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Discrete Moment Problems with
Distributions Known to be Unimodal

Ersoy Subasi Mine Subasi András Prékopa

Abstract.Discrete moment problems with finite, given supports and distributions
known to be unimodal, are formulated and used to obtain sharp lower and upper
bounds for expectations of higher order convex functions of discrete random vari-
ables as well as probabilities of the union of events. The bounds are based on the
knowledge of some of the power moments of the random variables involved, or the
binomial moments of the number of events which occur. The bounding problems
are formulated as LP’s and dual feasible basis structure theorems as well as the
application of the dual method of linear programming provide us with the results.
Applications in PERT and reliability are presented.
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1 Introduction

Let ξ be a random variable, the possible values of which are known to be the nonnegative
numbers z0 < z1 < ... < zn. Let pi = P (ξ = zi), i = 0, 1, ..., n. Suppose that these
probabilities are unknown but either the power moments µk = E(ξk), k = 1, ..., m or the

binomial moments Sk = E

[(
ξ
k

)]
, k = 1, ..., m, where m < n, are known.

The starting points of our investigation are the following linear programming problems

min(max)
n∑

i=0

f(zi)pi

subject to

n∑
i=0

zk
i pi = µk , k = 0, 1, ..., m (1.1)

pi ≥ 0 , i = 0, 1, ..., n

and

min(max)
n∑

i=0

f(zi)pi

subject to

n∑
i=0

(
zi

k

)
pi = Sk , k = 0, 1, ..., m (1.2)

pi ≥ 0 , i = 0, 1, .., n

where µ0 = S0 = 1.
Problems (1.1) and (1.2) are called the power and binomial moment problems, respec-

tively and have been studied extensively in [11, 12, 13, 14, 2]. The two problems can be
transformed into each other by the use of a simple linear transformation (see [15], Section
5.6).

Note that if the binomial moment problem has feasible solution, then there exists a
probability space and events A1, ..., An such that S1, ..., Sm are their binomial moments. In
fact, we can take, as sample space, the set of all n-vectors with 0-1 components, form a
2n × n matrix with them and define Ai as the set of those rows of the matrix which have
1’s in the ith column, i = 1, ..., n. Then, assign pk as probability, to the set of those rows
in which the number of 1’s is k, further, split pk arbitrarily among the elements within that
set, k = 1, ..., n. The obtained events have the required property.

In this paper we specialize problems (1.1) and (1.2) in the following manner. We will
alternatively use the notation fk instead of f(zk).
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(1) In case of problem (1.1) we assume that the function f has positive divided differences
of order m + 1, where m is some fixed nonnegative integer satisfying 0 ≤ m ≤ n. The
two optimum values of problem (1.1) provide us with sharp lower and upper bounds
for E[f(ξ)].

(2) In case of problem (1.2) we assume that zi = i, i = 0, ..., n and f0 = 0, fi = 1, i =
1, ..., n. The problem can be used in connection with arbitrary events A1, ..., An, to
obtain sharp lower and upper bounds for the probability of the union. In fact, if we
define

Sk =
∑

1≤i1<...<ik≤n

P (Ai1 ...Aik), k = 1, ..., n,

then by a well-known theorem (see, e.g., [15]) we have the equation

Sk = E

[(
ξ
k

)]
, k = 1, ..., n, (1.3)

where ξ is the number of those events which occur. The equality constraints in (1.2) for
k = 1, ..., m are just the same as the equations in (1.3) for k = 1, ..., m and the objective
function is the probability of ξ ≥ 1 under the distribution p0, ..., pn. The distribution,
however, is allowed to vary subject to the constraints, hence the two optimum values
of problem (1.2) provide us with the best possible lower and upper bounds for the
probability P (ξ ≥ 1), given S1, ..., Sm.

For small m values (m ≤ 4) closed form bounds are presented in the literature. For power
moment bounds see [14, 15]. Bounds for the probability of the union have been obtained by
Fréchet [4], when m = 1, Dawson and Sankoff [3], when m = 2, Kwerel [9], when m ≤ 3,
Boros and Prékopa [2], when m ≤ 4. In the last two papers bounds for the probability that
at least r events occur, are also presented. We call a probability bound of order m if joint
probabilities of m events, but not more than m events are used in it. For other closed form
probability bounds see [6, 7, 15]. In [11, 12, 13, 14] Prékopa showed that the probability
bounds based on the binomial and power moments of the number of events that occur, out of
a given collection A1, ..., An, can be obtained as optimum values of discrete moment problems
(DMP). He also showed that for arbitrary m values simple dual algorithms solve problems
(1.1) and (1.2) if f is of type (1) or (2) (and even for other objective function types).

In this paper we formulate and use moment problems with given finite supports and with
unimodal distributions to obtain sharp lower and upper bounds for expectations of higher
order convex functions of discrete random variables and for the probability that at least one
out of n events occurs. We assume that the probability distribution {pi} is unimodal with
a known modus (Type 1) and pay attention to the special cases when it is increasing (Type
2) or decreasing (Type 3). The reasoning goes along the lines presented in the above cited
papers by Prékopa.

In Section 2 some basic notions and theorems are given. In Section 3 we use the dual
feasible basis structure theorems in [12, 14] to obtain sharp bounds for E[f(ξ)] in case of
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problems, where the first or the first two moments are known. In Section 4 we present a dual
feasible basis structure theorem and give closed form bounds for P (ξ ≥ 1) in case of problems,
where the first two moments are known. In Section 5 we give numerical examples to compare
the bounds obtained by the binomial moment problem without shape information, and the
bounds obtained by the problems: Type 1, Type 2 and Type 3. The results show that the
use of the shape constraint significantly improves on the bounds. In Section 6 we present
two examples for the application of our bounding technique.

2 Basic Notions and Theorems

Let f be a function on the discrete set Z = {z0, ..., zn}, z0 < z1 < ... < zn. The first order
divided differences of f are defined by

[zi, zi+1]f =
f(zi+1)− f(zi)

zi+1 − zi

, i = 0, 1, ..., n− 1.

The kth order divided differences are defined recursively by

[zi, ..., zi+k]f =
[zi+1, ..., zi+k]f − [zi, ..., zi+k−1]f

zi+1 − zi

, k ≥ 2.

The function f is said to be kth order convex if all of its kth order divided differences are
positive. For further information about divided differences see [8, 14].

The following two results are due to Prékopa [12, 14].

Theorem 1. Suppose that all (m+1)st order divided differences of the function f(z), z ∈
{z0, z1, ..., zn} are positive. Then, in problems (1.1) and (1.2) all bases are dual nondegenerate
and the dual feasible bases have the following structures, presented in terms of the subscripts
of the basic vectors:

m + 1 even m + 1 odd

min problem {j, j + 1, ..., k, k + 1} {0, j, j + 1, ..., k, k + 1}
max problem {0, j, j + 1, ..., k, k + 1, n} {j, j + 1, ..., k, k + 1, n}

where in all parentheses the numbers are arranged in increasing order.

