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Abstract. The classical weighted set covering problem is generalized simultane-
ously in three directions. First, each numerical weight is replaced by a weighted set,
which we call cost. Second, each element in the ground set is assigned a numerical
weight. Third, the concept of a cover is relaxed to a partial cover that only needs to
cover some percentage of the ground set, instead of the whole ground set. The last
two generalizations have been studied in the literature, while the first is new. We
propose a greedy algorithm to approximate this generalized problem and we estab-
lish an upper bound on the ratio of the greedy solution over the optimal solution.
This bound is independent of the cost function, and it depends only on the total
weight of the ground set. We prove that our bound is the best possible.
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1 Introduction

The purpose of this paper is to introduce a generalized set covering problem (GSCP), and
to propose, in Section 2, a greedy algorithm to approximate it. We prove, in Theorem 1,
that our solution is not too far away from the optimal solution. We also prove, in Theorem
2, that the bound given in Theorem 1 is the best possible.

For clarity, we first have some definitions. If X is a finite collection of sets, then X is the
union of all members of X. If f is a function from a set X to R+, the set of nonnegative
reals, then, for any finite subset X ′ of X, f(X ′) is defined to be the sum of f(x), over all x
in X ′.

Let S be a finite set and let S = {S1, S2, . . . , Sn}, where each Si is a subset of S. We call
A ⊆ S a cover of S if A = S. The classical set covering problem (SCP) is to find a cover with
a minimum cardinality. In applications, there is usually a weight function w from S to R+.
In such a situation, the total weight of a cover A is defined to be w(A). The weighted SCP
(WSCP) is to find a cover with a minimum total weight. Clearly, WSCP is a generalization
of SCP, as WSCP is SCP when w(Si) = 1, for all i.

In this paper, we study a generalization of WSCP, which arose from the authors’ work on
profiling. We will relax WSCP in three directions. First, we replace each numerical weight
w(Si) with a weighted set. Second, we give every element in S a numerical weight. Third,
we only require A to cover a portion of S, instead of the entire S.

Let S and S be as before. Let d be a function from S to R+ and let λ ∈ [0, 1]. Then
A ⊆ S is called a λ-d-cover of S if d(A) ≥ λd(S). Notice that, when d(x) is positive for
all x ∈ S, then A is a cover if and only if it is a 1-d-cover. Therefore, “λ-d-cover” is a
generalization of “cover”.

Let W be a finite set, c be a function from W to R+, and W = {W1, W2, . . . ,Wn},
where each Wi is a subset of W . We consider each Wi as the weight of Si. For any A ⊆ S,
we define W(A) =

⋃
{Wi : Si ∈ A} and we call c(W(A)) the cost of A. In particular, if

W = {1, 2, ..., n}, and if for each i we have Wi = {i} and c(i) = w(Si), then it is easy to see
that c(W(A)) is exactly w(A). Therefore, “cost” is a generalization of “total weight”.

Generalized SCP (GSCP): For any given (S, W, S, W, d, c, λ), find a λ-d-cover of S with
the minimum cost.

In case W = {1, 2, ..., n}, W = {{1}, {2}, ..., {n}}, and d(x) = 1, for all x ∈ S, our GSCP
is known as partial set cover problem (PSCP) [10], which has the objective of finding A ⊆ S

with |A| ≥ λ|S| and such that w(A) is minimized.
GSCP is also related to the submodular set cover problem (SSCP) [14], which we briefly

describe below. Let U be a finite set and let f be a function from 2U to the set of nonnegative
integers such that: (i) f(X) ≤ f(Y ) for all X ⊆ Y ⊆ U , and (ii) f(X) + f(Y ) ≥ f(X ∩
Y ) + f(X ∪ Y ) for all X, Y ⊆ U . Let w be a function from U to R+. The objective of
SSCP is to find A ⊆ U with f(A) = f(U) and such that w(A) =

∑
a∈A w(a) is minimized.

