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Abstract. A CIS-graph is defined as a graph whose every maximal clique and
stable set intersect. These graphs have many interesting properties, yet, it seems
difficult to obtain an efficient characterization and/or polynomial-time recognition
algorithm for CIS-graphs. An almost CIS-graph has a unique pair (C, S) of disjoint
maximal clique C' and stable sets S. We conjecture that almost CIS-graphs are
exactly split graphs that have a unique split partition. We prove this conjecture for
a large hereditary class of graphs that contains, for example, chordal graphs and
Ps-free graphs, as well as their complements, etc. We also prove the conjecture in
case |C| = |S| = 2 and show that the vertex-set R = V' \ (C' U S) cannot induce a
threshold graph, although we did not prove that R = (), as the conjecture suggests.
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1 Introduction

By definition [1], every maximal clique C' and every maximal stable set S of a CIS-graph
G intersect. In this case we also say that G has the CIS-property. Otherwise, clearly, there
is a disjoint pair (C,S) in G, which is called a non-CIS-pair. The above characterization
of CIS-graphs is simple but not efficient, since the numbers of maximal cliques and stable
sets of a graph can be exponentially large. CIS-graphs were considered by Zang [5], Deng,
Li, and Zang [3], and Andrade, Boros, and Gurvich [1]. Some necessary and some sufficient
conditions were obtained for the CIS-property to hold, yet, it seems difficult to obtain an
efficient characterization or polynomial recognition algorithm for CIS-graphs. A similar class
of graphs, which might have much simpler structure, was also introduced in [1].

Definition 1 An almost CIS-graph has a unique non-CIS-pair (C,S).

It seems that almost CIS-graphs are closely related to the following simple and well-
known class of graphs. A split graph G admits a partition AU B = V(G), a split partition,
such that A is a clique and B is a stable set. Split graphs are exactly (2Kj, Cy, C5)-free
graphs according to the result of Foldes and Hammer [4]. A split graph may have several
split partitions. For example, Bull (called also A-graph) in Figure 1 has two split partitions,
namely A = {a,b,e}, B={c,d} and A’ = {a,b}, B' = {c,d, e}.

Figure 1: Bull.

If we delete vertex e, then we obtain the split graph P, which has a unique split partition
A ={a,b}, B={c,d}. The sets A and B are a maximal clique and stable set, respectively,
and they are disjoint. It is easy to verify that P, is an almost CIS-graph, while Bull is a
CIS-graph. The following two claims generalize above simple observations.

Proposition 1 [1] Every split graph has at most one non-CIS pair.
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For completeness we reproduce a simple prove from [1].

Proof. Let (A, B) be a split partition of a split graph G, where A is a clique and B is a
stable set. Obviously, a maximal clique C' distinct from A consists of a proper subset of A
and one vertex u € B; respectively, a maximal stable set S distinct from B consists of a
proper subset of B and one vertex v € A. It is easy to see that C' NS = {u} if u and v are
non-adjacent, and C NS = {v} otherwise. O

In other words, every split graph is either CIS or almost CIS. The next claim shows when
the first option takes place.

Proposition 2 A split graph G has more than one split partition if and only if G is a
CIS-graph.

Proof. Let AU B be a split partition of G. By Proposition 1, (A, B) is the only possible
non-CIS-pair (C,S) in G. If, indeed, (A, B) is such a pair then G is an almost CIS-graph,
by the definition. If not, then either clique A or stable set B is not maximal. In this case G
is a CIS-graph. O

Thus, every split graphs with a unique split partition is an almost CIS-graph. It was
conjectured in [1] that the inverse claim holds too.

Conjecture 1 FEvery almost CIS-graph is a split graph with a unique split partition.

