclude that to test if a given pair (r̂, ẑ) is a part of an optimal
solution it is enough to solve Problem (16). Let (û∗0, û

∗) be the optimal solution. Only the
following cases exist:

(i) optimal solution: If an optimal solution of Problem (16) exists and the equation

ẑ = (b− F(r̂))T û∗ + f(r̂) (20)

holds then the pair is optimal and the missing part p̂∗ of the optimal solution can be obtained
by solving Problem (15).

(ii) a new element of the set Q is explored: Assume that an optimal solution of Problem
(16) exists and the inequality

ẑ > (b− F(r̂))T û∗ + f(r̂) (21)

holds. Let û∗ the optimal solution of Problem (16). Then Inequality (18) does not hold

for the vector
(
1, û∗

T
)T

. Therefore a new candidate for being (r̂, ẑ) must be generated by
taking into account even this inequality.

(iii) two new elements of the set Q is explored: Assume that no optimal solution of
Problem (16) exists but the objective function is unbounded. Assume that Problem (16) is
solved by the simplex method. At the very moment when the unboundedness of the problem
is recognized there are a current basic solution and a direction of the unboundedness, say û
and t̂, respectively. Then Inequality (18) must be satisfied for the vectors (1, û), and (0, t̂),
too.

A candidate (r̂, ẑ) can be generated as follows. Let Q̂ be the subset of Q consisting of
the explored elements. Then the new candidate is an optimal solution of the problem

max z

∀ (u0,u) ∈ Q̂ : u0(f(r)− z) + uT (b− F(r)) ≥ 0
r ∈ S.

(22)

Thus the Benders decomposition solves the difficult Problem (14) by a finite alternating
sequence of Problems (16), and (22), which are of type linear programming and a pure not
linear, e.g. in our particular case integer programming.

It is worth to note that as there is no restriction on the set S, if there are any constraints
containing only the variables r, then the satisfaction of these constraints can be included in
the definition of the set S.
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5 The frame of the Benders decomposition in the par-

ticular case

This section consists of two parts. First the special structures of the coefficient matrices of
problem (13) are explored. Based on that the form of the Benders decomposition is described
in this particular case. Further special properties are discussed in the next section.

In what follows et is again the t-dimensional vector of which all of its components are 1.
Assume that the order of the components in vector w is w111, w112, ..., w11n, w121, ..., wnnn.

Similarly let d11, d12, ..., d1n, d21, d22, ..., dnn be the order of the components in vector d
formed from the distances. It is also assumed that the order of the components in x is
x11, x12, ..., x1n, x21, x22, ..., xnn. Then vector f , which is the vector of the objective function
coefficients of w, is obtained by the following matrix multiplication:

f =


−en 0 ... 0

0 −en ... 0
...

0 0 ... −en

d. (23)

The structure of the coefficient matrices of the constraints are as follows. A1 is the matrix
of an n× n assignment problem, i.e. its structure is this:

A1 =

(
A11

A12

)
,A11 =


eT

n 0T ... 0T

0T eT
n ... 0T

...
0T 0T ... eT

n

 ,A12 =
(

In In ... In

)
, (24)

where In is the n × n unit matrix. Constraints (3)-(5) describe the feasible set of a TSP.
Therefore B2 consists of three parts, i.e.

B2 =

 B21

B22

B23

 , (25)

and

(
B21

B22

)
is again the matrix of an n× n assignment problem, i.e.

B21 = A11,B22 = A12. (26)

Constraint (5) excludes short circuits. In principle it excludes all of them, in practice only the
explored ones. Therefore its row are the negative characteristic vectors of sets of components
containing at least 2 and at most n− 1 components. The following notation is used:

B23 =

 −vT
1

...
−vT

m

 , (27)
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where

vi ∈ {0, 1}n, 2 ≤
n∑

k=1

vik ≤ n− 1, i = 1, ...,m.

The appropriate right-hand side vector, i.e. b2, is partitioned accordingly, i.e.

b2 =

 b21

b22

b23

 =

 en

en

−em

 . (28)

The third set of constraints, i.e. Inequalities (10), and (9), describe the linearization of
the xilykl products. Notice that (9) must be multiplied by -1 to obtain the form used in
Problem (13). All the matrices A3, B3, and C3 and the vector b3 are partitioned according
to the two sets of constraints, i.e.

