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On effectivity functions of game forms 1

Endre Boros, Khaled Elbassioni, Vladimir Gurvich, Kazuhisa Makino

Abstract. To each game form g an effectivity function (EFF) Eg can be naturally
assigned. An EFF E will be called formal (respectively, formal-minor) if E = Eg

(respectively, E ≤ Eg) for a game form g.
(i) An EFF is formal if and only if it is superadditive and monotone.
(ii) An EFF is formal-minor if and only if it is weakly superadditive.
Theorem (ii) looks more sophisticated, yet, it is simpler and instrumental in the
proof of (i). In addition, (ii) has important applications in social choice, game, and
even graph theories. Constructive proofs of (i) were given by Moulin, in 1983, and
then by Peleg, in 1998. (The latter proof works also for an infinite set of outcomes.)
Both constructions are elegant, yet, the set of strategies Xi of each player i ∈ I in g
might be doubly exponential in size of the input EFF E. In this paper, we suggest
a third construction such that |Xi| is only linear in the size of E.
One can verify in polynomial time whether an EFF is formal (or superadditive); in
contrast, verification of whether an EFF is formal-minor (or weakly superadditive)
is a CoNP-complete decision problem.
Also, we extend Theorems (i, ii) for tight and totally tight game forms.
Keywords: Boolean function, effectivity function, monotone, superadditive, weakly
superadditive, dual-minor, self-dual, game form, tight, totally tight
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1 Introduction

The effectivity function (EFF) is an important concept of voting theory that describes the
distribution of power between the voters and candidates. This concept was introduced in
the early 80s by Abdou [1, 2], Moulin and Peleg [23], [22] Chapter 7, [24], [25] Chapter 6.
We also refer the reader to the book ”Effectivity Functions in Social Choice” by Abdou and
Keiding [3] for numerous applications of EFFs in the voting and game theories.

An EFF can be viewed as a Boolean function whose set of variables is the mixture of the
voters (players) and candidates (outcomes); see Section 2.1.

A game form g can be viewed as a game in normal form in which no payoffs are defined
yet and only an outcome g(x) is associated with each strategy profile x. To every game form
g an EFF Eg can be naturally assigned; see Section 4.

Some important properties of a game form g depend only on its EFF Eg.
For example, the core C(g, u) is not empty for any payoff u if and only if EFF Eg is

stable; see [22] Chapter 7, [25] Chapters 6, [3] Chapter 3; furthermore, a two-person game
(g, u) has a Nash equilibrium in pure strategies for any u if and only if EFF Eg is self-dual;
see ([12, 14], and also Sections 8.3 and 10.

It is a natural and important problem to characterize the EFFs related to game forms.
Already in [23] it was mentioned that these EFFs are monotone and superadditive. The
inverse statement holds too, yet, it is more difficult.

An EFF E will be called formal (respectively, formal-minor) if E = Eg (respectively,
E ≤ Eg) for a game form g. The following two claims hold:

(i) An EFF is formal if and only if is superadditive and monotone;

(ii) An EFF is formal-minor if and only if it is weakly superadditive.

In both cases the EFFs must satisfy some natural ”boundary conditions”; see Sections
2.2 and 2.3 for definitions and more details.

Theorem (ii) looks more sophisticated, yet, it is simpler and instrumental in the proof
of (i). In addition, (ii) has important applications in social choice, game, and even graph
theories; see [22] Chapter 7 and [4, 5, 6].

Constructive proofs of (i) were given by Moulin, in 1983, and by Peleg, in 1998. (In
fact, Peleg proved a slightly more general statement that includes, in particular, the case of
infinite sets of outcomes.) Both constructions are interesting and elegant, yet, in both, the
set of strategies Xi of each player i ∈ I in g is doubly exponential in size of the input EFF
E. In this paper, we suggest a third construction such that |Xi| is only linear in the size of
E.

Furthermore, an EFF E will be called T-formal (TT-formal) if E = Eg for a tight (totally
tight (TT)) game form g; see Sections 8 and 9 for definitions. Obviously, the families of TT-
formal, T-formal, and formal EFFs are nested, since every TT game form is tight; see Section
9.

Moulin’s results readily imply that an EFF is T-formal if and only if it is maximal,
superadditive, monotone, and satisfies the boundary conditions.
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In this paper, we add to this list one more property, which also holds for each TT-formal
EFF, and show that the extended list of properties is a characterization of the two-person
TT-formal EFFs, leaving the n-person case open.

2 Basic properties

2.1 Effectivity functions as Boolean functions of players and out-
comes

Given a set of players (or voters) I = {1, . . . , n} and a set of outcomes (or candidates)
A = {a1, . . . , ap}, subsets K ⊆ I are called coalitions and subsets B ⊆ A blocks. An
effectivity function (EFF) is defined as a mapping E : 2I × 2A → {0, 1}. We say that
coalition K ⊆ I is effective (respectively, not effective) for block B ⊆ A if E(K,B) = 1
(respectively, E(K,B) = 0).

Since 2I × 2A = 2I∪A, we can view an EFF E is a Boolean function whose variables I ∪A
are a mixture of the players and outcomes.

An EFF describes the distribution of power of voters and of candidates.
For two EFFs E and E ′ on the same variables I ∪ A, obviously, the implication E ′ = 1

whenever E = 1 is equivalent with the inequality E ≤ E ′.
The “complementary” function, V(K,B) ≡ E(K,A \ B), is called the veto function; by

definition, K is effective for B if and only if K can veto A \B. Both names are frequent in
the literature [1, 2, 15, 16, 17, 22, 23, 24, 25].

2.2 Boundary conditions

The complete (K = I, B = A) and empty (K = ∅, B = ∅) coalitions and blocks will be
called boundary and play a special role. From now on, we assume that the following boundary
conditions hold for all considered EFFs:

E(K, ∅) = 0 and E(K,A) = 1 ∀ K ⊆ I;

E(I, B) = 1 unless B = ∅; E(∅, B) = 0 unless B = A;

E(I, ∅) = 0, E(∅, A) = 1.

Remark 1 In fact, the value of E(∅, A) is irrelevant. However, in Section 8 we will define
self-duality (maximality) of an EFF by the equation

E(K,B) + E(I \K,A \ B) ≡ 1 for all K ⊆ I, B ⊆ A. Thus, formally, since E(I, ∅) = 0,
we have to set E(∅, A) = 1, otherwise self-duality will never hold.

2.3 Monotonicity and the minimum monotone majorant of an ef-
fectivity function

An EFF is called monotone if the following implication holds:
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E(K,B) = 1, K ⊆ K ′ ⊆ I, B ⊆ B′ ⊆ A ⇒ E(K ′, B′) = 1.

It is easy to see that the above definition is in agreement with the standard concept of
monotonicity for Boolean functions.

A (monotone) Boolean function is given by the set of its (minimal) true vectors.
Respectively, a (monotone) EFF E is given by the list {(Kj, Bj); j ∈ J} of all (inclusion-
minimal) pairs Kj ⊆ I and Bj ⊆ A such that E(Kj, Bj) = 1.

Let us remark that KE = {Kj; j ∈ J} and BE = {Bj; j ∈ J} are multi-hypergraphs
whose edges, labeled by J might be not pairwise distinct.

It is also clear that for each EFF E there is a unique minimum monotone EFF EM such
that EM ≥ E. This EFF is defined by formula:

EM(KM , BM) = 1 iff E(K,B) = 1 for some K ⊆ KM ⊆ I, B ⊆ BM ⊆ A

and is called the minimum monotone majorant of E.

3 Superadditive and weakly superadditive EFFs

3.1 Superadditivity

An EFF E is called 2-superadditive if the following implication holds:

E(K1, B1) = E(K2, B2) = 1, K1 ∩K2 = ∅ ⇒ E(K1 ∪K2, B1 ∩B2) = 1.

More generally, an EFF E is called k-superadditive if, for every set of indices J of cardi-
nality |J | = k ≥ 2, the following implication holds:

if E(Kj, Bj) = 1 ∀ j ∈ J and coalitions {Kj; j ∈ J} are pairwise disjoint
(that is, Kj′ ∩Kj′′ = ∅ ∀ j′, j′′ ∈ J | j′ 6= j′′) then

E

(⋃
j∈J

Kj,
⋂
j∈J

Bj

)
= 1.

Let us notice that, in particular,
⋂

j∈J Bj 6= ∅, since otherwise the boundary condition
E(K, ∅) = 0 would fail. By induction on k, it is easy to show that 2-superadditivity implies
k-superadditivity for all k ≥ 2; see, for example, [22] or [3]. An EFF satisfying these
properties is called superadditive.

3.2 Weak superadditivity

Furthermore, an EFF E is called weakly superadditive if for every set of indices J the following
implication holds:

if E(Kj, Bj) = 1 ∀ j ∈ J and coalitions {Kj; j ∈ J} are pairwise disjoint then⋂
j∈J

Bj 6= ∅.
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Remark 2 In [3], a family {(Kj, Bj) | j ∈ J} is called an upper cycle whenever the above
implication fails. Thus, an EFF is weakly superadditive if and only if it has no upper cycle.
It was also shown in [3] that the upper and lower acyclicity are necessary for stability of
EFFs; see also [6] for an alternative proof, definitions, and more details.

Let us also remark that weak superadditivity (in contrast to superadditivity) cannot be
reduced to the case |J | = 2.

Example 3.1 An EFF E such that

E({1}, {a2, a3}) = E({2}, {a3, a1}) = E({3}, {a1, a2}) = 1

is not weakly superadditive, yet, EFF E might be weakly 2-superadditive.

Finally, let us note that superadditivity implies weak superadditivity; indeed, otherwise
boundary conditions E(K, ∅) = 0 would not hold.

Example 3.2 However, the inverse implication fails. An EFF E such that

E({1}, {a2, a3}) = E({2}, {a3, a1}) = 1, while E({1, 2}, {a3}) = 0

is not superadditive but might be weakly superadditive.

3.3 On complexity of verifying (weak) superadditivity

It is a CoNP-complete problem to verify whether a monotone EFF E is weakly superadditive;
see [5] Theorem 12, Lemma 28, and Remarks 10 and 29.