It is not difficult to verify (see [4]) that SSCP is a special case of GSCP if U = S and
f(A) = min{λd(S̄), d(Ā)}, for all A ⊆ S, which is exactly the case of GSCP with W =
{1, 2, ..., n} and W = {{1}, {2}, ..., {n}}. Since the objective function of SSCP is linear
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while the objective function of GSCP is not, GSCP in general is not a special case of SSCP.
On the other hand, since the constraint in SSCP is a general submodular function while the
constraint in GSCP is a special submodular function (the function f(A) defined above, see
[4]), SSCP in general is not a special case of GSCP either. Therefore, GSCP and SSCP are
incomparable, as illustrated in Figure 1.

Figure 1: GSCP and SSCP are different generalizations of PSCP.

There are other related problems. The minimum k-set cover problem [5] seeks A ⊆ S

with |Ā| ≥ k and such that |A| is as small as possible. The maximum k-set cover problem
[6, 7] seeks A ⊆ S with |A| ≤ k and such that A is as large as possible. Clearly, one may also
generalize these problems in the same way as we generalize SCP. In fact, we have considered
these generalizations and obtained similar results. These results will appear elsewhere.

It is well-known [9, 13] that SCP is NP-hard. As we discussed above, GSCP contains
WSCP as a special case, which in turn contains SCP as a special case. Therefore, GSCP is
also NP-hard. In recent years, more hardness results have been proved for SCP. Raz and
Safra [12], and Arora and Sudan [1] proved that, for some c > 0, there is no polynomial time
algorithm that can approximate SCP to a factor of c ln |S|, unless P=NP. Moreover, Feige [3]
proved that, for all ε > 0, there is no polynomial time algorithm that can approximate SCP
to a factor of (1 − ε) ln |S|, unless NP ⊆ DTIME(nO(ln ln n)) (this assumption is stronger
than P 6= NP , but it is also widely believed to be true). Clearly, these negative results hold
for the more general problems WSCP and GSCP as well.

On the positive side, the best known polynomial time algorithm that approximates WSCP
is a greedy algorithm proposed by Chvatal [2], which generalizes earlier results of Johnson
[8] and Lovasz [11]. When comparing the solution found by this algorithm with the optimal
solution, it is proved that the ratio is at most 1 + ln s, where s = max{|Si| : i = 1, 2, ..., n}.

In the next section, we present a polynomial time approximation algorithm, called
GSCA, for GSCP. This is a modification of Chvatal’s algorithm.

Theorem 1. For any instance I = (S, W, S, W, d, c, λ) of GSCP, if Opt(I) is the minimum
cost of I and GSCA(I) is the cost obtained by GSCA, then

GSCA(I) ≤

{
(1 + λd(S)/dmin) ·Opt(I) if λ ∈ [0, 1)

(d(S)/dmin) ·Opt(I) if λ = 1

where dmin = min{d(x) : x ∈ S, d(x) > 0}, and d(S)/dmin is defined to be 1 if d(x) = 0 for
all x ∈ S.

In particular, when d(x) = 1, for all x ∈ S, it is obvious that Theorem 1 can be simplified
as

GSCA(I) ≤

{
(1 + λ|S|) ·Opt(I) if λ ∈ [0, 1),

|S| ·Opt(I) if λ = 1.
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Remark 1. Notice that, as in Chvatal’s result, the ratio GSCA(I)/Opt(I) is bounded by
a function that is independent of S, W , W, and c. However, unlike Chvatal’s results, the
bound is a linear function, instead of a logarithmic function, of d(S).

Our next result shows that, for GSCA, this bound is the best possible.

Theorem 2. If λ ∈ [0, 1), then sup
I

GSCA(I)

(1 + λd(S)/dmin) ·Opt(I)
= 1;

If λ = 1, then sup
I

GSCA(I)

(d(S)/dmin) ·Opt(I)
= 1.

Remark 2. We will see from our proof of Theorem 2 that the supremum is already 1 even
when the instances are restricted to those with bounded S and d(x) = 1, for all x ∈ S.

It is interesting to consider the Boolean formulation of GSCA. Let S = {s1, s2, ..., sp}.
Then SCP can be formulated as follows, where x1, x2, ..., xn are Boolean variables.

Minimize


n∑

i=1

xi :

p∑
j=1

∏
Si3sj

x̄i = 0

.

Let W = {w1, w2, ..., wq}. Then GSCA can be expressed as follows.