A3 =

(
A31

A32

)
, B3 =

(
B31

B32

)
, C3 =

(
C31

C32

)
, and b3 =

(
b31

b32

)
,

where the sizes of A31, and B31 are n3 × n2, the size of C31 is n3 × n3 and the structure of
these matrices is as follows:

A31 =



In 0 0 ... 0
...

In 0 0 ... 0
0 In 0 ... 0

...
0 In 0 ... 0

...
0 0 0 ... In

...
0 0 0 ... In



, (29)

B31 =

 In2

...
In2

 , (30)

C31 = −In3 , (31)

b31 = en3 . (32)

Furthermore

A32 = −A31, B32 = −B31, C32 = −2C31, and b32 = 0. (33)
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The Benders decomposition is applied with the following ”casting” of the variables. The
role of the linear continuous variables, i.e. the role of p variables, is given to the vector x
and the pair (y,w) plays the role of the vector r.

As it has great importance the set S is given in a separated definition.

Definition 5.1 The set S is defined such that both y, and w are binary vectors and their
are not contradiction with each other. This requirement means that:

• wikl = 1 only if ykl = 1 and

• the vector y describes a Hamiltonian circuit.

During the algorithm the requirement that y must define a Hamiltonian circuit is han-
dled dynamically, i.e. only those constraints are required, which exclude a potential non-
Hamiltonian solution.

It is supposed that the vector u of the variables of Problem (16) is partitioned into six
parts of the constraints. The six parts are the two parts of the assignment problem, i.e. 1
and 1, the assignment part of the TSP and the exclusion of the small circuits, i.e. (3) and
(4) together and (5), finally (9) and (10). Then the particular form of Problem (16) is for a
fixed pair (ŷ, ŵ):

min


 b1

b2

b3

−
 0 0

B2 0
B3 C3

( ŷ
ŵ

)
T

u

subject to
(AT

1 ,0,AT
3 )u ≥ d
u23 ≥ 0
u3 ≥ 0

(34)

The particular form of the individual linear inequalities is

u11i + u12l +
n∑

k=1

u31ikl −
n∑

k=1

u32ikl ≥ −dil. (35)

Hence u = 0 is always a feasible solution of (34), as the distances are nonnegatives. It means
that the assumption that (16) has a feasible solution is automatically satisfied.

In the description of the algorithm the following notations are used:

• R is the set of pairs of binary vectors (y,w) satisfying that ykl = 0 implies that
∀ i : wikl = 0.

• If (T ) denotes an optimization problem then let opt(T ) denote an optimal solution of
(T ) provided by any algorithm used to solve the problem.

• Similarly if (T ) is a linear programming problem then extr(T ) is the last extremal
point visited by the simplex method and
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• direction(T ) is the direction such that the value of the objective function improves
by a step started from extr(T ) and following direction direction(T ).

• The setH consists of smaller circuits, which appeared in a vector y, i.e. the appropriate
constraints (5) must be required for each H ∈ H.

• For a given vector y subcircuit(y) is one small, i.e. non-Hamiltonian circuit appears
in y and

• circuit(y) is the number of circuits represented by y. It is 1 if and only if y represents
a Hamiltonian circuit.

• The variables depending on the iteration are these:

– β the index of the iteration,

– Qβ the set of explored extremal points and directions,

– C the set of explored subarcuate,

– zβ the optimal objective function value of linear programming subproblem,

– sβ the optimal value of the integer programming subproblem,

– (yβ,wβ) the optimal solution of the integer programming subproblem denoted by
integerβ,

– (x∗,y∗,w∗) the optimal solution of the original problem,

– uβ the extremal point obtained in the k-th iteration,

– vβ the extremal direction obtained in the k-th iteration.

Algorithm 5.1
1. Begin

2. Q0 := ∅

3. C := ∅

4. s0 := +∞

5. z0 := 0

6. (y0,w0) ∈ S {An arbitrary element}

7. β := 0

8. zβ = min


 b1

b2

b3

−
 0 0

B2 0
B3 C3

( yβ

wβ

)
T

u

subject to (34β)
(AT

1 ,0,AT
3 )u ≥ d u23 ≥ 0 u3 ≥ 0
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9. if zβ ≥ sβ − fTwβ

10. then

11. begin

12. goto 36.