In contrast, one can easily verify in cubic time whether a (monotone) EFF E = {(Kj, Bj); j ∈
J} is superadditive. Indeed, as we know, superadditivity of E is equivalent with its 2-
superadditivity and the latter can be verified in cubic time just according to the definition.

3.4 On (weak) superadditivity of a minorant of an EFF

Proposition 1 If an EFF E is weakly superadditive and E ′ ≤ E then EFF E ′ is weakly
superadditive, too.

Proof. Let J be a set of indices and E ′(Kj, Bj) = 1 for each j ∈ J , where coalitions
{Kj; j ∈ J} are pairwise disjoint. Then E(Kj, Bj) = 1 for each j ∈ J , too, since E ≥ E ′.
Hence,

⋂
j∈J Bj 6= ∅, since E is weakly superadditive. Thus, E ′ is weakly superadditive, too.

�

However, the above arguments do not extend to superadditivity, since

E

(⋃
j∈J

Kj,
⋂
j∈J

Bj

)
= 1 and E ′ ≤ E 6⇒ E ′

(⋃
j∈J

Kj,
⋂
j∈J

Bj

)
= 1.
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Example 3.3 Let us consider EFFs E and E ′ such that

E({1}, {a2, a3}) = E({2}, {a3, a1}) = E ′({1}, {a2, a3}) = E ′({2}, {a3, a1}) = 1;

1 = E({1, 2}, {a3}) > E ′({1, 2}, {a3}) = 0.

Obviously, EFF E ′ is not superadditive, while EFF E might be superadditive and inequality
E ′ < E might hold. Moreover, both E and E ′ can be monotone.

3.5 On superadditivity and weak superadditivity of the minimum
monotone majorant of an EFF

It is clear that superadditivity of an EFF E does not imply even weak 2-superadditivity of
a majorant E ′ ≥ E. Indeed, let us consider, for example, the ”absolutely minimal” EFF E
defined by formula: E(K,B) = 1 if and only if B = A. (Recall that E(∅, A) = 1, by the
boundary conditions.) Obviously, E is superadditive and inequality E ≤ E ′ holds for every
EFF E ′.

However, both superadditivity and weak superadditivity of an EFF E are inherited by
the minimum monotone majorant E ′ = EM of E.

Proposition 2 If EFF E is (weakly) superadditive then its minimum monotone majorant
EM is (weakly) superadditive, too.

Proof. Let J be a set of indices and EM(KM
j , BM

j ) = 1 for each j ∈ J , where coalitions
{KM

j ; j ∈ J} are pairwise disjoint. Then, by definition of EM , equality E(Kj, Bj) = 1 holds
for some Kj ⊆ KM

j , Bj ⊆ BM
j , and j ∈ J . In particular, these coalitions {Kj; j ∈ J} are

pairwise disjoint, too.
If E is weakly superadditive then

⋂
j∈J Bj 6= ∅. Hence,

⋂
j∈J B

M
j 6= ∅ and, thus, EM is

weakly superadditive, too.
If E is superadditive then E(

⋃
j∈J Kj,

⋂
j∈J Bj) = 1. Hence, by containments Kj ⊆ KM

j

and Bj ⊆ BM
j for j ∈ J , by monotonicity of EM , and by inequality EM ≥ E, we conclude

that EM(
⋃

j∈J K
M
j ,
⋂

j∈J B
M
j ) = 1 and, thus, EM is superadditive, too. �

Yet, the inverse implication holds only for weak superadditivity.

Proposition 3 An EFF E is weakly superadditive whenever its minimum monotone majo-
rant EM is weakly superadditive.

Proof. Let J be a set of indices and E(Kj, Bj) = 1 for each j ∈ J , where coalitions
{Kj; j ∈ J} are pairwise disjoint. Then, EM(Kj, Bj) = 1, too, by inequality EM ≥ E.
Hence,

⋂
j∈J Bj 6= ∅, by weak superadditivity of EM . Thus, EFF E is weakly superadditive,

too. �

Corollary 1 An EFF E is weakly superadditive if and only if its minimum monotone ma-
jorant EM is weakly superadditive.
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Proof. It follows immediately from Propositions 2 and 3. �

However, Proposition 3 does not extend to the case of superadditivity.

Example 3.4 An EFF E such that

E({1}, {a3}) = E({2}, {a3}) = E({1}, {a2, a3}) = E({2}, {a3, a1}) = 1, and E({1, 2}, {a3}) =
0. is not superadditive, while EM might be superadditive.

4 Game forms and their effectivity functions

Let Xi be a finite set of strategies of the player i ∈ I and X =
∏

i∈I Xi. A game form is
defined as a mapping g : X → A that assigns an outcome a ∈ A to each strategy profile
x = (x1, . . . , xn) ∈ X1 × · · · ×Xn = X. We will assume that mapping g is surjective, that
is, g(X) = A; yet typically, g is not injective, that is, the same outcome might be assigned
to several distinct strategy profiles.

A game form can be viewed as a game in normal form in which payoffs are not specified
yet. Given a game form g, let us introduce an EFF Eg as follows:

Eg(K,B) = 1 for a coalition K ⊆ I and block B ⊆ A if and only if there is a strategy
xK = {xi; i ∈ K} of coalition K such that the outcome g(xK , xI\K) is in B for every strategy
xI\K = {xi; i 6∈ K} of the complementary coalition.

Remark 3 The EFF Eg was introduced in [23], where it is called α-EFF of g and, respec-
tively, notation α-Eg is applied. The EFF β-Eg is also defined in [23]. Yet, we find it
more convenient to substitute Eg and Ed

g for α-Eg and β-Eg, where the dual EFF Ed
g will be

introduced in Section 8.

Let us recall that the boundary values Eg(∅, B) are not defined yet. By the boundary
conditions, we set Eg(∅, A) = 1 and Eg(∅, B) = 0 whenever B 6= A.

Let us also notice that Eg(I, ∅) = 0 and Eg(I, B) = 1 for all non-empty B ⊆ A, since g
is surjective. Thus, all boundary conditions hold for EFF Eg.

Proposition 4 EFF Eg is monotone and superadditive for every game form g.

This statement was shown already by Abdou [1, 2], Moulin and Peleg [23].

Proof. First, let us consider monotonicity. If Eg(K,B) = 1 then, by definition, coalition
K has a strategy xK = {xi; i ∈ K} enforcing B. Furthermore, if K ⊆ K ′ and B ⊆ B′

then K ′ has a strategy xK′ = {xi; i ∈ K ′} enforcing B′. Indeed, g(x) ∈ B ⊆ B′ whenever
coalitionists of K play in accordance with xK , while players of K ′ \ K apply arbitrary
strategies. In this case, E(K ′, B′) = 1, too. Hence, Eg is monotone.

Now, let us prove superadditivity. Let E(K1, B1) = E(K2, B2) = 1 and K1 ∩ K2 = ∅.
By definition of Eg, coalition Kj has a strategy xKj

enforcing Bj, where j = 1 or 2. Since
coalitions K1 and K2 are disjoint, they can apply these strategies xK1 and xK2 simultaneously.
Obviously, the resulting strategy xK of the union K = K1 ∪ K2 enforces the intersection
B = B1 ∩B2. �



Page 8 RRR 03-2009

5 Main theorems

It is natural to ask whether the inverse is true too. A positive answer was given in 1983 by
Moulin [22], Theorem 1 of Chapter 7.

Theorem 1 An EFF is formal if and only if it is monotone and superadditive.

In 1998, Peleg [26] proved a slightly more general claim. In particular, his proof works for
infinite sets of outcomes A. Both proofs are constructive. Yet, the number |Xi| of strategies
of a player i ∈ I is doubly exponential in the size of the (monotone) input EFF E. In this
paper, we suggest a third construction in which |Xi| is only linear in the size of E for every
player i ∈ I; more precisely,

|Xi| = |A|+ deg(i,KE) ≤ |A|+ |J | = p+m.

Here the monotone EFF E = {(Kj, Bj); j ∈ J} is given as in Section 3, KE = {Kj; j ∈ J}
is the corresponding multi-hypergraph of the coalitions, and deg(i,KE) = #{j ∈ J | i ∈ Kj}
is the degree of player i in Kj.

The following statement will be instrumental in our proof of Theorem 1 and is also of
independent interest.

Theorem 2 An EFF is formal-minor if and only if it is weakly superadditive.

In fact, we can immediately extend this statement as follows.

Theorem 3 The next four properties of an EFF E are equivalent:

(i) E is formal minor; (ii) E is weakly superadditive;

(iii) EM is formal-minor; (iv) EM is weakly superadditive.

Proof. Equivalence of (i) and (ii) (as well as of (iii) and (iv), in particular) is claimed by
Theorem 2. Furthermore, (i) and (iii) are equivalent, too, by the definition of the minimum
monotone majorant EM and monotonicity of Eg. �

Let us remark that Proposition 3 follows from Theorem 3.

We will prove Theorems 1 and 2 in the next two subsections.

In accordance with Section 3.3, it can be verified in polynomial time whether a (mono-
tone) EFF is formal or whether it is superadditive; in contrast, to verify whether a monotone
EFF is formal-minor or whether it is weakly superadditive is a CoNP-complete decision prob-
lem.
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6 Main proofs

6.1 Proof of Theorem 2

Obviously, an EFF E is formal minor if and only if EM is. Since EM is monotone, it can
be conveniently specified by the list (Kj, Bj), j ∈ J, of all inclusion-minimal pairs such that
EM(Kj, Bj) = 1.

Clearly, E = EM whenever EFF E is monotone; otherwise the input size of E might be
much larger: E is specified by the list of all (not only inclusion-minimal) pairs (Kj, Bj), j ∈
J ′, such that E(Kj, Bj) = 1. Yet, we can easily reduce this list J ′ to J by leaving only
inclusion-minimal pairs and eliminating all other. This reduction, obviously, results in EM .
Thus, without loss of generality, we can assume that E = EM , or in other words, that the
input EFF E is monotone and given by the list (Kj, Bj), j ∈ J .

If E ≤ Eg for some game form g, then Propositions 1 and 4 imply that E is weakly
supperadditive.