Minimize


q∑

j=1

cj

∨
Wi3wj

xi :

p∑
j=1

dj

∨
Si3sj

xi ≥ λ

p∑
j=1

dj

. (1)

Using formula
∨
u∈U

u = 1−
∏
u∈U

ū and substitution yi = x̄i, we can equivalently rewrite (1) as

Maximize


q∑

j=1

cj

∏
Wi3wj

yi :

p∑
j=1

dj

∏
Si3sj

yi ≤ b

 (2)

where b = (1 − λ)d(S). It is interesting to see that GSCA is equivalent to a very general
Boolean optimization problem (2). It is also interesting to see that a greedy algorithm can
produce a reasonable solution.

In the next section, we describe algorithm GSCA. Then, in section 3, we prove the two
theorems listed above. We also give an example that shows, in Theorem 1, 1 + λd(S)/dmin

can not be replaced with λd(S)/dmin for general λ. Finally, in the last section, we discuss
some possible improvements of GSCA.

2 Algorithm GSCA

The basic idea for Chvatal’s algorithm is to bring, at each iteration, the least expensive set
into the proposed cover. We will still use the same idea. However, since our weight functions
are much more complicated, our update procedure, at each iteration, is more complicated.
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The algorithm starts with A = ∅, which, in the end of the algorithm, will be a λ-d-cover
of S. At each iteration, one new set from S is chosen and added to A, until A becomes
a λ-d-cover of S. Therefore, at the beginning of, say, the k-th iteration, A contains k − 1
members. Without loss of generality, let us assume that S1, S2, ..., Sk−1 are these sets. Let

S ′ = S1 ∪ S2 ∪ ... ∪ Sk−1 and W ′ = W1 ∪W2 ∪ ... ∪Wk−1.

Since we are only interested in covering the remaining elements of S, we define

S′ = {S ′
i = Si − S ′ : i = k, k + 1, ..., n}.

Because of the way we compute cost, we also define

W′ = {W ′
i = Wi −W ′ : i = k, k + 1, ..., n}.

We point out that d(S ′) = d(A) < λd(S), because otherwise, A would already be a λ-d-cover
and we would have stopped.

If we add Si to A, then, with an extra cost of c(W ′
i ), we can cover an extra set S ′

i of
elements. It follows that, in general, the average cost for covering elements in S ′

i is

ac(S ′
i) = c(W ′

i )/d(S ′
i),

where the value is defined to be ∞ if d(S ′
i) = 0. An exception to this calculation happens

when
d(S ′) + d(S ′

i) = d(S ′ ∪ S ′
i) > λd(S).

In this case, if we add Si to A, we will cover more than we are required to. Since we should
not pay any extra for any extra coverage, the actual average cost for covering elements in S ′

i

should be
ac(S ′

i) = c(W ′
i )/(λd(S)− d(S ′)),

instead of the smaller value c(W ′
i )/d(S ′

i). We remark that the above denominator λd(S) −
d(S ′) is not zero. In fact, it is positive, as A is not a λ-d-cover yet.

Now the key ingredient of our algorithm can be stated as follows: At each iteration, we
select i to minimize ac(S ′

i), and then add Si to A.

Notice that elements in S − S and elements in W − W do not play any role in our
problem. Therefore, in our algorithm, we will consider (S, W, d, c, λ) as the input, not
(S, W, S, W, d, c, λ).
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The General Set Covering Algorithm (GSCA).

GSCA (S, W, d, c, λ):

Step 0. Initialize.

Set A← ∅.
Set S ′

i ← Si and W ′
i ← Wi, for i = 1, 2, ..., |S|.

Step 1. Select a new set.

If d(A) ≥ λd(S), then, output A, which is a λ-d-cover of S, and stop.
Otherwise, for each Sj ∈ S−A, compute

ac(j) =


∞ if d(S ′

j) = 0,

c(W ′
j)/d(S ′

j) if d(S ′
j) 6= 0 and d(A ∪ S ′

j) ≤ λd(S),

c(W ′
j)/(λd(S)− d(A)) if d(S ′

j) 6= 0 and d(A ∪ S ′
j) > λd(S).

Then find an index imin with

ac(imin) = min{ac(j) : Sj ∈ S−A}

and proceed to Step 2.