Consider the following problem

min(max) cT x

subject to (2.1)

Ax = b , x ≥ 0

where A is an m × n matrix, c and x are n-component vectors and b is an m-component
vector, where m < n.
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Theorem 2. Suppose that all minors of order m from A and all minors of order m+1 from(
A
cT

)
are positive. Then, the assertions of Theorem 1 hold true.

Remark. The assumptions in Theorem 12.2 and 12.3 in [12] are slightly different than the
ones in Theorem 2, but from the proofs it is obvious that the above theorem holds true.

3 The Case of the Power Moment Problem

In this section we consider the power moment problem (1.1) for the cases of m = 1, 2. We
give lower and upper bound formulas for E[f(ξ)] for three problem types: the sequence of
probabilities p0, ..., pn is (1) unimodal with a known modus, (2) increasing, (3) decreasing.

3.1 TYPE 1: The Case of a Unimodal Distribution

We assume that the distribution is unimodal with a known modus zk, 1 < k < n, i.e.,
p0 ≤ ... ≤ pk−1 ≤ pk ≥ pk+1 ≥ ... ≥ pn. We also assume that f has positive divided
differences of order m + 1.

First, we remark that there are two possible representations of problem (1.1) with the
shape constraint. In the first one, that we call the forward representation, we introduce the
variables vi, i = 0, 1, ..., n and obtain:

p0 = v0 , p1 = v0 + v1 , ... , pk = v0 + ... + vk

pk+1 = vk+1 + ... + vn , pk+2 = vk+2 + ... + vn , ... , pn = vn . (3.1)

In the second one, that we call the backward representation, only the representation of pk is
different and it is: pk = vk + ... + vn.

The forward representation of problem (1.1), with the additional information regarding
p0, ..., pn, is the following:

min(max)
k∑

i=0

(fi + ... + fk)vi +
n∑

i=k+1

(fk+1 + ... + fi)vi

subject to

k∑
i=0

(ai + ... + ak)vi +
n∑

i=k+1

(ak+1 + ... + ai)vi = b (3.2)

v0 + ... + vk − vk+1 − ...− vn ≥ 0 (3.2a)

vi ≥ 0 , i = 0, 1, ..., n .
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In the backward representation the problem is given as follows:

min(max)
k−1∑
i=0

(fi + ... + fk−1)vi +
n∑

i=k

(fk + ... + fi)vi

subject to

k−1∑
i=0

(ai + ... + ak−1)vi +
n∑

i=k

(ak + ... + ai)vi = b (3.3)

vk + ... + vn − v0 − ...− vk−1 ≥ 0 (3.3a)

vi ≥ 0 , i = 0, 1, ..., n .

The general method that we can apply to solve problem (3.2) (or (3.3)) is the following.
Relax the problem by removing the constraint (3.2a) (or (3.3a)) and solve the relaxed prob-
lem. If m is small, then the optimum values can be obtained in closed forms. Otherwise,
the dual method of linear programming, presented in [14, Section 4], solve the problem. In
both cases primal-dual feasible bases are obtained. Now, looking at problem (3.2) (or (3.3))
prescribe (3.2a) (or (3.3a)) as additional constraint and use the dual method to reoptimize
the problem. We also remark that if we obtain pk ≥ pk+1 (pk−1 ≤ pk) in the optimal solutions
of the first (second) relaxed problem, then reoptimization is not needed.

We do not have dual feasible basis structure theorems for problems (3.2) and (3.3) but
we can derive one for the relaxed problems, i.e., for the problems without the constraints
(3.2a) and (3.3a), respectively.

Note that if we designate the optimum values of problem (3.2) (or (3.3)) as minopt and
maxopt and the optimum values of the relaxed problem as min′opt and max′opt, then we have
min′opt ≤ minopt ≤ maxopt ≤ max′opt.

Theorem 3. If the constraints (3.2a) and (3.3a) are removed from problems (3.2) and (3.3),
respectively, then the matrix Ã of the equality constraints and the coefficient vector f̃ of the
objective function satisfy the conditions of Theorem 2.

Proof. We prove the assertion in case of problem (3.2). Take an (m+2)× (m+2) submatrix

from
(

Ã

f̃T

)
. It may be entirely from the first k columns or from the last n−k columns or in a

mixed manner. In all cases we can apply a column subtraction procedure such that the result-
ing matrix has the following property: if Ii = {j | aj is a term in the sum in the ith column}, i =
1, ..., m + 2, then for any pair It, Iu, t < u we have that all elements in It are smaller than
any of the elements in Iu. This implies that the determinant of resulting matrix splits into
the sum of positive determinants since f has all positive divided differences of order m + 1.
The same column subtraction procedure can be applied to show that any (m + 1)× (m + 1)
minor of Ã is positive since (a0, a1, ..., an) is a Vandermonde matrix.

The proof of the assertion in case of problem (3.3) can be done similarly.
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The bounds for E[f(ξ)] in case of problem (3.2)
Below we present closed form bounds for the second relaxed problem, i.e., problem (3.2)

without the additional constraint (3.2a), when m = 1, 2.
Case 1. Let m = 1. Since m + 1 is even, by the use of Theorem 1, any dual feasible basis
of the minimization problem, that we designate by Bmin, is of the form

Bmin = {j, j + 1}, 0 ≤ j ≤ n− 1 .

Similarly, by Theorem 1, the only dual feasible basis of the maximization problem, des-
ignated by Bmax, is obtained as

Bmax = {0, n}.
Since Bmax is the only dual feasible basis it must also be primal feasible (see, e.g.: [16]).

Bmin is primal feasible if j satisfies the following condition:

∑k
t=j zt

k − j + 1
≤ µ1 ≤

∑k
t=j+1 zt

k − j
if j ≤ k − 1 ; (3.4)

∑j
t=k+1 zt

j − k
≤ µ1 ≤

∑j+1
t=k+1 zt

j − k + 1
if j ≥ k + 1 ; (3.5)

zk ≤ µ1 ≤ zk+1 if j = k . (3.6)

Let us introduce the notations:

α2
i,j = (n− j)

j∑
t=i

z2
t − (j − i + 1)

n∑
t=j+1

z2
t , αi,j = (n− j)

j∑
t=i

zt − (j − i + 1)
n∑

t=j+1

zt ,

Σ2
i,j = i

j∑
t=i

z2
t − (j − i + 1)

i−1∑
t=0

z2
t , Σi,j = i

j∑
t=i

zt − (j − i + 1)
i−1∑
t=0

zt ,

σ2
i,j =

j∑
t=i

z2
t − (j − i + 1)z2

i−1 , σi,j =

j∑
t=i

zt − (j − i + 1)zi−1 , (3.7)

γ2
i,j =

j∑
t=i

zt − (j − i + 1)z2
j+1 , γi,j =

j∑
t=i

zt − (j − i + 1)zj+1 .