For the converse direction, given a monotone weakly superadditive EFF E, we want to
construct a game form g such that E ≤ Eg. To each player i ∈ I let us give a set of
strategies Xi = {xj

i | i ∈ Kj}. In other words, given i ∈ I and j ∈ J , strategy xj
i is unique

whenever i ∈ Kj and it is not defined otherwise. Thus, |Xi| = deg(i,K), where K is the
multi-hypergraph of coalitions K = {Kj, j ∈ J}.

Given j ∈ J , a (unique) strategy xKj
= {xj

i ; i ∈ Kj} of coalition Kj is called proper.
If for each such strategy and each strategy xI\Kj

of the complementary coalition, inclusion
g(xKj

, xI\Kj
) ∈ Bj holds then game form g will be called proper, too.

Let us show that the above condition is not contradictory whenever EFF E is weakly
superadditive. Indeed, if a strategy profile x = (x1, . . . , xn) is proper with respect to several
coalitions {Kj, j ∈ J ′ ⊆ J} then, obviously, these coalitions are pairwise disjoint and, hence,⋂

j∈J ′ Bj 6= ∅.
For each strategy profile x ∈ X let us choose an outcome a from this intersection and fix

g(x) = a. If x is proper for no j ∈ J then choose g(x) ∈ A arbitrarily. This construction
defines a proper game form g : X → A. The desired inequality E ≤ Eg obviously holds for
each proper game form g. Indeed, let E(K,B) = 1; then E(Kj, Bj) = 1 for some j ∈ J ;
then g(xKj

, xI\Kj
) ∈ Bj for every xI\Kj

whenever xKj
is the proper strategy of Kj. �

Let us consider an example given by the upper left corner (the first two rows and columns)
of Table 1. In this example I = {1, 2}, A = {a1, a2, a3, a4}, and EFF E is given by the list:

E(1, {a1, a2, a4}) = E(1, {a1, a3, a4}) =
E(2, {a1, a2, a3}) = E(2, {a2, a3, a4}) = 1.

Each of the four entries of the desired game form must be an outcome of the corresponding
intersection. The obtained EFF Eg is given by the list:

Eg(1, {a1, a2}) = Eg(1, {a1, a3}) = Eg(2, {a1}) = Eg(2, {a2, a3}) = 1.

Of course, E ≤ Eg, however, E 6= Eg. Similar observations were made by Moulin; see
[22] Theorem 1 of Chapter 7, pp. 166-168.
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a1 a2

a2 a3

a3 a4

a1 a2 a4 a1 a2 a1 a2 a4 a1

a1 a3 a4 a1 a3 a1 a3 a4 a1

a1 a4 a1 a2 a3 a4

a2 a2 a4 a1 a2 a3

a3 a3 a3 a4 a1 a2

a1 a4 a2 a3 a4 a1

Table 1: Two-person EFF Eg.

Remark 4 Let K = {Kj, j ∈ J} and X = {xKj
, j ∈ J} be families of coalitions and their

strategies. If the coalitions of K are pairwise disjoint (vice versa, pairwise intersect) then
the corresponding faces in the direct product X =

∏
i∈I Xi intersect (vice versa, might be

pairwise disjoint). This observation, which is instrumental in the above proof of Theorem 2,
was mentioned in [19] and illustrated for n = 3 and K = {{1, 2}, {2, 3}, {3, 1}}.

6.2 Proof of Theorem 1

Now we assume that EFF E = {(Kj, Bj); j ∈ J} is monotone and superadditive and want
to construct a game form g such that E = Eg. In the previous section, we already got a
game form g′ such that E ≤ Eg′ . To enforce the equality, we will have to extend g′ to g as
follows. To each player i ∈ I, in addition to the proper strategies X ′i = {xj

i ; i ∈ Kj}, we will
add p = |A| backup strategies X ′′i = {xb

i ; b ∈ {0, 1, . . . , p− 1}}. Thus, Xi = X ′i ∪X ′′i for all
i ∈ I and X =

∏
i∈I Xi =

∏
i∈I(X ′i ∪X ′′i ).

Thus, each strategy profile x ∈ X defines a unique partition I = K ′ ∪K ′′, where K ′ =
K ′(x) and K ′′ = K ′′(x) are the coalitions of all ”proper” and ”backup” players, respectively,
that is, xi ∈ X ′i for i ∈ K ′ and xi ∈ X ′′i for i ∈ K ′′. To obtain the desired game form g : X →
A (such that Eg = E), we will define g(x) successively for |K ′′(x)| = k(x) = k = 0, 1, . . . , n.

Two extreme cases, k = 0 and k = n are simple. If k(x) = 0, that is, in x all players
choose proper strategies , then g(x) = g′(x) is defined as in the previous section. If k(x) = n,
that is, in x all players choose backup strategies xi ∈ X ′′i = {xbi

i ; bi ∈ {0, 1, . . . , p − 1}} ,
then

g(x) = ar ∈ A = {a1, . . . , ap}, where r − 1 =
n∑

i=1

bi mod p. (1)

Table 3 and the lower right 4×4 corner of Table 1 provide two examples, with n = p = 3
and n = 2, p = 4, respectively.

Now, we plan to define g(x) for k(x) ∈ {1, . . . , n− 1}.
First, we have to extend the concepts of a proper coalition, strategy, and game form

defined in the previous section. Given a strategy profile x ∈ X, let us consider partition
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I = K ′(x)∪K ′′(x), where players ofK ′ andK ′′ choose in x their proper and backup strategies,
respectively. A coalition Kj is called proper if xi = xj

i for each i ∈ Kj. By this definition,
Kj ⊆ K ′(x), that is, each proper coalition is a subcoalition of K ′(x). The obtained strategy
xKj

= {xj
i ; i ∈ Kj} of coalition Kj is called proper, too. If for each such strategy and every

strategy xI\Kj
of the complementary coalition, inclusion g(xKj

, xI\Kj
) ∈ Bj holds then game

form g will be also called proper. As before, these conditions are not contradictory whenever
EFF E is (weakly) superadditive. Indeed, if several coalitions {Kj; j ∈ J ′ ⊆ J} are proper
with respect to a given strategy profile x = (x1, . . . , xn) then, obviously, these coalitions are
pairwise disjoint and, hence, B(x) =

⋂
j∈J ′ Bj 6= ∅.

Two strategy profiles x′, x′′ ∈ X will be called equivalent if the corresponding partitions
coincide, or in other words, if K ′(x′) = K ′(x′′) = K and, moreover, x′i = x′′i for every i ∈ K.
Obviously, these classes partition X.

Given x ∈ X, let |K ′′(x)| = k(x) = k and |B(x)| = q(x) = q; furthermore, let for
simplicity K ′′(x) = {1, . . . , k} ⊆ I and B(x) = {a1, . . . , aq} ⊆ A.

We generalize formula (1) for arbitrary integral q ≤ p and k ≤ n as follows:

g(x) = ar ∈ B(x) = {a1, . . . , aq}, where r − 1 =
k∑

i=1

bi mod q. (2)

whenever in the given profile x ∈ X each player i ∈ K ′′(x) chooses a backup strategy
xi = bi ∈ {0, 1, . . . , p− 1}.

Several examples are given in Tables 2 and 3, where p = 4 or p = 5, q = 3, k = 2 and p
= q = k = 3, respectively.

a1 a2 a3 a1 a1 a2 a3 a1 a2

a1 a1 a2 a3 a2 a1 a2 a3 a1

a3 a1 a1 a2 a1 a2 a1 a2 a3

a2 a3 a1 a1 a3 a1 a2 a1 a2

a2 a3 a1 a2 a1

Table 2: q = 3, k = 2, p = 4 and p = 5.

a1 a2 a3 a2 a3 a1 a3 a1 a2

a3 a1 a2 a1 a2 a3 a2 a3 a1

a2 a3 a1 a3 a1 a2 a1 a2 a3

Table 3: p = q = k = 3.

By the above definition, for every x ∈ X, there are exactly pk(x) strategy profiles equiv-
alent with x. Let us define function (game form) g on these profiles in accordance with
(2).

In particular, g(x) = g′(x) when K ′′(x) = ∅ and g(x) is defined by (1) when K ′(x) = ∅.
Table 1 represents an example in which n = 2 and p = 4.
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By construction, each strategy xK is effective for the block B(xK) = ∩j∈J ′Bj, where
J ′ = J(xK) ⊆ J is defined as follows: xK is a proper strategy of Kj if and only if j ∈ J ′. In
particular, Kj ⊆ K for all j ∈ J ′.

In general, Eg(K,B) = 1 if and only K ⊇ Kj and B ⊇ Bj for a j ∈ J .
In particular, Eg(Kj, Bj) = 1 for all j ∈ J , since the proper strategy xKj

= {xj
i ; i ∈ Kj}

is effective for Bj. Thus, by the above construction, equality E = Eg holds if and only if the
input EFF E is monotone and superadditive. �

Remark 5 In general, the obtained EFF Eg is the minimum monotone and superadditive
majorant of the input EFF E.

Let us also note that the above construction is computationally efficient: for every strategy
profile x the corresponding outcome g(x) is determined in polynomial time. Obviously, the
same is true in case of Theorem 2 too.

6.3 Theorem 2 results from Theorem 1

We derived Theorems 1 from Theorem 2. In fact, the latter is of independent interest. For
example, it is instrumental in the proof of the Berge and Duchet conjecture in [4]; see also
[5, 6]. In these papers, Theorem 2 was derived from Theorem 1, since the latter was already
published by Moulin.

Remark 6 In an old joke, a mathematician solved the problem of boiling water in the kettle
as follows: ”... If water is already in the kettle then pour it out and, by this, the problem is
reduced to the previous one”.

An EFF E and its minimum monotone majorant EM can be weakly superadditive or,
respectively, formal-minor only simultaneously. Moreover, E ≤ Eg if and only if EM ≤ Eg,
since Eg and EM are both monotone. Hence, we can prove Theorem 2 for EM rather than
for E. Since EFF EM is monotone, it is uniquely defined by the set of its minimal ”ones”
EM = {(Kj, Bj); j ∈ J}.