Step 2. Update.

Set A← A ∪ {Simin
}.

Set S ′
k ← S ′

k − Simin
and W ′

k ← W ′
k −Wimin

, for every Sk ∈ S−A.
Then, return to Step 1.

It is worth pointing out that, if λ = 1, then the computation on ac(j) can be simplified,
as the last alternative can be eliminated.

Proposition. GSCA runs in polynomial time and its output is a λ-d-cover of S.

Proof. At the beginning of each iteration, if the current A is not a λ-d-cover yet, then
λd(S) − d(A) > 0. It follows that there is at least one Sj ∈ S−A for which d(S ′

j) > 0.
Consequently, a new A will be generated at the end of this iteration, and the new A will
contain one more member than the old A. Therefore, GSCA terminates only when A

becomes a λ-d-cover, and does so after at most |S| iterations. It is obvious that each iteration
takes only polynomial time, so the entire algorithm runs in polynomial time. Since the
algorithm terminates eventually and it does not terminate while d(A) < λd(S), we conclude
that the output must be a λ-d-cover of S.

3 Proofs of the theorems

In this section, we prove the two theorems stated in the introduction. We first prove Theorem
1.
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Proof. We prove the theorem by proving a sequence of claims. As before, let n = |S|.

Claim 1. We may assume that d(Sj) > 0, for all Sj ∈ S.
Suppose S has a member Sj with d(Sj) = 0. Then we may assume that Sj does not appear

in the optimal solution. On the other hand, when GSCA is applied, we have ac(j) = ∞
throughout the whole process. Notice that, at each iteration, when a new index imin is
selected, we must have ac(imin) < ∞, as the current A is not a λ-d-cover yet. Therefore, j
will never be selected and thus Sj will not appear in the output of GSCA. In conclusion,
the theorem holds for (S, W, S, W, d, c, λ) if and only if it holds for (S, W, S−{Sj}, W, d, c, λ),
which means we may assume that d(Sj) > 0, for all Sj ∈ S.

Claim 2. We may assume that d(x) > 0 holds for at least one x ∈ S.
If d(x) = 0, for all x ∈ S, then A = ∅ is a λ-d cover of S. Moreover, it is easy to see

that A is both an optimal solution and a greedy solution. That is, Opt(I) = GSCA(I) = 0.
Therefore, the theorem holds in this case, which implies that we may assume, for at least
one x ∈ S, that d(x) > 0.

Claim 3. We may assume that dmin = 1.
By Claim 2, we have dmin > 0. Let d′(x) = d(x)/dmin, for all x ∈ S. Then d′min = 1.

By the definition of a λ-d-cover, it is clear that A ⊆ S is a λ-d′-cover of S if and only
if it is a λ-d-cover of S. In addition, it is also easy to verify that A ⊆ S is the output
of GSCA(S, W, d′, c, λ) if and only if it is the output of GSCA(S, W, d, c, λ). Therefore,
Theorem 1 holds for (S, W, d, c, λ) if and only if it holds for (S, W, d′, c, λ). This equivalence
proves Claim 3.

Claim 4. We may assume that λd(S) ≥ 1.
We only need to show that the theorem holds when λd(S) < 1. Suppose we are in such

a situation. By claims 1 and 3, every member of S forms a λ-d-cover of S. Then, we deduce
from Claim 2 that S 6= ∅, and so, S has a member, say S1, such that c(W1) ≤ c(Wj), for all
j. Consequently, {S1} is an optimal solution with Opt(I) = c(W1). On the other hand, when
GSCA is applied to this instance, it finishes in only one iteration. At the very beginning,
we have A = ∅. By Claim 1 and Claim 3,

d(A ∪ Sj) = d(Sj) ≥ 1 > λd(S), j = 1, 2, ..., n,

and it follows that
ac(j) = c(Wj)/(λd(S)), j = 1, 2, ..., n.

By the definition of S1, GSCA will pick imin = 1, since ac(1) ≤ ac(j), for all j. It means
that {S1} is the output of GSCA. Therefore, Opt(I) = GSCA(I) and thus the theorem
holds. Claim 4 is proved.