The lower bound for E[f(ξ)] is given as follows:

• If j ≤ k − 1 and (3.4) is satisfied, then we have

∑k
t=j+1(fjzt − zjft)− µ1

[
(k − j)fj −

∑k
t=j+1 ft

]

σj+1,k

≤ E[f(ξ)] ; (3.8)
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• if j ≥ k + 1 and (3.5) is satisfied, then we have

∑j
t=k+1(fj+1zt − zj+1ft)− µ1

[∑j
t=k+1 ft − (k − j)fj+1

]

γk+1,j

≤ E[f(ξ)] ; (3.9)

• if j = k and (3.6) is satisfied, then we have

zk+1 − µ1

zk+1 − zk

fk +
µ1 − zk

zk+1 − zk

fk+1 ≤ E[f(ξ)] . (3.10)

The upper bound for E[f(ξ)] is the following:

E[f(ξ)] ≤
∑n

t=k+1 zt − (n− k)µ1

Σk+1,n

k∑
t=0

ft +
(k + 1)µ1 −

∑k
t=0 zt

Σk+1,n

n∑

t=k+1

ft . (3.11)

Here σi,j, γi,j, Σi,j are the values in (3.7).
Below we present the closed form bounds for the case of m = 2.

Case 2. Let m = 2. In this case we assume that the third order divided differences of f are
positive. The bounds for E[f(ξ)] are based on the knowledge of µ1 and µ2. Since m + 1 is
odd, by the use of Theorem 1, any dual feasible basis for the minimization or maximization
problem, respectively, in (3.2), without the additional constraint (3.2a), is of the form

Bmin = {0, i, i + 1} and Bmax = {j, j + 1, n},

where 1 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 2.
The basis Bmin is primal feasible if i satisfies the following condition:

• If i ≤ k − 1, then
Σ2

i,k

Σi,k

≤ (k + 1)µ2 −
∑k

t=0 z2
t

(k + 1)µ1 −
∑k

t=0 zt

≤ Σ2
i+1,k

Σi+1,k

,

[
(k − i + 1)Σ2

i+1,k − (k − i)Σ2
i,k

]
[
(k + 1)µ1 −

k∑
t=0

zt

]
(3.12)

− [(k − i + 1)Σi+1,k − (k − i)Σi,k]

[
(k + 1)µ2 −

k∑
t=0

z2
t

]
≤ Σi,kΣ

2
i+1,k − Σ2

i,kΣi+1,k ;

• if i ≥ k + 1, then

Σ2
k+1,i

Σk+1,i

≤ (k + 1)µ2 −
∑k

t=0 z2
t

(k + 1)µ1 −
∑k

t=0 zt

≤ Σ2
k+1,i+1

Σk+1,i+1

,
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[
(i− k)Σ2

k+1,i+1 − (i− k + 1)Σ2
k+1,i

]
[
(k + 1)µ1 −

k∑
t=0

zt

]
(3.13)

− [(i− k)Σk+1,i+1 − (i− k + 1)Σk+1,i]

[
(k + 1)µ2 −

k∑
t=0

z2
t

]
≤ Σk+1,iΣ

2
k+1,i+1−Σ2

k+1,iΣk+1,i+1 ;

• if i = k, then
γ2

0,k−1

γ0,k−1

≤ (k + 1)µ2 −
∑k

t=0 z2
t

(k + 1)µ1 −
∑k

t=0 zt

≤ γ2
0,k

γ0,k

,

(
γ2

0,k − γ2
0,k−1

)
[
(k + 1)µ1 −

k∑
t=0

zt

]
− (γ0,k − γ0,k−1)

[
(k + 1)µ2 −

k∑
t=0

z2
t

]
(3.14)

≤ γ0,k−1γ
2
0,k − γ2

0,k−1γ0,k ,

where Σi,j, Σ2
i,j, γi,j, γ2

i,j are defined as in (3.7).
The basis Bmax is primal feasible if j satisfies the following condition:

• If j ≤ k − 1, then

α2
j,k

αj,k

≤ (n− k)µ2 −
∑n

t=k+1 z2
t

(n− k)µ1 −
∑n

t=k+1 zt

≤ α2
j+1,k

αj+1,k

,

[
(k − j + 1)α2

j+1,k − (k − j)α2
j,k

]
[
(n− k)µ1 −

n∑

t=k+1

zt

]
(3.15)

− [(k − j + 1)αj+1,k − (k − j)αj,k]
[
(n− k)µ2 −

∑n
t=k+1 z2

t

] ≤ αj,kα
2
j+1,k − α2

j,kαj+1,k ;

• if j ≥ k + 1, then

α2
k+1,j

αk+1,j

≤ (n− k)µ2 −
∑n

t=k+1 z2
t

(n− k)µ1 −
∑n

t=k+1 zt

≤ α2
k+1,j+1

αk+1,j+1

,

[
(j − k)α2

k+1,j+1 − (j − k + 1)α2
k+1,j

]
[
(n− k)µ1 −

n∑

t=k+1

zt

]
(3.16)

− [(j − k)αk+1,j+1 − (j − k + 1)αk+1,j]

[
(n− k)µ2 −

n∑

t=k+1

z2
t

]

≤ αk+1,jα
2
k+1,j+1 − α2

k+1,jαk+1,j+1 ;
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• if j = k, then
σ2

k+1,n

σk+1,n

≤ (n− k)µ2 −
∑n

t=k+1 z2
t

(n− k)µ1 −
∑n

t=k+1 zt

≤ σ2
k+2,n

σk+2,n

,

(
σ2

k+2,n − σ2
k+1,n

)
[
(n− k)µ1 −

n∑

t=k+1

zt

]
− (σk+2,n − σk+1,n)

[
(n− k)µ2 −

n∑

t=k+1

z2
t

]

≤ σk+1,nσ2
k+2,n − σ2

k+1,nσk+2,n , (3.17)

where σi,j, σ2
i,j, αi,j, α2

i,j are defined as in (3.7).