First, let us assume that EM is formal-minor, that is, EM ≤ Eg for a game form g.
Furthermore, let J ′ ⊆ J be a family of pairwise disjoint coalitions, K ′j′ ∩ K ′j′′ = ∅ for all

j′.j′′ ∈ J ′ such that j′ 6= j′′. Obviously, EM ≤ Eg implies that Eg(Kj, Bj) = 1 for all j ∈ J .
By Theorem 1, Eg is monotone, superadditive, and satisfies the boundary conditions; see
Section 4. Hence, Eg(∪j∈J ′Kj,∩j∈J ′Bj) = 1, by superadditivity, and then ∩j∈J ′Bj 6= ∅, by
boundary condition. Thus, EFFs EM (and E) are weakly superadditive.

Conversely, let EM be weakly superadditive. Let us define an EFF E ′ by setting
E ′(K,B) = 1 if and only if B = A, or K = I and B 6= ∅, or there is a non-empty
subset J ′ ⊆ J such that B ⊇ ∩j∈J ′Bj, K ⊇ ∪j∈J ′Kj, and the corresponding coalitions,
{Kj; j ∈ J ′} are pairwise disjoint. By this definition, EM ≤ E ′. Furthermore, it is not
difficult to verify that the obtained EFF E ′ is monotone, superadditive, and satisfies the
boundary conditions. Hence, by Theorem 1, E ′ = Eg for a game form g. Thus, EM and E
are formal-minor.
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7 Graphs and their effectivity functions

Given a graph G = (J,E), let us assign a player (outcome) to every its inclusion-maximal
clique (independent set) and denote the obtained two sets by IG and AG. Then, for every
vertex j ∈ J let us consider the coalition Kj (block Bj) corresponding to all maximal cliques
(independent sets) that contain vertex j. The obtained list {(Kj, Bj); j ∈ J} defines an
EFF EG. The next claim is instrumental in the proof of the Berge-Duchet conjecture in [4];
see also [5, 6].

Lemma 1 For every graph G the corresponding EFF EG is formal-minor.

Proof. By Theorem 2, it is enough to show that EG is weakly supperadditive. Let J ′ ⊆ J
be a set of vertices in G such that the coalitions {Kj; j ∈ J ′} are pairwise disjoint. Then,
obviously, J ′ is an independent set of G. Indeed, Kj′ ∩ Kj′′ 6= ∅ if and only if {j′, j′′} is
an edge of G. Let J ′′ be a maximal independent set that contains J ′ and a ∈ AG be the
corresponding outcome. Then, obviously, a ∈ ∩j∈J ′Bj 6= ∅ �

Thus, there is a game form g :
∏

i∈IG
Xi → AG such that EG ≤ Eg.

Although both sets IG and AG might be exponential in |J |, yet, by the construction of
Theorem 2, it follows that one can choose a game form g of a ”pretty modest” size, namely,
|Xi| ≤ |J | for all i ∈ IG.

8 Tight game forms and self-dual EFFs

8.1 Dual and self-dual effectivity functions

To each EFF E let us assign the dual EFF Ed defined by formula:

Ed(K,B) + E(I \K,A \B) = 1 ∀ K ⊆ I, B ⊆ A.

In other words, Ed(K,B) = 1 if and only if E(I \K,A \B) = 0.
It is not difficult to verify that two EFFs are dual if and only if the corresponding two

Boolean functions are dual. (Let us also recall that an EFF is monotone if and only if
the corresponding Boolean function is monotone.) Thus, our terminology for EFFs is in
agreement with the standard Boolean language.

Respectively, an EFF E is called self-dual (or maximal) if

E(K,B) + E(I \K,A \B) = 1, ∀ K ⊆ I, B ⊆ A,

that is, K is effective for B if and only if I \K is not effective for A \B.
It is easy to see that inequality

E(K,B) + E(I \K,A \B) ≤ 1, ∀ K ⊆ I, B ⊆ A,

holds for every weakly superadditive EFF. Indeed, otherwise

E(K,B) = E(I \K,A \B) = 1 and, hence, E(I, ∅) = 0,

by weak superadditivity, in contradiction with the boundary conditions.
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Hence, E(K,B) = 0 whenever E(I \K,A \B) = 1.

An EFF E is self-dual if and only if the inverse implication holds. In other words, the
equalities E(K,B) = E(I \K,A \B) = 0 might hold for some K ⊆ I, B ⊆ A of an EFF E;
they cannot hold if and only if EFF E is self-dual.

Remark 7 In particular, the self-dual EFFs are maximal, with respect to the partial or-
der ”≤”, among the weakly superadditive (as well as among superadditive, or formal, or
formal-minor) EFFs. For this reason, term ”maximal”, rather than ”self-dual”, is frequent
in the literature; see, for example, [22, 25, 3]. However, in this paper we follow Boolean
terminology.

Remark 8 Let us also recall that, by the boundary conditions, E(I, ∅) = 0 and E(∅, A) = 1,
in agreement with self-duality.

8.2 Tight game forms; T -formal and T -formal-minor EFFs

A game form g is called tight if its EFF Eg is self-dual.
Let us recall that EFF E is T-formal (T-formal-minor) if and only if E = Eg (respectively,

E ≤ Eg) for a tight game form g. It is not difficult to show that the families of the formal-
minor and T-formal-minor EFFs just coincide.

Proposition 5 An EFF is T-formal-minor if and only if it is formal-minor.

Proof. Indeed, it is shown in [17] that every game form g can be extended to a tight one;
in other words, for each g there is a tight game form g′ such that g is a subform of g′ and
Eg ≤ Eg′ . �

Furthermore, just by definition, an EFF is T-formal if and only if it is formal and self-dual.
Moreover, the following statement holds.

Theorem 4 An EFF E is T-formal if and only if it is monotone, superadditive, and self-
dual. The next four properties of a self-dual EFF E are equivalent:

(a) E is T-formal; (b) E is monotone and superadditive;

(c) E is T-formal-minor; (d) E is monotone and weakly superadditive.

Proof. The first claim immediately follows from Theorem 1 and the definition of tightness
and results in equivalence of (a) and (b). Furthermore, obviously, (a) implies (c). To show
the inverse let us assume indirectly that the strict inequality E < Eg holds for a self-dual
EFF E and a tight game form g.

Yet, let us also recall that the inequality Eg(K,B) + Eg(I \ K,A \ B) ≤ 1 holds for a
game form g and identity Eg(K,B) +Eg(I \K,A \B) ≡ 1 holds whenever g is tight. Since
E < Eg, there is a pair K ⊆ I, B ⊆ A such that E(K,B) = E(I \ K,A \ B) = 0. Then,
by duality, Ed(K,B) = Ed(I \ K,A \ B) = 1 and we get a contradiction, since EFF E is
self-dual, E = Ed.

The same arguments, in slightly different terms, appear already in [22].
Finally, Theorem 2 and Proposition 5 imply that (d) is equivalent to (c). �
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8.3 On tightness and Nash-solvability

Given sets of players (voters) I and outcomes (candidates) A, the utility (payoff, preference)
function is introduced by a mapping u : I × A → R, where u(i, a) is interpreted as a profit
of player i ∈ I in case outcome a ∈ A is realized.

Given also a game form g : X → A, the pair (g, u) is a game in normal form.
A strategy profile x = {xi; i ∈ I} ∈

∏
i∈I Xi = X is called a Nash equilibrium in game

(g, u) if u(i, x) ≥ u(i, x′) for each player i ∈ I and each strategy profile x′ obtained from x
by substituting a strategy x′i for xi. In other words, x is a Nash equilibrium if a player can
make no profit in x by choosing another strategy provided all other players keep their old
strategies.

A game form g is called Nash-solvable if for each utility function u the obtained game
(g, u) has a Nash equilibrium.

Theorem 5 A two-person game form is Nash-solvable if and only if it is tight.

This result was obtained in 1975 [12]; see also [14] and [8] Appendix 1, where it is also
shown that in case of more than two players tightness is no longer necessary or sufficient for
Nash-solvability.

In contrast, for two-person zero-sum games tightness remains necessary. More precisely,
let I = {1, 2}, a utility function u : I × A→ R is called zero-sum if u(1, a) + u(2, a) = 0 for
each outcome a ∈ A. A game form g is called zero-sum-solvable (±1-solvable) if for every
zero-sum (and taking only ±1-values) utility function u the obtained zero-sum game (g, u)
has a saddle point.

Theorem 6 The following properties of a two-person game form are equivalent:

(i) Nash-solvability, (ii) zero-sum-solvability, (iii) ±1-solvability, (iv) tightness.

Equivalence of (ii), (iii), and (iv) was demonstrated in 1970 by Edmonds and Fulkerson
[10] and then, independently, in [11].

To make the paper self-contained we will prove Theorem 6 in Section 10.

8.4 Tightness and Boolean duality

Self-duality of monotone EFFs (and hence, tightness of the corresponding game forms) can
be conveniently reformulated in Boolean terms as follows. Given a monotone EFF E :
2I × 2A → {0, 1}, let us assign a Boolean variable a to every outcome a ∈ A. (For simplicity
we denote the outcome and the corresponding variable by the same symbol a.) Then, for
each coalition K ⊆ I let us introduce a monotone Boolean function defined by the following
positive (that is, negation-free) disjunctive normal form (DNF)

FK =
∨

B | E(K,B)=1

∧
a∈B

a.
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By this definition, EFF E is self-dual if and only if Boolean functions FK and FI\K are
dual, F d

K = FI\K for all K ⊆ I. More details about DNFs and duality can be found in any
Boolean textbook; see, for example, [9].

For K = ∅ and K = I duality follows from the boundary conditions. Hence, self-duality
of a two-person EFF E is reduced to simply F d

1 = F2.
Also by definition, for a formal EFF E = Eg its DNFs are given by formula:

FK(g) =
∨

xK=(xi,i∈K)

∧
xI\K=(xi,i 6∈K)

g(xK , xI\K) ∀ K ⊆ I. (3)

Thus, game form g is tight if and only if F d
K(g) = FI\K(g) for all K ⊆ I.

9 On totally tight game forms and TT-formal effectiv-

ity functions

9.1 Two-person case

Let us start with the case n = 2. A two-person game form g is called totally tight (TT) if
every 2× 2 subform of g is tight.

Up to an isomorphism, there are only seven 2× 2 game forms:

a1a1 a1a1 a1a1 a1a1 a1a2 a1a2 a1a2

a1a1 a1a2 a2a2 a2a3 a2a1 a2a3 a3a4

The first four are tight, while the last three are not. Thus, a 2× 2 game form is tight if
and only if it has a constant line, row or column.