In other words, every non-split graph has at least two non-CIS pairs. In contrast, by
Proposition 1, split graphs have at most one. Somewhat surprisingly, this simple would be
characterization of split graphs is not obvious (and, perhaps, even not true). Here we obtain
partial results in its support. In particular, we show that it holds for a hereditary class that
contains many known extensions of cographs and split graphs, for example, Ps-free graphs,
chordal graphs, Cy-free graphs, as well as their complements. We also prove the conjecture
in case |C| = |S| = 2 and show that the vertex-set R = V(G) \ (C' U S) cannot induce a
threshold graph, while the conjecture means that R = ().
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2 Partial results

Figure 2 shows a graph H and its complement H.

H H

Figure 2: The graph H and its complement H.

Using H and H, we define a set Z of graphs.

Definition 2 A graph G belongs to Z if and only if G contains both H and H as induced
subgraphs, and G is minimal with this property.

Here minimality of G' means that every proper induced subgraph of G does not contain
either H or H. Every graph in Z has at least 7 vertices and at most 12 vertices. A vertex-
minimal member of Z is shown in Figure 3.

Figure 3: A minimal member of the set Z.

We shall use Z as the set of minimal forbidden induced subgraphs for a hereditary class.
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We use notation X ~ Y (respectively, X ¢¢ Y) for disjoint subsets X,Y C V(G) in a
graph G to indicate that every vertex of Y is adjacent (respectively, non-adjacent) to every
vertex of Y.

Theorem 1 Conjecture 1 holds for the class P of all Z-free graphs.

Proof. Let G € P be a non-split almost CIS-graph, and let (C,S) be the unique pair
consisting of a maximal clique C disjoint from a maximal stable set S. The set C U S
induces a split graph, therefore there is a vertex u € V(G) \ (C U S). We denote:

C" =C\N(u),
Ct =CnN(u),
57 =5\ N(u),
St = SN Nw),

where N(u) is the neighborhood of u in G. Let L be the set of all vertices z ¢ C' U S that
are non-adjacent to the largest number of vertices in S. Assumption (1): v € L and u is
adjacent to the maximum number of vertices in C' among all vertices z € L.

The set C* U {u} induces a clique which is disjoint from the maximal stable set S. It
implies that there exists a vertex s; € S with s; ~ C*T U {u} [s; is adjacent to all vertices
in C* U {u}]. Clearly, s; € S*. We subdivide C~: C;7 = {z € C~ : z ~ s1} and
Cy ={zeC 1z s}

Similarly, the set S~ U {u} induces a stable set which is disjoint from the maximal clique
C. It implies that there exists a vertex ¢; € C with ¢; # S~ U {u} [¢; is non-adjacent to all
vertices in C U {u}].

Claim 1 ¢; ~ S™.

Proof. Suppose that ¢; is non-adjacent to some vertex x € ST. Since S a maximal stable
set, the vertex c; is adjacent to some y € S. Clearly, y € Sy, and therefore y is adjacent to u.
Consider the stable set S’ consisting of ¢; and all its non-neighbors in S. We have S~ C &'
and z € S". The clique C' = {u, y} is disjoint from S’, therefore there exists a vertex z such
that z ~ C' and z # S’. We have z ¢ C U S. Indeed, z is non-adjacent to ¢; € C and z
is adjacent to y € S. We obtain a contradiction to Assumption (1): z is non-adjacent to a
larger number of vertices S than u. Indeed, z # S~ U {z} while u ¢ S~ and u ~ ST. O

Claim 1 shows that ¢; ~ s; and therefore ¢; € C7, see an illustration in Figure 4.
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Figure 4: An illustration.

By maximality of C, the vertex s; is non-adjacent to some co € C. Clearly, ¢, € C, .
Now we subdivide S7: ST ={z €S izt e} and Sy ={x € S™:x ~ ¢ }.

The set C; UCTU{s;} induces a clique which is disjoint from the stable set S| U{u, c2}.
Hence there exists a vertex v such that v ~ C7 U CtT U {s1} and v # Sy U {u,cy}, see

Figure 5.

C+

% U

y

N

51

Cy Cy
COe—| C1
St Sy

S+

Figure 5: Another illustration.