We have the following lower bound for E[f(ξ)]:

• If i ≤ k − 1 and conditions (3.12) are satisfied, then

1
k+1

∑k
t=0 ft +

Σ2
i+1,k[(k+1)µ1−

Pk
t=0 zt]−Σi+1,k[(k+1)µ2−

Pk
t=0 z2

t ]

Σi,kΣ2
i+1,k−Σi+1,kΣ2

i,k

[∑k
t=i ft −

Pk
t=0 ft

k+1

]

+
Σi,k[(k+1)µ2−

Pk
t=0 z2

t ]−Σ2
i,k[(k+1)µ1−

Pk
t=0 zt]

Σi,kΣ2
i+1,k−Σi+1,kΣ2

i,k

[∑k
t=i+1 ft −

Pk
t=0 ft

k+1

]
;

(3.18)

• if i ≥ k + 1 and conditions (3.13) are satisfied, then

1
k+1

∑k
t=0 ft +

Σ2
k+1,i+1[(k+1)µ1−

Pk
t=0 zt]−Σk+1,i+1[(k+1)µ2−

Pk
t=0 z2

t ]

Σk+1,iΣ
2
k+1,i+1−Σ2

k+1,iΣk+1,i+1

[∑i
t=k+1 ft − (i−k)

Pk
t=0 ft

k+1

]

+
Σk+1,i[(k+1)µ2−

Pk
t=0 z2

t ]−Σ2
k+1,i+1[(k+1)µ1−

Pk
t=0 zt]

Σk+1,iΣ
2
k+1,i+1−Σ2

k+1,iΣk+1,i+1

[∑i+1
t=k+1 ft − (i−k+1)

Pk
t=0 ft

k

]
;

(3.19)

• if i = k and conditions (3.14) are satisfied, then

1
k+1

∑k
t=0 ft +

γ2
0,k[(k+1)µ1−

Pk
t=0 zt]−γ0,k[(k+1)µ2−

Pk
t=0 z2

t ]

γ0,k−1γ2
0,k−γ0,kγ2

0,k−1

[
fk −

Pk
t=0 ft

k+1

]

+
γ0,k−1[(k+1)µ2−

Pk
t=0 z2

t ]−γ2
0,k−1[(k+1)µ1−

Pk
t=0 zt]

γ0,k−1γ2
0,k−γ0,kγ2

0,k−1

[
fk+1 −

Pk
t=0 ft

k+1

]
.

(3.20)

The upper bound for E[f(ξ)] is given as follows:

• If j ≤ k − 1 and conditions (3.15) are satisfied, then
1

n−k

∑n
t=k+1 ft

+
α2

j+1,k[(n−k)µ1−
Pn

t=k+1 zt]−αj+1,k[(n−k)µ2−
Pn

t=k+1 z2
t ]

αj,kα2
j+1,k−αj+1,kα2

j,k

[∑k
t=j ft − (k−j+1)

Pn
t=k+1

n−k

]

+
αj,k[(n−k)µ2−

Pn
t=k+1 z2

t ]−α2
j,k[(n−k)µ1−

Pn
t=k+1 zt]

αj,kα2
j+1,k−αj+1,kα2

j,k

[∑k
t=j+1 ft − (k−j)

Pn
t=k+1

n−k

]
;

(3.21)
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• if j ≥ k + 1 and conditions (3.16) are satisfied, then
1

n−k

∑n
t=k+1 ft

+
α2

k+1,j+1[(n−k)µ1−
Pn

t=k+1 zt]−αk+1,j+1[(n−k)µ2−
Pn

t=k+1 z2
t ]

αk+1,jα2
k+1,j+1−αk+1,j+1α2

k+1,j

[∑j
t=k+1 ft − (j−k)

Pn
t=k+1

n−k

]

+
αk+1,j [(n−k)µ2−

Pn
t=k+1 z2

t ]−α2
k+1,j [(n−k)µ1−

Pn
t=k+1 zt]

αk+1,jα2
k+1,j+1−αk+1,j+1α2

k+1,j

[∑j+1
t=k+1 ft − (j−k+1)

Pn
t=k+1

n−k

]
;

(3.22)

• if j = k and conditions (3.17) are satisfied, then

1
n−k

∑n
t=k+1 ft +

σ2
k+2,n[(n−k)µ1−

Pn
t=k+1 zt]−σk+2,n[(n−k)µ2−

Pn
t=k+1 z2

t ]

σk+1,nσ2
k+2,n−σ2

k+1,nσk+2,n

[
fk −

Pn
t=k+1 ft

n−k

]

+
σk+1,n[(n−k)µ2−

Pn
t=k+1 z2

t ]−σ2
k+1,n[(n−k)µ1−

Pn
t=k+1 zt]

σk+1,nσ2
k+2,n−σ2

k+1,nσk+2,n

[
fk+1 −

Pn
t=k+1 ft

n−k

]
,

(3.23)

where Σi,j , Σ2
i,j , σi,j , σ2

i,j , γi,j , γ2
i,j , αi,j and α2

i,j are defined as in (3.7).

If we replace k by k−1 in all formulas given above, we obtain the primal feasibility conditions
and the bounds in case of the second relaxed problem.

We remark that the monotonic cases are also unimodal cases. However, they can be han-
dled without additional constraint (3.2a) (or (3.3a)). Since the reasoning and the formulas
are considerably simpler than the ones in the general case, below we present the sharp bound
formulas separately for these two cases.

3.2 TYPE 2: The Case of an Increasing Distribution

In this section we assume that the probability distribution is increasing, i.e., p0 ≤ ... ≤ pn

and f has positive divided differences of order m+1. If we introduce variables vi, i = 0, 1..., n
as follows:

v0 = p0, v1 = p1 − p0, ..., vn = pn − pn−1 ,

then problem (1.1), with the additional information regarding p0, ..., pn, can be written as

min(max){(f0 + ... + fn)v0 + (f1 + ... + fn)v1 + ... + fnvn}
subject to

(a0 + ... + an)v0 + (a1 + ... + an)v1 + ... + anvn = b (3.24)

vi ≥ 0 , i = 0, 1, ..., n

where ai = (1, zi, ..., z
m
i )T , i = 0, ..., n and b = (1, µ1, ..., µm)T .

It is easy to show that all minors of order m+1 from the matrix of the equality constraints
and all minors of order m + 2 from the matrix with the objective function coefficients in the
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last row, are positive. So, we can use Theorem 1 to obtain dual feasible bases for problem
(3.24).

If m is small, then the optimum values of (3.24) can be given in closed forms, otherwise
the dual method of linear programming, presented in [14, Section 4], can be used. Below we
present the sharp bounds for E[f(ξ)] for the case of m = 1, 2.
Case 1. Let m = 1. If we take k = n in (3.4) and (3.8), then we can obtain the primal
feasibility condition for the dual feasible basis Bmin and lower bound for E[f(ξ)], respectively.