Let g be a game form with a constant line and let g′ be the subform of g obtained by
eliminating this line. Obviously, g is TT if and only if g′ is TT.

Let us also remark that g might be tight, while g′ is not; see [7] for the corresponding
examples. However, g is tight whenever g′ is tight.

A TT game form with a constant line is called reducible.
Somewhat surprisingly, all irreducible TT game form have the same EFF.

Theorem 7 ([7]) Let g : X1 ×X2 → A be an irreducible TT two-person game form. Then
there are three outcomes a1, a2, a3 ∈ A such that

Eg(i, {a1, a2}) = Eg(i, {a2, a3}) = Eg(i, {a3, a1}) = 1, while Eg(i, {aj}) = 0,
for i ∈ I = {1, 2}, j ∈ J = {1, 2, 3}.

It is easy to see that EFF Eg is uniquely defined by the equalities of Theorem 7 and the
boundary conditions. Also, it is uniquely defined by the corresponding (self-dual) Boolean
functions: F1(g) = F2(g) = a1a2 ∨ a2a3 ∨ a3a1.
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Obviously, the 1 × 1 game form g0 is TT, too. Yet, formally, it is reducible. For the
corresponding EFF Eg0 we have Eg0(1, {a}) = Eg0(2, {a}) = 1, where a is the unique outcome
of g0; respectively, in Boolean terms F1(g0) = F2(g0) = a.

We will call this EFF trivial, while the EFF of Theorem 7 will be called
(
3
2

)
-EFF. Obvi-

ously, both EFFs are self-dual and, hence, the corresponding game forms are tight. Since the
addition of a constant line to a game form respects its tightness, the next statement follows.

Corollary 2 A totally tight game form is tight. �

The above proof was based on Theorem 7. There is an alternative very short proof based
on Theorems 5, 6, and Shapley’s condition for solvability of matrix games. If g is TT then
every its 2 × 2 subform g′ is tight. Then, obviously, g′ is Nash-solvable. (This follows, for
example, from Theorems 5 and 6; although ”these two guns are certainly too big for a fly
that small”.) Yet, in 1964, Shapley [28] proved that a matrix has a saddle point whenever
every its 2× 2 submatrix has one. By Shapley’s theorem, game (g, u) has a saddle point for
each zero-sum payoff u. Thus, g is tight, by Theorem 6. �

By definition, every TT game form is obtained from an empty or irreducible one by
recursively adding constant lines. By this operation, the corresponding EFFs are changed in
an obvious way, which we will call an extension by adding constant lines or ACL-extension,
for short.

Thus, we obtain a recursive characterization for the EFFs of the TT two-person game
forms, or in other words, for the TT-formal two-person EFFs.

Theorem 8 A two-person EFF E is TT-formal if and only if it is an ACL-extension of the
trivial or

(
3
2

)
-EFF. �

A recursive characterization of the two-person TT game forms themselves is obtained in
[7]. It is based on Theorem 7, yet, somewhat surprisingly, is much more complicated than
the latter.

To make the paper self-contained we will prove Theorem 7 in Section 11.

9.2 n-person case

Now, let g : X → A be a n-person game form, where X =
∏

i∈I Xi and I = {1, . . . , n}.
Each coalition K ⊆ I such that K 6= ∅ and K 6= I defines a two-person game form gK :
XK ×XI\K → A, where

XK = {xK = {xi; i ∈ K}} and XI\K = {xI\K = {xi; i 6∈ K}}
are the sets of strategies of two complementary coalitions K and I \K.

Game form g is called totally tight (TT) if gK is TT for all K.
An EFF E is called TT-formal (respectively, TT-formal-minor) if E = Eg (respectively,

E ≤ Eg) for a TT game form g. By this definition, every TT-formal (TT-formal-minor) EFF
E is T-formal (formal-minor) and we obtain obvious necessary conditions. In particular, E
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is (i) monotone, (ii) superadditive, and (iii) self-dual (respectively, E and EM are weakly
superadditive).

Furthermore, given an n-person EFF E : 2I∪A → {0, 1} and a coalition K ⊆ I, let us
define a two-person EFF EK which is the restriction of E to K and I \K. More precisely,
EK(K ′, B) = 1 if and only if E(K,B) = 1 and K ′ ⊆ K. Obviously, for each K ⊆ I EFF
EK is TT-formal (respectively, TT-formal-minor) whenever E is. Thus, we obtain more
necessary conditions.

Indeed, a recursive characterization of the two-person TT-formal EFFs was just obtained
in the previous section. Yet, it remains open, whether the obtained necessary conditions are
also sufficient for an EFF to be TT-formal. In general, characterizing TT-formal and TT-
formal-minor EFFs remains an open problem.

10 Proof of Theorem 6 and its limits

10.1 Tight two-person game forms

Let g : X1 ×X2 → A be a two-person game form. By definition, g is tight if its EFF Eg is
self-dual; or in Boolean terms, if F d

1 (g) = F2(g) for all K ⊆ I.
The next two tables represent tight and not tight game forms, respectively.

a1 a1 a1 a1 a3 a3 a0 a0 a0

a2 a3 a2 a4 a2 a4 a0 a1 a2

a0 a3 a4

a1 a1 a3 a1 a1 a2 a1 a2 a1 a2

a1 a2 a2 a1 a1 a3 a3 a4 a4 a3

a3 a2 a3 a4 a3 a3 a1 a4 a1 a5

a3 a2 a6 a2

Table 4: Tight two-person game forms.

a1 a2 a0 a1 a2 a1 a1 a2

a2 a1 a0 a2 a1 a4 a0 a2

a4 a3 a3

Table 5: Not tight two-person game forms.

We will need more equivalent reformulations of tightness. Let us consider an arbitrary
reply mapping φ1 : X2 → X1 that assigns a strategy of player 1 (a row) to each strategy of
player 2 (a column). In the special case, when this functions takes a unique value x1 ∈ X1,
we will use the notation φ0

1 : X2 → {x1}. Let gr(φ1) ⊆ X = X1 ×X2 be the graph of φ1 in
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X and [φ1] = g(gr(φ1)) ⊆ A be the corresponding set of outcomes. Similarly we define [φ0
1],

[φ2], and [φ0
2].

Proposition 6 The following five properties of a game form are equivalent.

(j) For each φ1 there exists a φ0
1 such that [φ0

1] ⊆ [φ1];

(jj) For each φ2 there exists a φ0
2 such that [φ0

2] ⊆ [φ2];

(jjj) For each φ1 and φ2 we have [φ1] ∩ [φ2] 6= ∅;
(jv) Eg(1, B) + Eg(2, A \B) ≡ 1 for all B ⊆ A;

(v) game form g is tight.

Proof. (j) ⇒ (jjj). Assume indirectly that (j) holds and (jjj) does not. The latter means
that there exist φ1 and φ2 such that [φ1] ∩ [φ2] = ∅, while by (j), there exists a φ0

1 such that
[φ0

1] ⊆ [φ1]. Hence, [φ0
1]∩[φ2] = ∅. However, this is impossible, since clearly, gr(φ0

1)∩gr(φ2) 6=
∅ for every φ0

1 and φ2.

(jjj) ⇒ (j). Suppose that (j) does not hold, that is, there is a φ1 such that [φ0
1] ⊆ [φ1]

for no φ0
1. Choosing an outcome from [φ0

1] \ [φ1] for each φ0
1 we get a mapping φ2 such that

[φ1] ∩ [φ2] 6= ∅. Hence, (jjj) does not hold either.

Thus, (j) and (jjj) are equivalent. Similarly, (jj) and (jjj) are equivalent. To come to this
conclusion it is enough to rename players 1 and 2.

Furthermore, (jjj), (jv) and (v) are also equivalent, by definition. Indeed, Eg(1, B) =
Eg(2, A \ B) = 1 hold for no g, since every row and column intersect. Yet, (jv) Eg(1, B) =
Eg(2, A\B) = 0 can hold. Obviously, this exactly means that g is not tight and in this (and
only in this) case (jjj) does not hold. �

It is a useful exercise to verify that all five properties of Proposition 6 hold for the first
five and do not hold for the last three game forms of Section 10.1.

As we showed in Section 8.4, (jv) means Boolean duality Ed
1(g) = E2(g) which holds for

the first five game forms and does not hold for the last three:

(a1 ∨ a2a3)
d = a1a2 ∨ a1a3, (a1a3 ∨ a2a4)

d = a1a2 ∨ a2a3 ∨ a3a4 ∨ a4a1, ad
0 = a0, (a1a2 ∨

a2a3 ∨ a3a1)
d = a1a2 ∨ a2a3 ∨ a3a1, (a2a1 ∨ a1a3 ∨ a3a4)

d = a4a1 ∨ a1a3 ∨ a3a2, (a1a2 ∨ a3a4 ∨
a1a4a5 ∨ a2a3a6)

d = a1a3 ∨ a2a4 ∨ a1a4a6 ∨ a2a3a5;

(a1a2)
d = a1 ∨ a2 6= a1a2, (a0a1a2)

d = a0 ∨ a1 ∨ a2 6= a0 ∨ a1a2,
(a1a2 ∨ a2a0a4 ∨ a4a3)

d = a4a1 ∨ a1a0a3 ∨ a3a2 ∨ a2a4 6= a4a1 ∨ a1a0a3 ∨ a3a2.

10.2 Tightness and zero-sum-solvability

Let us recall that, by definition, a game form g is zero-sum-solvable if for each utility function
u : A→ R the obtained normal form game (g, u) is solvable, that is, has a saddle points (in
pure strategies). It is well-known that the latter property holds if and only if maxmin and
minmax are equal, that is, if

v1 = max
x1∈X1

min
x2∈X2

u(g(x1, x2)) = min
x2∈X2

max
x1∈X1

u(g(x1, x2)) = v2.
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Proposition 7 ([10],see also [11]). (a) If game form g is tight then it is zero-sum-solvable;
(b) if g is not tight then it is not ±1-solvable.