13. end

14. if −∞ < zβ < sβ − fTwβ

15. then

16. begin

17. uβ :=opt(34β)

18. Qk+1 := Qβ ∪
{(

1
uβ

)}

19. end

20. else

21. if zβ = −∞

22. then

23. begin

24. uβ :=extr(34β)

25. vβ :=direction(34β)

26. Qβ+1 := Qβ ∪
{(

1
uβ

)
,

(
0
vβ

)}

27. end

28. repeat

29. sβ+1 := max s

∀(u0,u) ∈ Qβ : u0(f
Tw − s) + (uT

1 ,uT
2 ,uT

3 )


 e2n

b2

b3

−
 0 0

B2 0
B3 C3

( y
w

) ≥ 0

(integerβ)
(y,w) ∈ R

∀H ∈ H :
∑

k∈H

∑
l∈H ykl ≥ 1
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30. (yβ+1,wβ+1) :=opt(integerβ)

31. if circuit(yβ+1) > 1

32. then H := H ∪ {subcircuit(yβ)}

33. until circuit(yβ+1) > 1

34. β := β + 1

35. goto 8.

36. y∗ := yβ

37. w∗ := wβ

38. x∗ := opt(max {(−d)Tx | A1x = e2n, A3x ≤ b3 −B3y
∗ −C3w

∗, x ∈ { 0, 1 }n×n}).

39. end

The correctness of the algorithm has not been proved yet as the problem in Row 35 giving
the optimal x part of the solution is a combinatorial optimization problem instead of a pure
linear programming one. The aim of the next section is to prove that the current version of
(15) reserves its combinatorial nature.

6 The combinatorial nature of the Benders decompo-

sition in the particular case

The particular form of (15) is

max (−d)Tx
A1x = e2n

A3x ≤ b3 −B3ŷ −C3ŵ

x ∈ {0, 1}n2
.

(36)

Without the inequalities in the third row Problem (36) is an assignment problem. The
objective of this section is just to show that (36) behaves in the frame of the Benders
decomposition like an assignment problem. For the possible values of each pair of (ykl, wikl)
there are the following cases considering the appropriate constraints (9), (10) and the fact
that (y,w) ∈ R.

ykl wikl xil the binding constraint
1 1 1 (10)
1 0 0 (9)
0 1 – the case cannot occur
0 0 0,1 no binding constraint
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These constraints may cause two types of infeasibilities. Then the appropriate sample
of Problem (16) is unbounded. It is shown below that in both cases it is possible to give
a direction such that the objective function of (16) is unbounded along it. To do so the
following form of Farkas lemma is used.

Lemma 6.1 Let G be an m×n matrix and g an m-dimensional vector. The n-dimensional
vector of variables is denoted by t. If the system

Gt ≤ g (37)

has no solution then there is nonnegative m-dimensional vector λ such that

GT λ = 0 and gT λ < 0. (38)

Assume that the linear programming problem

mingT µ

GT µ = d

is to be solved, where d is a fixed n-dimensional vector. Then if system (38) has a solution
then the linear programming problem either has no feasible solution, or is unbounded. In
the latter case the vector λ gives a direction such that starting from any feasible solution
the objective function is unbounded along this direction.

When lemma 6.1 is applied then the particular form of the system (37) is in case:

A1x = e2n, A3x ≤ b3 −B3ŷ −C3ŵ, −x ≤ 0, (39)

i.e. the matrix G is in this particular case

G =

 A1

A3

−In×n

 . (40)

Similarly

g =

 e2n

b3 −B3ŷ −C3ŵ
0

 . (41)

As the first set of constraints is an equation system, it is allowed that their multipliers take
negative values, too.