The basis Bmax is the only dual feasible basis, hence it must also be primal feasible. In
this case we get the following upper bound for E[f(ξ)]:

E[f(ξ)] ≤ µ1 − zn

γ0,n−1

n∑
t=0

ft +
(n + 1)µ1 −

∑n
t=0 zt

γ0,n−1

fn . (3.25)

Case 2. Let m = 2. If we take k = n in formulas (3.12) and (3.18), then we can obtain the
primal feasibility conditions for Bmin and the sharp lower bound for E[f(ξ)], respectively.
The basis Bmax is primal feasible if the following relations hold:

γ2
j,n−1

γj,n−1

≤ µ2 − z2
n

µ1 − zn

≤ γ2
j+1,n−1

γj+1,n−1

,

[
(n− j + 1)γ2

j+1,n−1 − (n− j)γ2
j,n−1

]
(µ1−zn)−[(n− j + 1)γj+1,n−1 − (n− j)γj,n−1] (µ2−z2

n)

≤ γj,n−1γ
2
j+1,n−1 − γ2

j,n−1γj+1,n−1 . (3.26)

In this case we have the following sharp upper bound for E[f(ξ)]:

E[f(ξ)] ≤ (µ1 − zn)γ2
j+1,n−1 − (µ2 − z2

n)γj+1,n−1

γj,n−1γ2
j+1,n−1 − γj+1,n−1γ2

j,n−1

[
n∑

s=j

fs − (n− j + 1)fn

]

+
(µ2 − z2

n)γj,n−1 − (µ1 − zn)γ2
j,n−1

γj,n−1γ2
j+1,n−1 − γj+1,n−1γ2

j,n−1

[
n∑

s=j+1

fs − (n− j)fn

]
, (3.27)

where Σi,j, Σ2
i,j, γi,j, γ2

i,j are defined as in (3.7).

3.3 TYPE 3: The Case of a Decreasing Distribution

Now, we assume that the probabilities p0, ..., pn are unknown, but satisfy the inequalities:
p0 ≥ ... ≥ pn. Let us introduce the variables vi, i = 0, 1, ..., n as follows:

v0 = p0 − p1, ..., vn−1 = pn−1 − pn, vn = pn.

If we write up problem (1.1), with the additional shape constraint, by the use of v0, ..., vn,
then we obtain
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min(max){f0v0 + (f0 + f1)v1 + ... + (f0 + ... + fn)vn}
subject to

a0v0 + (a0 + a1)v1 + ... + (a0 + ... + an)vn = b (3.28)

vi ≥ 0 , i = 0, 1, ..., n

where ai = (1, zi, ..., z
m
i )T , i = 0, ..., n and b = (1, µ1, ..., µm)T .

One can easily show that problem (3.28) satisfies the conditions of Theorem 2. For small
m values the optimum values of problem (3.28) can be given in closed forms, otherwise the
dual method of linear programming, presented in [14, Section 4], can be applied.

Below we present the sharp bounds for E[f(ξ)] for the case of m = 1, 2.
Case 1. Let m = 1. If we take k + 1 = 0 in (3.5) and (3.9), then we obtain the primal
feasibility condition for Bmin and the sharp lower bound for E[f(ξ)], respectively.

Since Bmax is the only dual feasible basis, it follows that it is optimal. In this case we
obtain the following upper bound for E[f(ξ)]:

(n + 1)µ1 −
∑n

t=0 zt

(n + 1)z0 −
∑n

t=0 zt

f0 +
µ1 − z0

(n + 1)z0 −
∑n

t=0 zt

n∑
t=0

ft . (3.29)

Case 2. Let m = 2. The basis Bmin is primal feasible if i is determined by the inequalities:

σ2
1,i

σ1,i

≤ µ2 − z2
0

µ1 − z0

≤ σ2
1,i+1

σ1,i+1

,

(
(i + 1)σ2

1,i+1 − (i + 2)σ2
1,i

)
(µ1 − z0)− ((i + 1)σ1,i+1 − (i + 2)σ1,i) (µ2 − z2

0)

≤ σ1,iσ
2
1,i+1 − σ1,iσ1,i+1. (3.30)

We have the following lower bound for E[f(ξ)]:

(µ1 − z0)σ
2
1,i+1 − (µ2 − z2

0)σ1,i+1

σ2
1,i+1σ1,i − σ1,i+1σ2

1,i

[
i∑

t=1

ft − if0

]
+

(µ2 − z2
0)σ1,i − (µ1 − z0)σ

2
1,i

σ2
1,i+1σ1,i − σ1,i+1σ2

1,i

[
i+1∑
t=1

ft − (i + 1)f0

]
.

(3.31)
The primal feasibility conditions for Bmax and the sharp upper bound for E[f(ξ)] can be

obtained by taking k + 1 = 0 in (3.16) and (3.22), respectively.

4 The Case of the Binomial Moment Problem

In case of the binomial moment problem (1.2) we look at the special case, where

zi = i, i = 0, ..., n , f0 = 0, f1 = ... = fn = 1 .
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We give lower and upper bounds for the probability that at least one out of n events occurs
for the case of m = 2. We look at problem (1.2), but the constraints are supplemented by
shape constraints of the unknown probability distribution p0, ..., pn.

In the following three subsections we use the same shape constraints that we have used
in Section 3.1-3.3.

4.1 TYPE 1: The Case of a Unimodal Distribution

We assume that the distribution is unimodal with a known modus, i.e., we consider the
following problem:

min(max)
n∑

i=1

pi

subject to

n∑
i=0

(
i
j

)
pi = Sj , j = 0, 1, ..., m (4.1)

p0 ≤ ... ≤ pk−1 ≤ pk ≥ pk+1 ≥ ... ≥ pn

pi ≥ 0 , i = 0, 1, .., n

where Sj, j = 0, 1...,m are defined as in Section 1.
As in case of the power moment problem, here too there are two representations of

problem (4.1). The forward representation is the following:

min(max) {kv0 +
k∑

i=1

(k − i + 1)vi +
n∑

i=k+1

(i− k)vn}

subject to

k∑
i=0

(k − i + 1)vi +
n∑

i=k+1

(i− k)vi = 1 (4.2)

k∑
i=0

[(
i
j

)
+ ... +

(
k
j

)]
vi +

n∑

i=k+1

[(
k + 1

j

)
+ ... +

(
i
j

)]
vi = Sj , j = 1, ..., m

v0 + ... + vk − vk+1 − ...− vn ≥ 0 (4.2a)

vi ≥ 0 , i = 0, ..., n .
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The backward representation of problem (4.1) is given as:

min(max) {(k − 1)v0 +
k−1∑
i=1

(k − i)vi +
n∑

i=k

(i− k + 1)vn}

subject to

k−1∑
i=0

(k − i)vi +
n∑

i=k

(i− k + 1)vi = 1 (4.3)

k−1∑
i=0

[(
i
j

)
+ ... +

(
k − 1

j

)]
vi +

n∑

i=k

[(
k
j

)
+ ... +

(
i
j

)]
vi = Sj , j = 1, ..., m

vk + ... + vn − v0 − ...− vk−1 ≥ 0 (4.3a)

vi ≥ 0 , i = 0, ..., n .