Proof. . Suppose that g is not tight. Then, by (jjj), there exist φ1 and φ2 such that
[φ1] ∩ [φ2] = ∅. Let us set u(a) = 1 for a ∈ [φ1], u(a) = −1 for a ∈ [φ2], and u(a) = 1
or u(a) = −1, arbitrarily, for all remaining a ∈ A. Obviously, for this u we obtain −1 =
v1 < v2 = 1 and hence, there is no saddle point in game (g, u). Thus, game form g is not
±1-solvable.

Suppose that g is not zero-sum-solvable; i.e., there is a payoff u : A→ R such that game
(g, u) is not solvable, i.e., v1 < v2. Furthermore, for every x1 ∈ X1 there is an x2 ∈ X2 such
that u(g(x1, x2)) = v1 and for every x2 ∈ X2 there is an x1 ∈ X1 such that u(g(x1, x2)) = v2.
In particular, this implies that there exist φ1 and φ2 such that [φ1] ∩ [φ2] = ∅. Hence, g is
not tight, by (jjj). �

10.3 Tightness implies Nash-solvability

Still, we have to prove that g is Nash-solvable (not only zero-sum-solvable) whenever g
is tight. We will partition the set of outcomes A in three pairwise disjoint subsets A =
B ∪B1 ∪B2 such that

(p1) u(1, b) ≥ u(1, b1) for every b ∈ B, b1 ∈ B1 and

(p2) u(2, b) ≥ u(2, b2) for every b ∈ B, b2 ∈ B2.

Condition p1 (respectively, p2) means that any outcome of B1 for player 1 (respectively,
of B2 for player 2) is not better than any outcome of B. We also assume that that the
following two conditions hold for A = B ∪B1 ∪B2 too:

(q1) E(1, B2) = 0 and (q2) E(2, B1) = 0.

In other words, player 1 (resp., 2) cannot “punish” the opponent by forcing B2 (resp., B1).
If g is tight, these two conditions can be rewritten as follows:

(q1′) E(1, B ∪B1) = 1 and (q2′) E(2, B ∪B2) = 1.

Our proof is “dynamic”. We will start with B = A and reduce B by sending its outcomes
to B1 and B2 in such a way that all four above conditions hold.

Let us note that we cannot get B = ∅, since in this case q1′ and q2′ would imply that
E(1, B1) = E(2, B2) = 1, in contradiction with B1 ∩B2 = ∅. [Let us remark that here is the
only place where we make use of the tightness of g.]

Thus, there is a partition A = B ∪ B1 ∪ B2 such that B cannot be reduced any longer.
Let us fix such a partition and let a be the worst outcome for player 1 in B1, that is,
u(1, a) ≤ u(1, b) for every b ∈ B1. We know that we cannot send a from B to B1, although
this operation would be OK with (p1). Clearly, it can contradict only (q2) and this happens
indeed if E(2, (B1 ∪ {a})) = 1.

Furthermore, let Ba
2 denote the set of all outcomes of B2 that are not better than a for

player 2, that is, u(2, b) ≤ u(2, a) for every b ∈ Ba
2 ; in particular, for a ∈ Ba

2 . We know that
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Ba
2 cannot be sent from B to B2, although this operation would be OK with (p2). In fact,

it can contradict only (q1) and this happens indeed if E(1, (B2 ∪Ba
2)) = 1.

Thus, we obtain E(2, (B1 ∪ {a})) = E(1, (B2 ∪ Ba
2)) = 1. By the definition of Eg, there

are strategies x0
1 ∈ X1 and x0

2 ∈ X2 such that g(x0
1, x2) ∈ (B2 ∪ Ba

2) for each x2 ∈ X2 and
g(x1, x

0
2) ∈ (B1 ∪ {a}) for each x1 ∈ X1. Let us note that (B1 ∪ {a}) ∩ (B2 ∪ Ba

2) = {a}.
Hence, g(x0

1, x
0
2) = a and (x0

1, x
0
2) ∈ X is a Nash equilibrium in the game (g, u), by the

definitions of a and Ba
2 . �

Now we will show that Theorem 6 does not generalize the case n = 3. The concept
of tightness is naturally extended to this case. Yet, for 3-person game forms tightness
is no longer necessary [14] nor sufficient [12, 14] for Nash-solvability. We reproduce the
corresponding two examples here.

10.4 Nash-solvable but not tight 3-person game form

Given three players (|I| = 3, I = {1, 2, 3}) each of which has two strategies, Xi = {0, 1} for
each i ∈ I, and two outcomes (|A| = 2, A = {a1, a2}), let us define a 2 × 2 × 2 game form
g :
∏

i∈I Xi → A by formula

g(x1, x2, x3) = a1 if x1 = x2 = x3 and g(x1, x2, x3) = a2 otherwise.

It is easy to see that every two players, say, 1, 2, are effective for the outcome a2. To
enforce it they can just choose x1 = 0 and x2 = 1. Yet, they are not effective for a1. It is also
clear that a single player is effective only for the whole set A = {a1, a2}. Hence, game form
g is not tight, since, for example, Eg({1, 2}, {a1}) = Eg({3}, {a2}) = 0. Boolean duality,
F d

K = FI\K , fails too:

F [1] = F1(g) = F2(g) = F3(g) = a1a2,

F [2] = F{2,3}(g) = F{3,1}(g) = F{1,2}(g) = a2, and F [1]d = a1 ∨ a2 6= a2 = F [2].

Let us show that g is Nash-solvable. If all three players prefer a1 to a2 then, clearly,
(x ∈ X|x1 = x2 = x3 = 0) and (x ∈ X|x1 = x2 = x3 = 1) are both Nash equilibria. If
a player, say 1, prefers a2 to a1 then (x ∈ X|x1 = 1, x2 = x3 = 0) is a Nash equilibrium.
Indeed, in this case g(x) = a2 and no player, neither 2 nor 3, can switch it to a1. Although
player 1 could do this (just substituting x1 = 0 for x1 = 1), yet, (s)he is not interested, since
(s)he prefers a2 to a1.

10.5 Tight but not Nash-solvable 3-person game form

Given three players (|I| = 3, I = {1, 2, 3}) each of which has six strategies,

Xi = {xi = (x′i, x
′′
i ) | x′i ∈ {0, 1}, x′′i ∈ {0, 1, 2}}; i ∈ I,

and three outcomes (|A| = 3, A = {a1, a2, a3}), let us define a 6 × 6 × 6 game form g :∏
i∈I Xi → A as follows:

g(x) = g(x1, x2, x3) = g(x′1, x
′′
1, x

′
2, x
′′
2, x

′
3, x
′′
3) = aj, where
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j − 1 =


(x′′1 + x′′2 + x′′3) mod 3 if x′1 = x′2 = x′3,
(x′′1 + x′′2) mod 3 if 1 = x′1 > x′2 = 0,
(x′′2 + x′′3) mod 3 if 1 = x′2 > x′3 = 0,
(x′′3 + x′′1) mod 3 if 1 = x′3 > x′1 = 0.

First let us notice that g is well defined, since the above four conditions, x′1 > x′2,
x′2 > x′3, x′3 > x′1, and x′1 = x′2 = x′3, form a partition of X. Indeed, no two of the first
three inequalities can hold simultaneously, since x′i ∈ {0, 1} takes only two values for each
i ∈ {1, 2, 3}. In fact, these four conditions partition the 6× 6× 6 box X in three 3× 3× 6
boxes corresponding to the three inequalities and two 3× 3× 3 boxes corresponding to the
equalities.

Now, let us show that g is tight. Indeed, any two players, say, 1, 2 ∈ I, are effective
for every outcome aj ∈ A. To guarantee it, they just choose 1 = x′1 > x′2 = 0 to take the
control and then force aj choosing (x′′1 and x′′2) such that x′′1 + x′′2 = j − 1( mod 3). On
the other hand, single player is effective only for the whole set A. It is easy to verify that
Eg(K,B) +Eg(I \K,A \B) ≡ 1 and, hence, game form g is tight. Equivalently, in Boolean
terms we obtain:

F [1] = F1(g) = F2(g) = F3(g) = a1a2a3,

F [2] = F2,3(g) = F3,1(g) = F1,2(g) = a1 ∨ a2 ∨ a3, and (F [1])d = F [2].

Moreover, for each player i ∈ I and for each strategy xi ∈ Xi the obtained restricted
game form g[xi] of the remaining two players is tight too.

Indeed, due to symmetry, without loss of generality, we can choose any strategy. For
example, let us fix x1 = (x′1, x

′′
1) = (1, 2). Then in the obtained game form g[x1] player 2 can

enforce any outcome aj ∈ A. To do so (s)he should just choose x′2 = 0 to get 1 = x′1 > x′2 = 0
and take the control. Then (s)he should choose x′′2 = j mod 3, since in this case (x′′1 + x′′2)
mod 3 = (2 + x′′2) mod 3 = j − 1 which results in aj. Respectively, player 3 is effective only
for the whole set A. It is easy to verify that game form g[xi] is tight:

F2 = F2(g[xi]) = a1 ∨ a2 ∨ a3, F3 = F3(g[xi]) = a1a2a3, and F d
2 = F3.

However, game form g is not Nash-solvable. To show this let us choose a utility function
u that realizes so-called “Condorcet” preference profile

u(1, a1) > u(1, a2) > u(1, a3),
u(2, a2) > u(2, a3) > u(2, a1),
u(3, a3) > u(3, a1) > u(3, a2),

and show that the obtained normal form game (g, u) has no Nash equilibrium.
Let x = (x1, x2, x3) = (x′1, x

′′
1, x

′
2, x
′′
2, x

′
3, x
′′
3) be an arbitrary strategy profile.

Case 1: x′1 = x′2 = x′3. In this case, by definition, g(x) = aj, where j = 1+((x′′1 +x′′2 +x′′3)
mod 3), and it is clear that each player, by changing the strategy, can get each outcome of
A. Hence, x is not a Nash equilibrium.

Case 2: equalities x′1 = x′2 = x′3 do not hold. In this case, without loss of generality, we
can assume that 1 = x′1 > x′2 = 0. Then, by definition, g(x) = aj, where j = 1 + ((x′′1 + x′′2)
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mod 3). In this situation the strategy of player 3 is irrelevant and (s)he cannot change the
outcome by choosing another strategy. However, each player 2 or 3 can obtain any given
outcome of A. Let us note that the present outcome aj = g(x) may be the best for one
of these two players but not for both. Hence, x is not a Nash equilibrium, since this latter
player can change the strategy and get a better outcome.