Case 1. Too many 1’s are required. Assume that there are indices i1, i2, k1, k2, l with
i1 6= i2 such that ŷk1l = ŷk2l = ŵi1k1l = ŵi2k2l = 1 then the sum

n∑
i=1

xil
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is at least 2 contradicting to the appropriate constraint (2). Then the appropriate inequalities
of type (9) are

−xi1k1 − ŷk1l + 2ŵi1k1l ≤ 0, −xi2k2 − ŷk2l + 2ŵi2k2l ≤ 0,

which are equivalent to

−xi1k1 ≤ −1, −xi2k2 ≤ −1 (42)

according to the current value of ŷ, and ŵ. Then the non-zero components of the appropriate
λ vector are as follows. The weight of the equation

n∑
i=1

xil = 1,

and of the two inequalities of (42), and finally of the nonnegativity constraints

−xil ≤ 0 i = 1, 2, ..., n, i 6= i1, i2

are 1. The weight of all other constraint is 0. With this weight the relation (38) is obtained.
At the same time a direction of unboundedness of Problem (16) is determined, which (with
a zero first component) must be added to the set Q. It is easy to check if this case occurs. If
the answer is yes then command in row 22 of the algorithm can be executed without applying
any linear programming solver. The command in row 21 can be temporarily omitted as the
extremal point can be added later to the set Q (with the supplementary component 1). The
explanation is this. The scheme of Benders decomposition does not determine that what is
the order in which the constraints of type (18) must be claimed. The only point is that in
each iteration at least one new constraint must be added to Problem (22).

If there are indices i, k1, k2, l1, l2 such that ŷk1l1 = ŷk2l2 = ŵik1l1 = ŵik2l2 = 1 one can
get the relation (38) in a similar way. It worth to note that this type of infeasibility does
not exists with k = k1 = k2 because then the vector y is not a characteristic vector of a
Hamiltonian circuit.

Case 2. Too few 1’s are allowed. Here it is supposed that Case 1 does not occur. Not all
xil might be 1 as in the case ykl = 1, wikl = 0 xil must be 0. Let P be the set of such pairs.
The elements of P are called prohibited pair of indices. In any feasible solution of the original
problem the matrix x must be such that it contains in each row and in each column exactly
one 1 and all other elements are 0. This requirement can be satisfied only if the maximal
solution of the following matching problem consists of n edges. Let V = {1, 2, ..., n} ∪
{1̂, 2̂, ..., n̂} be the set of vertices. The set of edges is E = {(i, ĵ) | 1 ≤ i, j ≤ n} \ P. König’s
theorem says that a matching of n edges exist if and only if for every nonempty subset S of
{1, 2, ..., n} the relation

|S| ≤ |{ĵ | ∃i ∈ S : (i, ĵ) ∈ E}|

holds.
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The matching problem can be solved by a polynomial algorithm. If the optimal value
is n then Problem (15) has an optimal solution. If Case 1 does not occur then still some
variables xil might be fixed to 1 but no other variable is fixed to 1 in their row, and column.
These fixings must be taken into consideration when the matching problem is solved.

If the optimal value of the matching problem is less than n then the multipliers in (38) are
these. Then there is a nonempty index set S ⊂ {1, 2, ..., n} and another set T ⊂ {1̂, 2̂, ..., n̂}
such that |S| > |T | and ∀ i ∈ S ∀ ĵ ∈ {1̂, 2̂, ..., n̂} \ T : (i, ĵ) 6∈ E . The multipliers of the
equations (1) belonging to indices i 6∈ S are 1. The multipliers of equations (2) belonging
to an index ĵ 6∈ T are -1. The current form of the constraints (9) for prohibited pair, i.e. if
ykl = 1 and wikl = 0, is xil ≤ 0. As all pair with (i, ĵ) with i ∈ S and ĵ 6∈ T are prohibited,
therefore the multipliers of all such constraints of type (9) are 1. Finally the multipliers of
the nonnegativity constraints of variables xiĵ with i 6∈ S and ĵ ∈ T are 1. The multipliers
of all other constraints are 0.

Thus Problem (15) or equivalently (34β) can be handled during the algorithm as follows:
- At first Case 1 type of infeasibilities are eliminated.
-Then Problem (36) is reduced according to which xil’s must be 1. The reduced problem

is solved with the following modified objective function (−d̂T )x, where

−d̂il =

{
−dil if (i, l) 6∈ P
−∞ if (i, l) ∈ P .

Thus an assignment problem is obtained and it can be solved by the some combinatorial
algorithm. If the optimal value is finite then it is the optimal value of the current Problem
(36). Optimal solution can be generated e.g. via complementary slackness. If the optimal
value is −∞ then Case 2 type of infeasibility occurs and a direction of unboundedness is
obtained.
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