Claim 5. We may assume that the output A of GSCA has at least two members.
It is enough for us to show that the theorem holds when |A| ≤ 1. Let K ⊆ S be an

optimal solution. From Claim 2 we deduce that neither A nor K is empty. Without loss of
generality, let S1 be the only member of A and let Sk be a member of K, where k could be
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1. Then d(S1) ≥ λd(S), as A = {S1} is the output of GSCA, and thus must be a λ-d-cover
of S. When S1 was selected, in the first iteration of GSCA, we must have

c(W1)/(λd(S)) = ac(1) ≤ ac(k).

Since this is the first iteration of GSCA, we deduce from claims 1, 3, and 4, that

ac(k) ≤ c(Wk) ≤ c(W(K)) = Opt(I).

Then, combining the last two inequalities results in

GSCA(I) = c(W1) ≤ λd(S)Opt(I),

and thus the theorem holds, which proves Claim 5.

Next, we consider the general case. Let

σ =

{
1 + λd(S) if λ ∈ [0, 1),

d(S) if λ = 1.

Suppose the theorem is false. Then, by Claim 3, there exists an instance (S, W, d, c, λ), for
which

c(W(A)) > σ · c(W(K)), (1)

where A is the output of GSCA and K is a λ-d-cover of S. We choose such an instance with
|S| as small as possible. We will deduce a contradiction and that will prove the validity of
the theorem.

By Claim 2, A 6= ∅. Without loss of generality, we may assume that S1 ∈ S is the
set selected by GSCA in the first iteration. Then, by Claim 5, we know that K 6= {S1}.
Therefore, K must contain some Sk with k 6= 1. Without loss of generality, let k = 2. By
considering the first iteration of GSCA, we have

c(W1)/d(S1) = ac(1) (by Claim 5)

≤ ac(2) (by the definition of S1)

≤ c(W2) (by claims 3 and 4)

≤ c(W(K)),

which gives us
c(W1) ≤ d(S1) · c(W(K)). (2)

Let us consider the instance (S′, W′, d, c, λ′), where

S′ = {Si − S1 : i = 1, 2, ..., n},
W′ = {Wi −W1 : i = 1, 2, ..., n}, and

λ′ = (λd(S)− d(S1))/d(S′).
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Then it is clear that
S1 ⊆ S and S′ = S− S1. (3)

Claim 6. λ′ ∈ [0, 1]. Moreover, λ′ = 1 if and only if λ = 1.
By Claim 5, S1 is not the only member of A. It follows that d(S1) < λd(S), and so λ′ ≥ 0.

On the other hand, by (3), we have

λ′ = λ− (1− λ)d(S1)/d(S′) ≤ λ ≤ 1,

which proves the first part of Claim 6. Furthermore, the last inequality also implies that
second part of Claim 6, so the proof of the claim is complete.

Let

σ′ =

{
1 + λ′d(S′) if λ′ ∈ [0, 1),

d(S′) if λ′ = 1.

Then, by (3), the second part of Claim 6, and the definitions of σ and λ′, it is easy to verify
that

σ = σ′ + d(S1). (4)

From our choice of S1 and the definitions of S′, W′, and λ′, it is routine to verify that,
when GSCA is applied to the new instance, at iteration k, each ac(j) is exactly the same as
the corresponding value at iteration k + 1 when GSCA is applied to the original instance.
Therefore, when GSCA is applied to the new instance, the output is A′ = A−{S1}. On the
other hand, it is clear from the definition of λ′ that K′ = {Si − S1 : Si ∈ K} is a λ′-d-cover
of S′. From (3), Claim 1, the minimality of |S|, and Claim 3 we deduce that

c(W′(A′)) ≤ σ′ · c(W′(K′)) (5)

It is straightforward to verify that

W1 ⊆W(A) and W′(A′) = W(A)−W1 (6)

and then

c(W(A))− σc(W(K))

= c(W1) + c(W′(A′))− σc(W(K)) (by (6))

≤ c(W1) + σ′c(W′(K′))− σc(W(K)) (by (5))

= c(W1) + (σ − d(S1))c(W
′(K′))− σc(W(K)) (by (4))

= c(W1)− σ(c(W(K))− c(W′(K′)))− d(S1)c(W
′(K′))

≤ c(W1)− d(S1)(c(W(K))− c(W′(K′)))− d(S1)c(W
′(K′))) (by (4))

= c(W1)− d(S1)c(W(K))

≤ 0, (by (2))

contradicting (1). The theorem is proved.
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Next, we present an example to show that, in Theorem 1, 1 + λd(S)/dmin can not be
replaced by λd(S)/dmin, for λ ∈ [0, 1).