Claim 2 The verter v is adjacent to some vertezr in S, .
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Proof. If v ¢ S5 then v ¢ S~, and therefore v € L. However, the vertex v is adjacent
to more vertices in C' than u does: v ~ C* U C} while u ~ C* and u ¢ C~. This is a
contradiction to Assumption (1). O

According to Claim 2, there exists a vertex s € S5 which is adjacent to v. By the
definition of S5, ca ~ s9. Also, sg o {c1,u,s1}. Thus, the set {u,v,cy, co, 51,82} induces a
subgraph isomorphic to H, see Figure 6.

Cy Cy c+

Cy V C1

S92 51

ST Sy St

Figure 6: The set {u, v, ¢, ¢z, 1, 2} induces a subgraph isomorphic to H.

The complementary arguments show that G' also contains an induced subgraph isomor-
phic to H. It implies that G contains an induced subgraph belonging to Z, a contradiction
to the assumption G € P. O

Every graph in Z contains the 5-path P; as an induced subgraph.
Corollary 1 Conjecture 1 holds for all Ps-free graphs.
Also, every graph in Z contains the 4-cycle C; as an induced subgraph.
Corollary 2 Conjecture 1 holds for all Cy-free graphs, and therefore for all chordal graphs.

The set Z is self-complementary, that is G € Z implies G € Z. Hence the statements
complementary to Corollary 1 and to Corollary 2 hold: Conjecture 1 is true for all Ps-free
graphs and for all Cy-free graphs. Finally, the set Z is finite, it contains graphs with at most
12 vertices, therefore the class P is polynomial-time recognizable.
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3 Some useful properties

The proof of Theorem 1 contains some interesting properties of non-split almost CIS-graphs.
Let G be a non-split graph with a non-CIS pair (C,S), and let U = V(G) \ (C U S). We
define a partial order <¢ on U: u <¢ v’ if and only if N(u) N C C N(u') N C. Maximal
elements of (U, <¢) will be called C-mazimal vertices. Similarly, a partial order <g can be
defined on U: u <g v’ if and only if N(uv')NS C N(u)NS, that is the set of all non-neighbors
of v’ in S contains the set of all non-neighbors of » in S. Maximal elements of (U, <g) are
called S-mazimal vertices.

Property 1 A non-split almost CIS graph G does not have a vertex which is both C-mazimal
and S-mazximal.

For example, suppose that |C| = |S| = 2 for the unique non-CIS pair (C,S) of G.
It is easy to see that C'U S induces Py, say P, = (s1,¢1,¢2,592), where C = {¢;, ¢} and
S = {s1,82}. We apply Property 1 to an arbitrary vertex u € U = V(G) \ (CUS). If
u is S-maximal then it is non-adjacent to exactly one vertex of s. Note that u cannot be
non-adjacent to both vertices of S by maximality of S. According to Property 1, u is not
C-maximal, that is u must be non-adjacent to both vertices of C. Thus, the set CUS U {u}
induces the graph Ps shown in Figure 7 [or the symmetric graph, where v is adjacent to s,
instead of s1].

Cy Co C1 Co Cy Co

S1 52 S1 52 S1 52

Figure 7: The graphs Ps, Ps and Cs.

If v is C-maximal then it is adjacent to exactly one vertex of C'. Note that u cannot
be adjacent to both vertices of C' by maximality of C'. According to Property 1, u is not
S-maximal, that is » must be adjacent to both vertices of S. Thus, the set C U S U {u}
induces the graph P5 shown in Figure ?7 [or the symmetric graph].

Finally, it is possible that u neither C-maximal nor S-maximal, in which case the set
C U S U{u} induces Cs, see the rightmost graph in Figure 7.
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A C-mirror of a vertex u € U is a vertex s € S adjacent to u and such that N(u)NC =
N(s)NC. An S-mirror of a vertex u € U is a vertex ¢ € C non-adjacent to v and such that
such that N(u)NC = N(s)NC.

Property 2 FEvery C-mazimal vertex has a C-mirror, and every S-mazximal vertex has an
S-mirror.

A Py-based graph has a non-CIS pair (C, S) such that |C| = |S| = 2.

Theorem 2 Conjecture 1 holds for the class of all Py-based graphs.