If m is small, then the optimum values of (4.2) and (4.3), without the additional con-
straints (4.2a) and (4.3a), can be given in closed forms, otherwise dual methods of linear
programming, presented in [14, Section 4], can be used as we have discussed it in Section
3.1.

We take problem (4.2), without the additional constraint (4.2a), and present closed form
bounds for the probability that at least one out of n events occurs for the case of m = 2.

If we take into account the equations:

(
j + 1

2

)
−

(
i
2

)
=

(j − i + 1)(i + j)

2
, 2 ≤ i ≤ j ≤ n (4.4)

(
i
2

)
+ ... +

(
j
2

)
=

(j − i + 1)(j2 + ij + i2 − 2i− j)

6
, 2 ≤ i ≤ j ≤ n (4.5)

then we can write the first relaxed problem as follows:

max {kv0 +
k∑

i=1

(k − i + 1)vi +
n∑

i=k+1

(i− k)vn}

subject to

k∑
i=0

(k − i + 1)vi +
n∑

i=k+1

(i− k)vi = 1

k∑
i=0

(k − i + 1)(k + i)vi +
n∑

i=k+1

(i− k)(i + k + 1)vi = 2S1 (4.6)
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k∑
i=0

(k − i + 1)(k2 + ik + i2 − 2i− k)vi +
n∑

i=k+1

(i− k)(i2 + ik + k2 − 1)vi = 6S2

vi ≥ 0 , i = 0, ..., n .

The optimum values of (4.6) provide us with lower and upper bounds for P (ξ ≥ 1), where
the probability distribution is unimodal.

Replacing k by k−1 in problem (4.6) we obtain the second relaxed problem, i.e., problem
(4.3) without the additional constraint (4.3a).

We will characterize the dual feasible bases in both relaxed problems. First we remark
that any basis that does not include v0 produces an objective function value equal to 1. The
following theorem characterizes the dual feasible bases in both relaxed problems.

Theorem 4. Any dual feasible basis in any of the relaxed problems has the following struc-
tures (in terms of the subscripts of the basic vectors):

Minimization problem Maximization problem

Bmin = {0, i, i+1} , 1 ≤ i ≤ n−1 Bmax =

{ {0, 1, n}
{s, t, u} , 1 ≤ s < t < u ≤ n

The basis {s, t, u}, 1 ≤ s < t < u ≤ n, is dual degenerate and all other bases are dual
nondegenerate.

Proof. We prove the assertion in case of problem (4.6). The justification of the structures
corresponding to the second relaxed problem goes along the same line.

It is easy to show that any minor of order 3 from the matrix of equality constraints in
problem (4.6) is positive.

A basis B in the minimization problem (4.6) is said to be dual feasible if the following
inequalities hold:

zp = cT
BB−1ap ≤ cp for any nonbasic p ,

where c is coefficient vector of the objective function. For the maximization problem the
dual feasibility of a basis is defined by the reversed inequalities. A basis B is said to be dual
degenerate if there is at least one nonbasic p such that cp − zp = 0. Since we have

(
1 cT

B

0 B

)(
cp − zp

B−1ap

)
=

(
cp

ap

)
,

the first component of the solution of this equation can be expressed as

cp − zp =
1

|B|

∣∣∣∣
cp cT

B

ap B

∣∣∣∣ .

Hence, the basis B is dual feasible in the minimization (maximization) problem (4.6) if
cp− zp ≥ 0 (cp− zp ≤ 0) for every nonbasic index p. Since |B| is positive, the sign of cp− zp
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is determined by the sign of the other determinant standing on the right hand side of the
above equation.

In case of the minimization problem (4.6) we need to show that cp − zp =
∣∣∣ cp cT

B
ap B

∣∣∣ > 0

for any nonbasic p and it happens if and only if B has the structure given in Theorem 4.
In a similar way, for the case of the maximization problem we can prove that cp − zp =∣∣∣ cp cT

Bmax

ap Bmax

∣∣∣ < 0 for any nonbasic p if and only if Bmax = {0, 1, n}. Finally, Bmax =

{s, t, u}, 1 ≤ s < t < u ≤ n has the property that c0− z0 < 0, cp− zp = 0 for every nonbasic
p 6= 0, hence the basis is degenerate and dual feasible in the maximization problem.

The bounds for P (ξ ≥ 1) in case of problem (4.6)
In the following we consider problem (4.6) and give conditions that ensure the primal

feasibility of a dual feasible basis Bmin = {0, i, i + 1} as well as the corresponding lower
bound formulas for P (ξ ≥ 1).
Case 1. Let 1 ≤ i ≤ k − 1. Bmin = {0, i, i + 1} is primal feasible if

2(k + i− 1)S1 − 6S2 ≥ ki ,

2(k + i− 2)S1 − 6S2 ≤ k(i− 1) , (4.7)

2(k + 2i− 1)S1 − 6S2 ≤ i(2k + i + 1) .

In this case the lower bound, i.e, the optimum value of (4.6) is obtained as follows:

k(i− 1)

(i + 1)(k + 1)
+

2(k + 2i− 1)S1 − 6S2

i(i + 1)(k + 1)
≤ P (ξ ≥ 1) . (4.8)

Case 2. Let k + 1 ≤ i ≤ n− 1. Then the primal feasibility conditions are

2(i + k)S1 − 6S2 ≥ k(i + 1) ,

2(i + k − 1)S1 − 6S2 ≤ ik , (4.9)

2(2i + k + 1)S1 − 6S2 ≤ (i + 2k + 2)(i + 1) ,

and the lower bound formula is the following:

i(k − 1)

k(i + 2)
+

2(2i + k)S1 − 6S2

k(i + 1)(i + 2)
≤ P (ξ ≥ 1) . (4.10)

Case 3. Let i = k. Then Bmin = {0, k, k + 1} is primal feasible if the conditions

4kS1 − 6S2 ≥ k(k + 1) ,

2(2k − 2)S1 − 6S2 ≤ (k − 1)k , (4.11)

6kS1 − 6S2 ≤ 3k(k + 1)
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are satisfied. In this case the lower bound formula is obtained as:

k − 1

k + 2
+

6kS1 − 6S2

(k − 1)k(k + 1)
≤ P (ξ ≥ 1) . (4.12)

In order to obtain upper bound formula we consider the basis Bmax = {0, 1, n} which is
primal feasible if the following conditions are satisfied:

2(n + k)S1 − 6S2 ≤ (k + 1)(n + 1) ,

2(n + k − 1)S1 − 6S2 ≥ nk , (4.13)

(k − 1)S1 ≤ 3S2 .