Example 1. Let n = m + 1, where m > 1, and let ε > 0 be a small real number. Let

S = {s1, s2, ..., sm}
W = {w0, w1, w2, ..., wm, wm+1}
Si = {si} for i = 1, 2, ...,m

Sm+1 = {s1, s2, ..., sm}
Wi = {w0, wi} for i = 1, 2, ...,m

Wm+1 = {wm+1}
c(w0) = 1

c(wi) = ε for i = 1, 2, ...,m

c(wm+1) = m

d(si) = 1 for i = 1, 2, ...,m

λ = (2m− 1)/(2m).

Since λd(S) = (2m− 1)/2 > m− 1 = d(S)− 1, and d is an integral function, every λ-d-cover
of S must be a cover of S. Observe that there are two minimal covers A1 = {S1, ..., Sm} with
c(W(A1)) = c({w0, w1, ..., wm}) = 1+mε and A2 = {Sm+1} with c(W(A2)) = c(wm+1) = m.
It follows that Opt(I) = 1+mε. When GSCA is applied to this instance, It is straightforward
to verify that A2 is the output, which means that GSCA(I) = m. However, when ε is
sufficiently small, we have

λd(S)Opt(I) = (1 + mε)(m− 1

2
) < m = GSCA(I),

which shows that, in Theorem 1, 1 + λd(S)/dmin can not be replaced by λd(S)/dmin, for
λ ∈ [0, 1), not even when d(x) = 1, for all x ∈ S.

Next, we prove Theorem 2.

Proof. We consider the two cases λ ∈ [0, 1) and λ = 1 separately. In each case, we
need to find a

sequence of instances, such that the limit of the corresponding expression is 1. In both cases,
we will have d(x) = 1, for all x ∈ S. We first consider the case λ ∈ [0, 1). Let n = m + 1,
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where m > 1, and let 0 < ε < 1/m be a small real number. Let

S = {s1, s2, ..., sm}
W = {w0, w1, w2, ..., wm, wm+1}
Si = {si} for i = 1, 2, ...,m

Sm+1 = {s1, s2, ..., sm}
Wi = {w0, wi} for i = 1, 2, ...,m

Wm+1 = {wm+1}
c(w0) = 1

c(wi) = ε for i = 1, 2, ...,m

c(wm+1) = m

d(si) = 1 for i = 1, 2, ...,m

λ = (m− 1 + ε)/m.

This is a modification of Example 1. As in that example, λd(S) > m− 1 = d(S)− 1. Then,
with the same argument, we can see that A1 = {S1, ..., Sm} is an optimal solution with

Opt(I) = c(W(A1)) = c({w0, w1, ..., wm}) = 1 + mε.

In addition, the output of GSCA must be A2 = {Sm+1}, which implies that

GSCA(I) = c(W(A2)) = c(wm+1) = m.

Now from λd(S) = m− 1 + ε, we conclude that, as ε→ 0,

GSCA(I)

(1 + λd(S)/dmin) ·Opt(I)
=

m

(m + ε)(1 + mε)
→ 1,

which proves the first part of Theorem 2.
Next, we consider the case when λ = 1. Let n = 3m and let 0 < ε < 1/(2m). Let

S = {s1, s2, ..., s2m}
W = {w0, w1, w2, ..., w3m}
Si = {si} for i = 1, 2, ..., 2m

S2m+j = {s2j−1, s2j} for j = 1, 2, ...,m

Wi = {w0, wi} for i = 1, 2, ..., 2m

W2m+j = {w2m+j} for j = 1, 2, ...,m

c(w0) = 1

c(wi) = ε for i = 1, 2, ..., 2m

c(w2m+j) = 2 for j = 1, 2, ...,m

d(si) = 1 for i = 1, 2, ..., 2m.
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Clearly, under the above assumptions, a λ-d-cover is simply a cover. It is not difficult to see
that A1 = {S1, S2, ..., S2m} is an optimal solution, which has cost

Opt(I) = c(W(A1)) = c({w0, w1, ..., w2m}) = 1 + 2mε.