Proof. Consider an arbitrary almost CIS P-based graph G with the unique non-CIS pair
(C,S). We may assume that G is not a split graph. Let C' U S induces P, = (s1, ¢1, Co, S2),
where {c1,co} = C and {s1,s2} = S. We denote

X1 ={u:u~ {c1, 51,5} and u £ ¢},
Xy =A{u:u~ {co 51,5} and u % 1},
Yi={u:u{ss,c1,c0} and u ~ 51}, and
Yo={u:uq¢ {s1,c1,c0} and u ~ so}.

Fact 1 Every vertex of X s adjacent to every vertex of Xs.

Proof. Suppose that a vertex x; € X; is non-adjacent to some vertex o € X3. An
arbitrary maximal stable set that contains both z; and z, is disjoint from the maximal
clique C' = {c1, c2}, a contradiction. O

Here is the complementary statement.

Fact 2 FEvery vertex of Y1 is non-adjacent to every vertex of Ys.

Now consider a maximal clique C; in the subgraph induced by X;, ¢+ = 1,2, and a maximal
stable set S; in the subgraph induced by Y;, i = 1,2. Fact 1 and Fact 2 show that C; U} is
a clique in G, and S; U S, is a stable set. The set A = C; U {¢cy, 51} is a clique, and the set
B =51US,U{cy} is a stable set.

Fact 3 There is a vertex u € C} which is non-adjacent to all vertices of B.
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Proof. We extend A and B to a maximal clique A" and a maximal stable set B’, respectively.
Since (A', B') # (C, S), there must be a vertex u € A'N B’. The proof of Theorem 1 implies
that S; is non-empty, therefore u # s;. The vertex u is adjacent to both ¢; and s;, and u
is non-adjacent to cy. It follows that u € X;. Since u ~ C}, u € C; by maximality of C'.
Finally, u € B’ implies that u is non-adjacent to all vertices of B C B'. O

Now, the set Q@ = C; UCyU {s2} is a clique, and the set R = S U {cs, 51} is a stable set.
Fact 4 There is a vertex v € Sy which is adjacent to all vertices of Q.

Proof. We extend @ and R to a maximal clique @' and a maximal stable set R, respectively.
Since (@', R') # (C,S), there must be a vertex v € Q' N R'. By Fact 3, the set C; is non-
empty, therefore v # co. The vertex v is non-adjacent to both ¢y and sy, and v is adjacent
to S9, hence v € Y;. Since v o Sy, maximality of S, implied that v € S;. Finally, v € @'
shows that v is adjacent to all vertices of Q@ C Q'. O

Fact 3 and Fact 4 produce a contradiction: the vertices v and v are non-adjacent and
adjacent simultaneously. O
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4 An extension

We can further extend the graph H of Figure 6 using the maximal clique C’ containing v and
s9 and the maximal stable set S’ containing s; and c;. There must be a vertex w € C'N S’.
We have w ¢ C' U S, since w o0 ¢ € C and w ~ s, € S, see Figure 8, where w can be
adjacent to the vertices ¢; and/or u.

Cy Cy ct
Cy V C1
Tw v /U,
S9 w/sl
Sy Sy S+

Figure 8: An extension.

The configuration of Figure 8 contains four graphs Hy, Hy, H3 and H, shown in Figure 9:
e Hi: the vertex w is non-adjacent to both u and ¢y,
e H,: the vertex w is non-adjacent to u, and w is adjacent to ¢y,
e Hj: the vertex w is adjacent to u, and w is non-adjacent to ¢;, and
e H,: the vertex w is adjacent to both v and ¢;.
Now we specify a maximal clique C' and a maximal stable set S” in each H;, 1 = 1,2, 3, 4.
e Hi: C' ={cy,s1,v} and S = {u, w, ca},
e Hy: C' ={cy,s1,v} and S' = {u, w, ca},
e H3: C' ={u,s1} and S" = {w, 1}, and
e Hi: C' ={v,w,c:} and S’ = {s1, $2}.
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S1 u S1 u
(&1 v C1 v
L L
Co S2 w Co S92 w
H, H,
S1 u S1 u
C1 v C1 v
L L
Co S92 w Co S9 w
Hj H,

Figure 9: The four variants.