In this case the upper bound is obtained as:

P (ξ ≥ 1) ≤ 2(n + k)S1 − 6S2

(k + 1)(n + 1)
. (4.14)

It is easy to see that if Bmax = {s, t, u} , 1 ≤ s < t < u ≤ n is optimal, then the upper
bound is equal to 1.
Remark 1. The bounds for P (ξ ≥ 1) in case of the second relaxed problem can be obtained
by taking k = k − 1 in all above formulas.
Remark 2. The first relaxed problem provides us with a better upper bound than the one
obtained by the use of the second relaxed problem if the following condition is satisfied:

3S2 ≤ (n− 1)S1 . (4.15)

Note that the inequality 2S2 ≤ (n− 1)S1 always holds (see, e.g., [15], p. 186).

4.2 TYPE 2: The Case of an Increasing Distribution

Now we assume that the probability distribution is increasing, i.e., p0 ≤ ... ≤ pn. Let us
introduce the variables vi , i = 0, ..., n: v0 = p0, v1 = p1 − p0, ..., vn = pn − pn−1. Taking
into account equations (4.4) and (4.5), problem (1.2), with shape constraint, can be written
as

min(max) {nv0 +
n∑

i=1

(n− i + 1)vi}

subject to
n∑

i=0

(n− i + 1)vi = 1

n∑
i=0

(n− i + 1)(n + i)vi = 2S1
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n∑
i=0

(n− i + 1)(n2 + in + i2 − 2i− n)vi = 6S2

vi ≥ 0 , i = 0, 1, ..., n . (4.16)

Note that the additional constraints (4.2a) and (4.3a) are not needed in case of monotonic
distributions. One can easily show that the dual feasible bases for problem (4.16) are as in
Theorem 4.

We can obtain the primal feasibility conditions for the basis Bmin = {0, i, i + 1} and the
sharp lower bound for P (ξ ≥ 1) by taking k = n in formulas (4.7) and (4.8), respectively.

The basis Bmax = {0, 1, n} is primal feasible if the following relations hold:

2(2n− 1)S1 − 6S2 ≤ n(n + 1) ,

4(n− 1)S1 − 6S2 ≥ n(n− 1) and (n− 1)S1 ≤ 3S2 .

Finally, if the probability distribution is increasing, we have the following upper sharp bound:

P (ξ ≥ 1) ≤ min

{
1,

2(2n− 1)S1 − 6S2

n(n + 1)

}
. (4.17)

4.3 TYPE 3: The Case of a Decreasing Distribution

In this section we assume that the probability distribution is decreasing, i.e., p0 ≥ ... ≥ pn.
Introducing the variables vi , i = 0, ..., n: v0 = p0 − p1, ... , vn−1 = pn−1 − pn, vn = pn,
and taking into account the equation (4.4), problem (1.2), with the shape constraint, can be
written as

min(max)
n∑

i=1

ivi

subject to
n∑

i=0

(i + 1)vi = 1

n∑
i=1

(i + 1)ivi = 2S1 (4.18)

n∑
i=2

(i + 1)i(i− 1)vi = 6S2

v0, ..., vn ≥ 0 .

One can easily show that problem (4.18) satisfies the conditions of Theorem 2. Therefore,
we can use Theorem 1 to obtain sharp lower and upper bounds for P (ξ ≥ 1).
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Since
(

ν
1

)
= ν and

(
ν
2

)
= ν(ν−1)

2
= ν2−ν

2
, substituting µ1 = S1 and µ2 = 2S2 + S1

in the closed bound formulas presented in Section 3.3 for the case of m = 2, we obtain the
following sharp bounds for P (ξ ≥ 1):

2(2i + 1)S1 − 6S2

(i + 1)(i + 2)
≤ P (ξ ≥ 1) ≤ nj

(n + 1)(j + 2)
+

2(2j + n + 1)S1 − 6S2

(n + 1)(j + 1)(j + 2)
, (4.19)

where i and j are determined by the following inequalities:

i− 1 ≤ 3S2

S1

≤ i ,

2(n + j)S1 − 6S2 ≤ n(j + 1) , 2(n + j − 1)S1 − 6S2 ≥ nj

4jS1 − 6S2 ≤ j(j + 1) ,

where 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 2.

5 Numerical Examples

We present four examples to show that if the shape of the distribution is known, then by
the use of our bounding methodology, we can obtain tighter bounds for P (ξ ≥ 1) than the
second order binomial bounds.

Example 1. In order to create example for S1 and S2 we take the following probability
distribution p∗0 = 0.4, p∗1 = 0.3, p∗2 = 0.25, p∗3 = 0.03, p∗4 = 0.02 . With these probabilities
the binomial moments are

S1 =
4∑

i=1

ip∗i = 0.97 and S2 =
4∑

i=2

(
i
2

)
p∗i = 0.46 .

In this case the S1, S2 bounds for P (ξ ≥ 1) are given by the inequalities:

0.51 ≤ P (ξ ≥ 1) ≤ 0.74 .

Now we assume that the probability distribution is decreasing, i.e., p0 ≥ ... ≥ p4. The
optimal bases are Bmin = (a0, a2, a3) and Bmax = (a1, a2, a4).

The following are the improved lower and upper bounds obtained from (4.19):

0.5783 ≤ P (ξ ≥ 1) ≤ 0.6273 .

Example 2. Let n = 5, S1 = 3.95, S2 = 7. Based on S1, S2 we obtain

0.88 ≤ P (ξ ≥ 1) ≤ 1 .

If the distribution is increasing, the optimal bases are Bmin = (a0, a4, a5) and Bmax =
(a0, a1, a5). By the use of the formulas given in (4.17), the improved sharp lower and upper
bounds for P (ξ ≥ 1) are as follows:

0.94 ≤ P (ξ ≥ 1) ≤ 0.97 .
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Example 3. Let n = 10, S1 = 8.393, S2 = 34.625. The sharp S1, S2 bounds for P (ξ ≥ 1)
are obtained as follows:

0.909 ≤ P (ξ ≥ 1) ≤ 1 .

Now assume that the distribution is increasing. The optimal basis for the minimum problem
is Bmin = (a0, a9, a10). We note that Bmax = (a0, a1, a10) is not primal feasible. Thus, the
upper bound for P (ξ ≥ 1) is 1. By the use of the formula (4.17), the improved sharp lower
and upper bounds for P (ξ ≥ 1) are as follows:

0.975 ≤ P (ξ ≥ 1) ≤ 1 .