A smaller, 2 × 2 × 4, example was given in [12]. However, the above 6 × 6 × 6 example
from [14] is simpler, due to its symmetry.

10.6 Nash-solvability of a 3-person game form is not
uniquely defined by its effectivity function

By Theorem 6, a 2-person game form g is Nash-solvable if and only if it is tight, that is, the
corresponding EFF Eg is self-dual. In Sections 10.4 and 10.5 we demonstrated that Theorem
6 does not extend the case of 3-person game forms, when tightness is no longer necessary
(Section 10.4) or sufficient (Section 10.5) for Nash-solvability. Of course, this is also true for
n-person game forms with any n ≥ 3, since we can simply introduce n−3 ”dummy players”.

Here we extend these negative results and show that, in principle, Nash-solvability of a
3-person game form g is not uniquely defined by its EFF Eg.

To do so, we construct two 3-person game forms g and g′ such that g is Nash-solvable,
while g′ is not, although Eg = Eg′ .

Let us take g′ from Section 10.4 and define g by the 3-dimensional table

a2 a1 a2 a2 a2 a1 a2 a1 a2

a1 a2 a1 a2 a1 a2 a1 a2 a2

a2 a2 a2 a1 a2 a1 a2 a1 a2

Thus, g and g′ have the same 3 players and 2 outcomes. Yet, in g each player i ∈ I has
3 (rather than 2) strategies, Xi = {0, 1, 2}; furthermore, g(x) = g(x1, x2, x3) = a2 whenever
x1 + x2 + x3 is even and also in three ”odd cases” x ∈ {(1, 2, 0), (0, 0, 1), (2, 1, 2)}; otherwise
g(x) = a1. It is easy to verify that g and g′ have the same EFF given in Section 10.4.
Indeed, each two players are effective for a2, while one player can only trivially guarantee
A = {a1, a2}.

It is also easy to verify that if g(x) = a1 then each player can switch to a2 by choosing
another strategy and if g(x) = a2 then at least two of three players can switch to a1. This
observation implies that, unlike g′, game form g is not Nash-solvable. Indeed, let us consider
a utility function u such that two players prefer a1 to a2 and one has the opposite preference.
It is clear that x cannot be a Nash equilibrium in both cases, g(x) = a1 or g(x) = a2.

To obtain another similar example, let us take g′ from Section 10.5 and define g by the
following 3-dimensional table

Thus, g and g′ have the same 3 players and 3 outcomes. We assume that the outcomes
labeled by ax can take arbitrary (perhaps, different) values in A = {a1, a2, a3}. Yet, in g
each player i ∈ I has 3 (instead of 6) strategies.
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a1 a1 a1 a1 a2 a3 a1 ax ax

a2 a2 a2 a1 a2 a3 ax a2 ax

a3 a3 a3 a1 a2 a3 ax ax a3

It is easy to verify that g and g′ have the same EFF given in Section 10.5.
Indeed, each of two players is effective for every outcome, while one player can only

trivially guarantee the whole set A = {a1, a2, a3}.
It is also easy to verify that g is Nash-solvable. Without loss of generality, let us assume

that u(1, a1) ≥ u(1, a2) ≥ u(1, a3). Then “the upper left” strategy profile x is a Nash
equilibrium. Indeed, g(x) = a1 and it is easy to see that outcome a1 remains whenever
player 2 or 3 chooses another strategy.

Unlike them, player 1 can get both a2 or a3, by changing the strategy. Yet, (s)he is not
interested, since a1 is the best outcome for 1.

The above two examples show that among two game forms with the same EFF one may
be Nash-solvable, while the other one not. Let us also note that the EFF is self-dual in the
second example, while in the first one it is not.

Remark 9 It is an interesting general question which properties of game forms (and other
structures) are uniquely defined by the corresponding EFFs.

For example, the core of a cooperative game C(E, u), by definition, depends only on the
EFF E and utility function u; see e.g. [23, 22, 25].

By Theorem 6, a 2-person game form g is Nash-solvable if and only if its EFF Eg is
self-dual. Yet, this result does not generalize to the case of 3-person game forms. In [18],
the class of veto voting schemes is considered for which the result of elections is uniquely
defined by the corresponding effectivity (equivalently, veto) function. Somewhat surprisingly,
not only game structures but also quite different objects may have properties uniquely defined
by some EFFs. For example, in [4, 6], an EFF EG is assigned to each graph G and it is
shown that such properties of G as perfectness or kernel-solvability depend only on EG.

11 Proof of Theorem 7

Let g be a totally tight game form. By Corollary 2, g is tight, that is, the corresponding two
monotone Boolean functions F1(g) and F2(g) are dual. Yet, Theorem 7 claims much more,
namely, all TT game forms generate the same self-dual pair: F1(g) = F2(g) = a1a2 ∨ a2a3 ∨
a3a1.

11.1 Game correspondences and associated game forms

A game correspondence is defined as a mapping G : X1 ×X2 → 2A. In other words, to each
(x1, x2) ∈ X1 ×X2 we assign a set of outcomes G(x1, x2) ⊆ A.

If |G(x1, x2)| = 1 for all (x1, x2) ∈ X1 ×X2, we obtain a game form.



RRR 03-2009 Page 25

a1

/
a3 a1 a3

a1 a2

/
a1 a2

a3 a2 a3

/
a2

Table 6:
(
3
2

)
majority voting game correspondence;

only 2 from 8 game forms associated with this game correspondence are TT.

In general, with a game correspondence G we associate
k =

∏
x1∈X1,x2∈X2

|G(x1, x2)| game forms g ∈ G, by choosing for each strategy profile (x1, x2)
an outcome g(x1, x2) ∈ G(x1, x2). Let us notice that k = 0 whenever G(x1, x2) = ∅ for at
least one strategy profile.

We will say that g ∈ G is associated with G and call G (totally) tight if k > 0 and at least
one g ∈ G is (totally) tight.

11.2 Game correspondences associated with pairs of dual mono-
tone DNFs

First, let us recall the following two well-known properties of dual monotone Boolean func-
tions that will be instrumental for our analysis.

Lemma 2 (see, for example, [9], Part I, Chapter 4).
(i) Every two dual (prime) implicants α of F and β of F d have at least one variable in

common.
(ii) Given a prime implicant α of F and a variable x of α, there is a (prime) implicant

β of F d such that x is the only common variable of α and β. �

Given arbitrary monotone (that is, negation-free) DNFs D1 =
∨

x1∈X1
Bx1 and D2 =∨

x2∈X2
Bx2 over the set of variables A, let us define a game correspondence G = GD1,D2 :

X1×X2 → 2A by setting G(x1, x2) = Bx1∩Bx2 for each (x1, x2) ∈ X1×X2; see, for example,
GD1,D2 in Table 6, where D1 = D2 = a1a2 ∨ a2a3 ∨ a3a1.

Lemma 3 ([14], see also [27]). If D1 and D2 are dual then G(D1, D2) is tight. In particular,
in this case G(x1, x2) 6= ∅ for all (x1, x2) ∈ X1 × X2; moreover, all associated game forms
g ∈ G have the same Boolean functions F1(g) and F2(g) defined by DNFs D1 and D2,
respectively. Conversely, if at least one game form g ∈ GD1,D2 is tight then DNFs D1 and
D2 are dual.

Proof. It follows immediately from Lemma 2 (i) and (ii). �

Let us recall that, by definition, G is TT if at least one g ∈ G is TT. However, in contrast
with tightness, this does not mean that all g ∈ G are TT. Let us consider, for example, game
correspondence G in Table 6. It is not difficult to verify that only two of eight game forms
associated with G are TT. To get them one should choose a1, a2, a3 or a3, a1, a2 on the main
diagonal.
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a1 a1 a3 a3

a2 a4 a2 a4

g

a1 a3

a2 a4

g′

Table 7: Game form g is tight but not TT.

Given a DNF D, let D0 denote the corresponding irredundant DNF, that is, disjunction
of all prime (irreducible) implicants of D.

Lemma 4 Game correspondence GD1,D2 is TT if and only if GD0
1 ,D0

2 is TT.

Proof. The “only if part” immediately follows, since total tightness is a hereditary property
of game forms and game correspondences.

Lemma 5 A subcorrespondence G′ of G is TT whenever G is TT. �

Let us prove the “if part”. By assumption, there is a TT game form g0 ∈ G0 = GD0
1 ,D0

2 .
Let us extend it to a TT game form g ∈ G = GD1,D2 as follows. For i = 1, 2 to each strategy
xi ∈ Xi in G assign a strategy x0

i ∈ Xi in G0 such that Bx0
i
⊆ Bxi

. Then for each strategy

profile x = (x1, x2) of G choose the same outcome as for x0 = (x0
1, x

0
2) in g0. Obviously, the

obtained extension g of g0 is totally tight, too. �

11.3 Totally tight Boolean functions

Thus, we can restrict ourselves by dual pairs of irredundant DNFs. In other words, keeping in
mind the characterization of TT game forms, we will take as the input a monotone Boolean
function F rather than a game form g. Given F , we set F1 = F and F2 = F d, consider the
corresponding irredundant DNFs D0

1, D
0
2, and game correspondence G = GF = GD0

1 ,D0
2 . We

will call F TT if G is TT, or in other words, if there is a TT g ∈ G. By construction, F is
TT if and only if F d is TT. Let us consider several examples.

Example 11.1 F = F1 = a1a3 ∨ a2a4 and F d = F2 = a1a2 ∨ a2a3 ∨ a3a4 ∨ a4a1. It is
easy to see that every two prime implicants, one of F and another of F d, have exactly one
variable in common. In other words, game correspondence GF is, in fact, a game form, since
|GF (x1, x2)| = 1 for every (x1, x2) ∈ X1 ×X2. However, this game form is not TT, since it
has a 2× 2 subform g′ that is not tight. see Table 7.

Remark 10 In general, a (monotone) Boolean function F is called read-once if it can be
expressed via its variables by a (∨,∧)-formula in which every variable appears only once.
The following four claims are equivalent:

(i) F is read-once; (ii) F d is read-once; (iii) GF is a game form, GF = gF ;
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a1 a2 a2

a3 a2

/
a3 a2

a3 a3 a4

G

a1 a2

a3 a4

g′

Table 8: No TT game form is associated with this game correspondence.