We introduce a new vertex x such that z ~ C' and = ¢ C’. For the graph Hy, x ¢ CUS,
since = ¢ co € C'and = ~ s; € S. Depending on adjacency of x to the vertex s, we obtain
two extensions F} and F; of Hy, see Figure 10.
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X S1 u
L]
C1 v
@
Co S92 w
F F,

Figure 10: The two extensions F; and F, of H;.

The graph H, is similar to H;, and we have two extensions F3 and F; of Hy shown in
Figure 11.
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X S1 u
L]
C1 v
@
Co S92 w
F3 F4

Figure 11: The two extensions F3 and Fj of Hs.

In case of H3, the new vertex x does not belong to C'US, since x ¢ ¢; € C andx ~ s; € S.
The vertex x may or may not be adjacent to v, ce, S independently of each other. Thus,
we have 8 variants — the graphs Fy, Fg, Fy, Fg of Figure 12 and the graphs Fy, Fig, Fi1, Fio of
Figure 13.
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(&1 T (&1 x

Co S9 w Co So w
Fy Fe

v S1 Uu v S1 U

C1 T C1 T

Co S2 w Co S92 w
Fr Fy

Figure 12: The graphs Fy, Fg, F7, Fy (extensions of H3).
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C1 T C1 T

Co S2 w Co S92 w
Fg FIO

v S1 Uu v S1 U

C1 T C1 T

Co S2 w Co S92 w
Fll F12

Figure 13: The graphs Fy, Fig, F11, F12 (extensions of H3).

In case of H,, we can extend S’ to the original maximal stable set S. As a result, the
vertex x will be in S, and therefore we rename it as s3. Specifying potential edges ssu and
S3C2, we obtain the four graphs Fi3, F4, Fi5, Fig of Figure 14.
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v S1 Uu () S1 U
®
C1 S3 (&1 S3
@ @
Co S2 w Co S92 w
F13 F14
v S1 Uu v S1 u
®
1 53 €1 S3
Co S2 w Co S92 w
F15 F16

Figure 14: The extensions of H,.

Now we define a finite set Z' of graphs. A graph G belongs to Z' if and only if

e (G contains at least one of F|, Fy, ..., Fig as induced subgraph, and

e (G contains at least one of F'y, Fy, ..., Fs as induced subgraph,

and G is minimal with this property.

Theorem 3 Conjecture 1 holds for the class P of all Z'-free graphs.



RRR. -29-2007 PAGE 17
5 Alternating sequences

Let G be an almost CIS-graph with a unique non-CIS pair (C,S). Here we derive some
properties of the subgraph induced by the set R = V(G) \ (C U S). In particular, we show
that R cannot induce a threshold graph.

Property 3 For an arbitrary C-mazimal vertex u € R, there erists a vertex v € R such
that

(i) v is an S-mazimal vertez,

(ii) v is non-adjacent to all non-neighbors of u in S,

(iii) v is adjacent to u,

(iv) v is non-adjacent to an arbitrary C-mirror s € S of u, and
(

v) u is non-adjacent to an arbitrary S-mirror ¢ € C of v.

Proof. As in the proof of Theorem 1, we denote

C™ =C\ N(u),
Ct =CnNN(u),
§7 =S5\ N(u),
ST =SNN(u).

Let s € S be an arbitrary C-mirror of u, see Property 2. Also, there is a vertex ¢ € C~
such that ¢ ¢ {u} U S~. The proof of Theorem 1 implies that s and ¢ are non-adjacent.
The set S U {c'} is not stable, therefore ¢’ is adjacent to some s’ € S. Clearly, s’ € ST and
s' ~ u. Consider the clique {u, s'} and the stable set {¢/, s} US™. Their maximal extensions
must have a common vertex, say v'. Since v’ ~ s’ and v’ % ¢/, we have v' € R. The vertex
v' is non-adjacent to all non-neighbors of v in S and to the vertex s, therefore R contains a
maximal vertex with this property. Thus, we can choose an S-maximal vertex v~ # S~ U{s},
and both (i) and (ii) hold for v".