Example 4. In the following table we present bounds for P (ξ ≥ 1) with and without the
unimodality condition as well as in case of relaxed problems presented in Section 4.1.

Here LB and UB stand for the lower and upper bounds, respectively. The bounds are
obtained as the optimum values of the LP’s given in Section 4.1. In both relaxed problems
the bounds are obtained by the use of the closed form formulas presented in Section 4.1.

In two cases Relaxed Problem 2 provides us with better upper bounds than the ones
obtained by Relaxed Problem 1, as we can see it in lines 3 and 4. In all cases the lower
bounds, corresponding to Relaxed Problem 2, are better than the ones obtained by Relaxed
Problem 1.

6 Applications

We present two examples for the application of our bounding technique, where shape infor-
mation about the unknown probability distribution can be used.
Example 1. Application in PERT

In PERT we frequently concerned with the problem to approximate the expectation or
the values of the probability distribution of the length of the critical path.

In the paper by Prékopa et al. [18] a bounding technique is presented for the c.d.f. of the
critical, i.e., the longest path under moment information. In that paper first an enumeration
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algorithm finds those paths that are candidates to become critical. Then the joint probability
distribution of the path lengths is approximated by a multivariate normal distribution that
serves a basis for the bounding procedure.

In the present example we look at only one path and assume that the random length of
each arc follows beta distribution, as it is usually assumed in PERT. Arc lengths are assumed
to be independent, thus the probability distribution of the path length is the convolution of
beta distributions with different parameters.

The p.d.f. of the beta distribution in the interval (0, 1) is defined as

f(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1, (6.1)

where Γ(.) is the gamma function, Γ(p) =
∫∞
0

xp−1e−xdx, p > 0 . The kth moment of this
distribution can easily be obtained by the use of the equation

∫ 1

0

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1dx = 1 .

In fact, ∫ 1

0

xkf(x)dx =
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

xk+α−1(1− x)β−1dx

=
Γ(α + β)

Γ(α)Γ(β)

Γ(k + α)Γ(β)

Γ(k + α + β)
(6.2)

=
Γ(α + k)Γ(α + k − 1)...Γ(α + 1)

Γ(α + β + k)Γ(α + β + k − 1)...Γ(α + β + 1)
.

If α, β are integers, then, using the relation: Γ(m) = (m− 1)!, the above expression takes
a simple form.

The beta distribution in PERT is defined over a more general interval (a, b) and we define
its p.d.f. as the p.d.f. of a+(b−a)X, where X has p.d.f. given by (6.1). In practical problems
the values a, b, α, β are obtained by the expert estimations of the shortest largest and most
probable times to accomplish the job represented by the arc (see, e.g., [1]).

Let n be the number of arcs in a path and assume that each arc length ξi has beta
distribution with known parameters ai, bi, αi, βi, i = 1, ..., n. Assume that αi ≥ 1, βi ≥
1, i = 1, ..., n. We are interested to approximate the values of the c.d.f. of the path length,
i.e., ξ = ξ1 + ... + ξn.

The analytic form of the c.d.f. cannot be obtained in closed form but we know that the
p.d.f. of ξ is unimodal. In fact, each ξi has logconcave p.d.f., hence the sum ξ also has
logconcave p.d.f. (for the proof of this assertion see, e.g., [15]) and any logconcave function
is also unimodal.

In order to apply our bounding methodology we discretize the distribution of ξ, by subdi-
viding the interval (

∑n
i=1 ai,

∑n
i=1 bi) and handle the corresponding discrete distribution as

unknown, but unimodal such that some of its first m moments are also known. In principle
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any order moment of ξ is known but for practical calculation it is enough to use the first few
moments, at least in many cases, to obtain good approximation to the values of the c.d.f. of
ξ.

The probability functions obtained by the discretizations, using equal length subintervals,
are logconcave sequences. In fact, by a theorem of Fekete [4], the convolution of logconcave
sequences are also logconcave (see, also Prékopa, [15], p.108) and any logconcave sequence
is unimodal in the sense of Section 3.1.

In order to apply our methodology we need to know the modus of the distribution of ξ.
A heuristic method to obtain it is the following. We take the sum of the modi of the terms
in ξ = ξ1 + ... + ξn and then compute a few probabilities around it.

Example 2. Application in Reliability
Let A1, ..., An be independent events and define the random variables X1, ..., Xn as the

characteristic variables corresponding to the above events, respectively, i.e.,

Xi =

{
1 if Ai occurs ,
0 otherwise .

Let pi = P (Xi = 1), i = 1, ..., n. The random variables X1, ..., Xn have logconcave discrete
distributions on the nonnegative integers, consequently the distribution of X = X1 + ...+Xn

is also logconcave on the same set.
In many applications it is an important problem to compute, or at least approximate,

e.g., by the use of bounds, the probability

X1 + ... + Xn ≥ 1 . (6.3)

If I1, ..., IC(n,k) designate the k -element subsets of the set {1, ..., n} and Jl = {1, ..., n}\Il,
l = 1, ..., C(n, k), then we have the equation

P (X1 + ... + Xn ≥ 1) =
n∑

k=r

C(n,k)∑

l=1

∏
i∈Il

pi

∏
j∈Jl

(1− pj) , (6.4)

where C(n, k) =
(

n
k

)
.

If n is large, then the calculation of the probabilities on the right hand side of (6.4)
may be hard, even impossible. However, we can calculate lower and upper bounds for the
probability on the left hand side of (6.4) by the use of the sums:

Sk =
∑

1≤i1<...<ik≤n

pi1 ...pik =

C(n,k)∑

l=1

∏
i∈Il

pi , k = 1, ..., m , (6.5)

where m may be much smaller than n. Since the random variable X1+...+Xn has logconcave,
hence unimodal distribution, we can impose the unimodality condition on the probability
distribution:

P (X1 + ... + Xn = k) , k = 0, ..., n . (6.6)
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Then we solve both the minimization and maximization problems presented in Section 4.1,
to obtain the bounds for the probability (6.3). If m is small, then the bounds can be
obtained by the formulas of Section 4.1. Note that the largest probability (6.5) corresponds
to

kmax =

⌊
(n + 1)

p1 + ... + pn

n

⌋
.

A formula first obtained by C. Jordan (1867) provides us with the probability (6.3), in
terms of the binomial moments Sr, ..., Sn:

P (X1 + ... + Xn ≥ r) =
n∑

k=r

(−1)k−r

(
k − 1
r − 1

)
Sk . (6.7)

However, to compute higher order binomial moments may be extremely difficult, sometimes
impossible. The advantage of our approach is that we use the first few binomial moments
S1, ..., Sm, where m is relatively small and in many cases we can obtain very good bounds.
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