(iv) every two prime implicants, one of F and another of F d, have exactly one variable
in common; see [13] and also [20] and [9], Part II, Chapter 10.

A (monotone) Boolean function F is called reducible if F = a∨ F ′ or F = a∧ F ′, where
F ′ does not not depend on a.

Furthermore, F is called totally reducible if it can be successively reduced to F = a (and
then, by the next step, to F ≡ 0 or to F ≡ 1). Obviously, the following four properties of a
(monotone) function F are equivalent:

(v) F is totally reducible; (vi) F d is totally reducible;
(vii) F is read-once and all parentheses of its read-once formula are nested;

(viii) game correspondence GF is a totally reducible game form.

Let us recall that the totally reducible game forms are totally tight.
Yet, we are looking for the irreducible TT game forms.

Example 11.2 As another example let us consider the dual pair

F = F1 = a1a2 ∨ a2a3 ∨ a3a4 and F d = F2 = a1a3 ∨ a3a2 ∨ a2a4.

Obviously, GF is not TT, since it contains a 2× 2 subform g′; see Table 8.

A case analysis might be needed for more difficult examples.

Example 11.3 Let F = F
(
5
3

)
:=
∨
{i,j,k}⊆{1,2,3,4,5} aiajak, where i, j, and k are pairwise

distinct triplets; in other words, F = 1 if and only if at least 3 of its 5 variables are equal to
1. To show that GF is not TT let us consider its 4× 4 subcorrespondence G given in Table 9
(where, to save space, we substitute only the subscript j ∈ {1, 2, 3, 4, 5} for aj). Let us choose
an arbitrary game form g ∈ G. Due to obvious symmetry, we can choose a1 from {a1, a2, a3},
without any loss of generality. Yet, in this case G already contains a 2× 2 subconfiguration
G′ that is clearly not TT; see Table 9. Hence, g cannot be TT and, by Lemma 5, G and GF

are not TT, either.

The next Lemma is instrumental in characterizing TT Boolean functions.
Given F , let us choose two distinct prime implicants and denote by B,B′ ⊆ A the

corresponding two set of variables. Obviously, B \B′ 6= ∅ and B′ \B 6= ∅.

Lemma 6 If F is totally tight then |B \B′| = 1 or |B′ \B| = 1.
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123 145 245 345
123 123 1 2 3
145 1 145 45 45
245 2 45 245 45
345 3 45 45 345

G

1 3
2 45

G′

Table 9:
(
5
3

)
majority voting, a 4× 4 subcorrespondence;

this subcorrespondence is not TT, since no TT game form is associated with it.

B a1 a2

B′ a3 a4

B a1 a2 b
B′ b′ a3 a4

B a1 a2 b1 b2
B′ b3 b4 a3 a4

a1 a2 b b
b′ b′ a3 a4

a1 a2 a2 a2

a3 a3 a3 a4

Table 10: |B \B′| = 1 or |B′ \B| = 1.

Proof. Let us assume indirectly that |B \B′| ≥ 2 and |B′ \B| ≥ 2, say, a1, a2 ∈ B \B′ and
a3, a4 ∈ B′ \B, where a1, a2, a3, a4 ∈ A are four pairwise distinct outcomes, yet, F is TT.

By Lemma 2 (ii), there are four prime implicants β1, β2, β3, β4 in F d whose sets of variables
B1, B2, B3, B4 are such that B1∩B = {a1}, B2∩B = {a2}, B3∩B′ = {a3}, B4∩B′ = {a4}.
Obviously, β1 6= β2 and β3 6= β4. Hence, among these four implicants two, three, or four are
pairwise distinct.

Let us fix a game form g ∈ GE and consider the corresponding subform g′ in g of size
2× 2, 2× 3, or 2× 4. All cases are considered in Table 10, where the first row of each game
form is assigned to B and it contains a1 and a2, while the second one is assigned to B′ and
it contains a3 and a4.

By assumption, Boolean function F and game correspondence GF is TT. Hence, we can
assume that the associated game form g ∈ GF is TT, too.

Case 2× 2 is easy, since g′ itself is not tight; see Table 10.1.
In case 2 × 3, by definition of B and B′, we have b 6= a4 and b′ 6= a1. Hence, the

2 × 2 subform with entries a2, b, a3, a4 (respectively a1, a2, b
′, a3 is not tight unless b = a2

(respectively, b′ = a3). Yet, if both these equalities hold then the remaining 2× 2 subform,
with entries a1, b, b

′, a4, is not tight; see Table 10.2.
In case 2×4, outcomes b1, b2, b3, b4 ∈ A are not necessarily pairwise distinct, yet, {b1, b2}∩

{a3, a4} = {b3, b4}∩{a1, a2} = ∅, since b1, b2 ∈ B and b3, b4 ∈ B′; see Table 10.3. Furthermore,
b1 = b2 and b3 = b4, since otherwise the first or the last two columns of g′ form a not tight
subform. Let us set b1 = b2 = b and b3 = b4 = b′, as in Table 10.4. Yet, b (respectively, b′)
cannot be equal to both a1 and a2 (respectively, a3 and a4), since they are distinct. Without
loss of generality, let us assume that b 6= a1 and b′ 6= a4; see Table 10.5. Then the first and
last columns of g′ form a not tight subform, even if b = b′.
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Thus, in each case, we obtain a contradiction. �

11.4 Irreducible TT Boolean functions are self-dual

In Boolean terms, reducible game forms are obviously characterized as follows.

Lemma 7 Game correspondence GF contains a constant row (column) whose every entry
is an outcome a ∈ A if and only if F = a ∨ E ′ (respectively, F d = a ∨ F ′′). In both cases,
every associated game form g ∈ GE is reducible. �

Thus, we can reformulate Theorem 7 as follows:

if F is TT then either F = a ∨ F ′, or F d = a ∨ F ′′, or F = F d = a1a2 ∨ a2a3 ∨ a3a1.

In the first two cases F is called reducible.

Lemma 8 If F is TT and irreducible then every two of its prime implicants have a variable
in common.

Proof. Let us assume indirectly that there are two prime implicants of F with disjoint set
of variables B,B′ ⊆ A. By Lemma 7, if F is TT then |B| = 1 or |B′| = 1, in other words,
F is reducible and we get a contradiction. �

Lemma 9 If F is TT and irreducible then it is self-dual, F = F d.

Proof. It is both obvious and well-known (see, for example, [9]) that F is dual-minor,
F ≤ F d, if and only if every two prime implicants of F have a variable in common. Thus,
by Lemma 8, if F is irreducible and TT then it is dual-minor, F ≤ F d. Furthermore, F
is irreducible and TT if and only if F d is irreducible and TT. To see this, it would suffice
just to rename players 1 and 2. Hence, F and F d are both dual-minor: F ≤ F d and
F d ≤ (F d)d = E. Hence, F = F d, that is, F is self-dual. �

We will show that only one self-dual function is TT, all other are not.

Example 11.4 The next function is associated with the Fano projective plane:

F = a1a2a3 ∨ a3a4a5 ∨ a5a6a1 ∨ a0a1a4 ∨ a0a2a5 ∨ a0a3a6 ∨ a2a4a6.

It is well-known and not difficult to verify that F is self-dual, F = F d.
Yet, by Lemma 6, F is not TT. Indeed, rows {a1, a2, a3}, {a3, a4, a5} and columns

{a0, a1, a4}, {a0, a2, a5} form a 2× 2 game form that is not tight.

As another example, let us recall that the 3-majority EFF
(
5
3

)
is self-dual but not TT;

see Table 9.
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01 02 12

01 01 0 1

02 0 02 2

12 1 2 12

01 02 03 123

01 01 0 0 1

02 0 02 0 2

03 0 0 03 3

123 1 2 3 123

01 02 · · · 0k 12. . . k

01 01 0 · · · 0 1

02 0 02 0 2
...

. . .
...

0k 0 0 0k k

12. . . k 1 2 · · · k 12. . .k

Table 11: 2-wheel, 3-wheel, and k-wheel.

11.5 The only TT Boolean functions is the 2-wheel

Example 11.5 The k-wheel is defined for all k ≥ 2 by formula

Fk = a0a1 ∨ a0a2 ∨ . . . ∨ a0ak ∨ a1a2 . . . ak.

Again, it is well-known and easy to check that Fk is self-dual, Fk = F d
k for any k ≥ 2.

Game correspondences, GFk are given in Table 11 for k = 2, 3, and in general. (Again,
to save space we substitute for an outcome aj only its subscript j.) Let us fix an arbitrary
g ∈ GEk . Due to obvious symmetry, without loss of generality, we can choose ak from
{a1, a2, . . . , ak}. Yet, then a 2 × 2 not tight subform g′ appears in g whenever k ≥ 3; see
Table 11.

As we already know, 2-wheel F2 is TT. There are two associated with GF2 TT game
forms; see Table 6, in which we substitute i+ 1 for i = 0, 1 and 2.

Furthermore, we can strengthen Lemma 9 as follows.

Lemma 10 If F is TT and irreducible then it is a 2-wheel.

Proof. Let us fix a prime implicant of F with the largest set of variables, say, B =
{a1, . . . , ak} ⊆ A. Since F is irreducible, k ≥ 2.

By Lemma 9, F is self-dual, F = F d. Then, by Lemma 2 (ii), for every j = 1, . . . , k
function F contains a prime implicant with the set of variables Bj such that B ∩Bj = {aj}.
Furthermore, by Lemma 6, |B \Bj| = 1 or |Bj \B| = 1.

Let us assume that k ≥ 3. Then |B \Bj| ≥ 2. Hence, |Bj \B| = 1, that is, Bj = {aj, bj}
for each j = 1, . . . , k. Moreover, by Lemma 2 (i), all bj must coincide, that is, Bj = {a0, aj}
for each j = 1, . . . , k. In other words, F is a k-wheel with k ≥ 3. Yet, as we already know,
in this case Fk is not TT. Hence, k = 2, that is, every prime implicant of F has exactly two
variables; in other words, F = a1a2 ∨ a0a1 ∨ a0a2 is the 2-wheel. �

Thus, all TT irreducible game forms have the same EFF, the 2-wheel. �
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