However, the output of GSCA is A2 = {S2m+1, S2m+2, ..., S3m}, which has cost

GSCA(I) = c(W(A2)) = c({w2m+1, w2m+2, ..., w3m}) = 2m.

Now, it is clear that, as ε→ 0,

GSCA(I)

(d(S)/dmin) ·Opt(I)
=

2m

2m(1 + 2mε)
→ 1,

which completes the proof of Theorem 2.

4 Concluding Remarks

4.1 Possible Improvements

When implementing GSCA, there are a few things that we can do to improve its perfor-
mance.

First, notice that the output A of GSCA is a λ-d-cover, but it may not be a minimal one.
In other words, it is possible that for some Si ∈ A, A− {Si} is still a λ-d-cover. Therefore,
after receiving the output A, we should examine its minimality by checking if A − {Si} is
still a λ-d-cover, for every Si ∈ A. Clearly, the output of this procedure will be a minimal
λ-d-cover.

Second, notice that GSCA’s complexity order is very low, which means that it can
handle relatively large problems. To take advantage of this property when dealing with
small problems, we make some modifications before starting GSCA. Let S = {S1, S2, ..., Sn}
and W = {W1, W2, ...,Wn}, as before. Let

S2 = {Si ∪ Sj : for all i and j} and W2 = {Wi ∪Wj : for all i and j}.

Then we can use (S2, W2, d, c, λ) as the input. We have increased the input size, but we can
also expect to get a better solution. In general, for each positive integer t, we can define
St and Wt in a similar way and use (St, Wt, d, c, λ) as the input. Depending on our time
constraint, we would like to choose the largest possible t. By doing so, we use more of our
resources and in return, we should get better solutions.

The last possible improvement comes from the following observation. If Wi = Wj and A

is any λ-d-cover, then, we may assume that, either both Si and Sj are in A or neither is in A,
since having one in A makes adding the other to A free. Therefore, before starting GSCA,
we can replace Si and Sj by their union, if Wi = Wj. Such a replacement does not change the
optimal cost, but it reduces the input size by one. Experiments show that such replacements



RRR 16-2008 Page 13

do help us getting better solutions, most of the time. In some cases, however, when using
GSCA, it is also possible that such a replacement can lead us to a worse solution. In the
following, we show both cases with two small examples, where λ = 1 and d(x) = 1 for all
x ∈ S.

1. In the first case, let S1 = {s1}, S2 = {s2}, S3 = {s1, s2}, W1 = W2 = {w1}, W3 = {w2},
c(w1) = 2, and c(w2) = 3. Then {S1, S2} is an optimal solution, while {S3} is the
output of GSCA. However, if we merge S1 and S2 before starting GSCA, then {S1, S2}
will be the output of GSCA, which shows that replacing S1 and S2 with their union
does help us getting a better solution, in this case.

2. In the second case, let S1 = {s1, s2, s3}, S2 = {s4}, S3 = {s1, s2}, S4 = {s2, s3, s4},
W1 = {w1, w2}, W2 = {w2}, W3 = W4 = {w1, w3}, c(w1) = 1, c(w2) = 2, and
c(w3) = 3. Then {S1, S2} is the output of GSCA, which has cost 3. However, if we
merge S3 and S4 before starting GSCA, then {S3, S4} will be the output of GSCA,
which has cost 4. Therefore, in this case, replacing S3 and S4 with their union leads
us to a worse solution.

Nevertheless, we point out that even though the above modifications may at times pro-
duce better solutions, Theorem 2 maintains that they do not improve the bound given in
Theorem 1.

4.2 Conclusion

We have defined a generalized set covering problem (GSCP) that extends the classical
weighted set covering problem. To approximate an optimal solution to GSCP, we have
proposed a highly efficient greedy algorithm (GSCA). In Theorem 1, we have established an
upper bound on the ratio of the greedy solution over the optimal solution. We have also
proved, in Theorem 2, that our bound is the best possible.
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