Suppose that v is non-adjacent to u. According to Property 2, v" has an S-mirror ¢ € C.
Since v” o s, we have ¢ o s, and therefore ¢ o¢ u. The set S U {c} is not stable, therefore ¢
is adjacent to some vertex s € S. Clearly, s € ST and 5" ~ {u, v”}. Consider the clique
{u, s"} and the stable set {c}UX, where X consists of all non-neighbors of v in S, including
s. Their maximal extensions must have a common vertex v. The vertex v has the same set
of non-neighbors in S as v by S-maximality of v". In particular, ¢ is an S-mirror for v.
Now v satisfies all the properties (i), (ii), (iii), (iv) and (v). O

Here is the complementary result.
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Property 4 For an arbitrary S-mazimal verter v € R, there exists a vertex u € R such that
i) u is a C-mazimal vertez,
il) u is adjacent to all neighbors of v in C,

(

(

(iii) u is non-adjacent to v,

(iv) u is adjacent to an arbitrary S-mirror ¢ € C of v, and
(

v) v is non-adjacent to an arbitrary C-mirror s € S of u.

Now we consider the shortest alternating cyclic sequence P of C-maximal vertices u; € R
and S-maximal vertices v; € R:

P = (ulavlau%v%"'aukavkauk-f-l :ul)a (]‘)

such that each v; is constructed for u; according to Property 3, and each u;;4 is constructed
for v; according to Property 4. The sequence P has at least four vertices. Indeed,

{ulauQ""auk}ﬂ{Ulav2a"'avk}:(Da

since no vertex is C-maximal and S-maximal simultaneously. In particular, v; # u;. The
vertex usy is non-adjacent to vy, while the vertices u; and v; are adjacent, therefore us # uy.

Similarly, vy # v;. However, it is possible that us = u;, in which case P has length four
[k =2].

Theorem 4 Let G be an almost CIS non-split graph with a non-SIC pair (C,S), and let
R=V(G)\(CUS). Then G contains a sequence (1) of pairwise distinct vertices u;,v; € R,
k > 2, and two sequences

(CI)CZV")CIC):(81582,"'5816) (2)
of vertices ¢; € C and s; € S such that
i) each u; is a C-mazimal verter,

ii) each v; is an S-mazimal verter,

ili) each v; is non-adjacent to all non-neighbors of u; in S,
iv) each u; is adjacent to all neighbors of v;_1 in C,

v) each u; is non-adjacent to v;_1,

vi) each v; is adjacent to u;,

vii) each s; is a C-mirror of u;,

viil) each ¢; is an S-mirror of v;,

ix) each v; is non-adjacent to s;, and

(
(
(
(
(
(
(
(
(
(

X) each u;y1 is adjacent to c;.
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Note that the vertices in (2) are not necessarily pairwise distinct. Figure 15 illustrates
the minimal case k = 2, where u; ¢ us and v; o vy. However, the vertices u; and uy may
be adjacent as well as v; and vs.

V2

S1 U2

U1

Figure 15: An illustration for k = 2.

A graph is threshold if it does not contain 2K5, P, and C; as induced subgraphs, see
Figure 16.

I O

2K2 P4 4

Figure 16: Minimal forbidden induced subgraph for threshold graphs.

Corollary 3 If G is an almost CIS non-split graph with a non-SIC pair (C,S), then the set
R=V(G)\ (CULS) does not induce a threshold graph.
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Proof. For k£ = 2, the sequence (1) contains four vertices that induce a configuration C
shown in see Figure 17, where u; and us may or may not be adjacent, as well as v; and v,.
Clearly, C' contains exactly the graphs 2K5, P, and Cj.

Figure 17: The configuration C.

If £ > 3 then the set {u;,v; :i=1,2,...,k} induce a configuration that contains C. O
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